(易错题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(2)

合集下载

(易错题)高中数学选修1-1第四章《导数应用》测试题(含答案解析)(3)

(易错题)高中数学选修1-1第四章《导数应用》测试题(含答案解析)(3)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞3.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞ B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞5.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f << D .()()()286234f f f <<6.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,-∞B .(0,C .(,-∞D .(0,7.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点8.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,9.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .132-C .132+D .2310.已知函数31()sin xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞11.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞B .323,42e ⎛⎫⎪⎝⎭C .()121,4eD .()321,4e12.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为( )A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<<二、填空题13.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____. 14.函数()31443f x x x =-+的极大值为______. 15.若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______. 16.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________17.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 18.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.19.已知函数()(1)2x f x e a x =---(e 为自然对数的底数),若0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则a 的取值范围为________.20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知函数()(2)(0)x f x ae x a =-≠. (1)求()f x 的单调区间;(2)若函数2()()2g x f x x x =+-有两个极值点,求实数a 的取值范围.22.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围.23.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围.24.已知函数()(0)xaxf x a e =≠. (1)当1a =时,求函数()y f x =在[0,2]上的最大值和最小值;(2)求函数()f x 的单调区间. 25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间;(2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.D解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.3.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数.当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.6.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可. 【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x 的最小值为12f ⎛⎫= ⎪⎝⎭,所以a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.7.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.8.C解析:C 【分析】构造函数()()3xxg x e f x e =⋅--,解不等式()0g x >即可,对()g x 求导得()[()()1]0x g x e f x f x ''=+->,可得()g x 在R 上单调递增,且(0)0g =,根据单调性可得0x >,即得正确答案. 【详解】令()()3x xg x e f x e =⋅--,则()()()[()()1]0xxxxg x e f x e f x e e f x f x '''=⋅+⋅-=+->, 所以()g x 在R 上单调递增, 又因为0(0)(0)30g e f e =⋅--=, 所以()0>g x ⇒0x >,即不等式的解集是(0)+∞,, 故选:C 【点睛】关键点点睛:本题的关键点是构造函数()()3xxg x e f x e =⋅--,所要解的不等式等价于()0g x >,且(0)0g =,所以()()0g x g >,因此需要对()g x 求导判断单调性即可. 9.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =---则函数y在33(0,),(,1)66-+单调递减,在33(,66-+单调递增,故函数在p =处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.10.B解析:B 【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可. 【详解】由于()31sin xxf x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0,所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B . 【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题.11.D解析:D 【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-, 当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.12.B解析:B 【分析】构造新函数()()2g x x f x =,求导后可证明()g x 在()0,∞+上单调递增,而不等式()()()202020202222020x f x f x ++<+可等价于()()20202+<g x g ,故2020020202x x +>⎧⎨+<⎩,解之即可. 【详解】令()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦, ∵定义域为()0,∞+,且()()20xf x f x '+>,()0g x '∴>,()g x 在()0,∞+上单调递增,不等式()()()202020202222020x f x f x ++<+等价于()()20202+<g x g ,2020020202x x +>⎧∴⎨+<⎩,解得20202018-<<-x 故选:B 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.二、填空题13.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e -,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->-故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.14.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.15.3【分析】首先求解导函数然后利用导函数研究函数的性质确定实数a 的最大值即可【详解】由题意可得:由题意导函数在区间上的函数值要么恒非负要么恒非正很明显函数值不可能恒非负故即在区间上恒成立据此可得:即的解析:3 【分析】首先求解导函数,然后利用导函数研究函数的性质确定实数a 的最大值即可. 【详解】由题意可得:2'3y x a =-+,由题意导函数在区间[)1,+∞上的函数值要么恒非负,要么恒非正,很明显函数值不可能恒非负,故230x a -+≤, 即23a x ≤在区间[)1,+∞上恒成立,据此可得:3a ≤, 即a 的最大值是3. 故答案为3. 【点睛】本题主要考查导函数研究函数的单调性,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.16.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.17.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可. 【详解】解:函数的导数2()21f a x x x '=+-, 由()0f x '在1x 上恒成立得2210ax x +-在1x 上恒成立,即221a x x +, 得322x x a +在1x 上恒成立, 设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数, 则当1x =时,()g x 取得最小值()1213g =+=, 则3a ,即实数a 的取值范围是(],3-∞, 故答案为:(],3-∞ 【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.18.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】 因()a f x x b x -'=+,故()0af x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0ah t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.19.【分析】可知从而根据条件可判断为减函数或存在极值点求导数从而可判断不可能为减函数只能存在极值点从而方程有解这样由指数函数的单调性即可得出的取值范围【详解】要满足使得成立则函数为减函数或存在极值点当时 解析:()1,+∞【分析】可知00lg x x <,从而根据条件可判断()f x 为减函数或存在极值点,求导数()1x f x e a '=-+,从而可判断()f x 不可能为减函数,只能存在极值点,从而方程1x a e -=有解,这样由指数函数xy e =的单调性即可得出a 的取值范围.【详解】00lg x x <,∴要满足0(0,)x ∃∈+∞,使得()()00lg f x f x >成立,则函数()f x 为减函数或存在极值点,()1x f x e a '=-+,当()0,x ∈+∞时,()0f x '≤不恒成立,即函数()f x 不是减函数,∴只能()f x 存在极值点,()0f x '∴=有解,即方程1x a e -=有解,即11x a e =+>,()1,a ∴∈+∞,故答案为:()1,+∞ 【点睛】本题考查了导数研究不等式能成立问题,考查了导数在研究函数单调性、极值中的应用,考查了转化与化归的思想,解题的关键是求出导数,属于中档题.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31k E X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3kk >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<,因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4. 故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)答案见解析;(2)22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)先对函数求导,然后分0a >和0a <两种情况,解不等式()0f x '<,()0f x '>,可求出函数的单调区间;(2)函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,然后分0a >和0a <两种情况讨论即可得答案 【详解】(1)()(1)x f x ae x '=-,若0a >,由()0f x '<,得1x <;由()0f x '>,得1,()x f x >∴的递减区间为(,1)-∞,递增区间为(1,)+∞.若0a <,由()0f x '<,得1x >;由()0f x '>,得1,()x f x <∴的递减区间为(1,)+∞,递增区间为(,1)-∞.(2)22()()2(2)2x g x f x x x ae x x x =+-=-+-,()()(1)22(1)2x x g x ae x x x ae '=-+-=-+. 2()(2)2x g x ae x x x ∴=-+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,当1x =时,1(1)20h ae =+≠,即2a e≠-. ∴①当0a >时,()20x h x ae =+>,此时无零点; ②当0a <且2a e≠-时,2()0,()h x ae h x '=<∴为减函数. 又2ln 2ln 20a h ae a ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭,∴总存在唯一实数2ln a ⎛⎫- ⎪⎝⎭,使()0h x =.综上,()g x 有两个极值点实数a 的取值范围22,,0e e ⎛⎫⎛⎫-∞-⋃- ⎪ ⎪⎝⎭⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数求函数的单调区间,考查导数与极值,第2问解题的关键是将函数2()()2g x f x x x =+-有两个极值点,等价于()()(1)22(1)2x x g x ae x x x ae '=-+-=-+有两个不同的零点,等价于()2x h x ae =+有一个不为1的零点,从而分情况讨论即可,考查数学转化思想,属于中档题 22.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++,所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-, 从而()211f x x x +的取值范围为(),4-∞-. 【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=⋅-.23.(1)()110e x y ---=;(2)01a ≤≤. 【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案. 【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-,设切点为()000, xx e ax a --,则切线方程为()()()0000xy e ax a f x x x '---=-,因为过点()0,1-,所以0000()111x xe x e x --++=--,解得01x =,因此所求的直线方程为()110e x y ---=. (2)()xf x e a '=-,当0a ≤时,()'0f x >, 所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意,当0a <时,取110ax a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<, 所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增, 所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0af a e a a a =--≥,解得01a <≤; 综上所述,01a ≤≤. 【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解. 24.(1)最大值为1e,最小值分别为0;(2)答案见解析. 【分析】(1)当1a =时,()xxf x e =,对其求导,利用导函数得符号判断()y f x =在[0,2]上的单调性,即可求得最值; (2)对()f x 求导可得()1()xa x f x e-'=,讨论0a >和0a <,由()0f x '>可得单调递增区间,由()0f x '<,可得单调递减区间. 【详解】(1)当1a =时,()x x f x e =,所以21()x x x x e xe x f x e e--'==. 令()0f x '=,得1x =. 当01x ≤<时,()0f x '>; 当12x <≤时,()0f x '<.所以()y f x =在()0,1单调递增,在()1,2单调递减, 所以当1x =时,()f x 取最大值1(1)f e=. 又因为(0)0f =,22(2)f e =,所以函数()x xf x e =的最大值和最小值分别为1e,0. (2)因为()1()xa x f x e -'=. 当0a >时,由()0f x '>,得1x <;由()0f x '<,得1x >,此时函数()x xf x e=的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,由()0f x '>,得1x >;由()0f x '<,得1x <.此时函数()x xf x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞ 综上所述:当0a >时,函数()x xf x e =的单调递增区间为(,1)-∞,单调递减区间为(1,)+∞; 当0a <时,函数()x xf x e=的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞.【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值. (2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(答案解析)

(常考题)北师大版高中数学选修1-1第四章《导数应用》检测(答案解析)

一、选择题1.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞2.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫- ⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫-⎪⎝⎭ D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭3.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<4.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞ B .[,)e C .2[,)e -+∞ D .[1,)-+∞5.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤6.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .47.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( ) A .a b c >> B .b a c >> C .c b a >> D .a c b >>8.已知函数()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-9.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 10.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( ) A.34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C.()14f f π⎛⎫⋅⎪⎝⎭D.426f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 11.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 212.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞二、填空题13.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.14.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-; ③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.15.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.16.已知函数()3x f x e -=,()1ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为______.17.已知函数()31=4f x x 图像上有动点()11,A x y ,函数()2g x x =-图像上有动点()22,B x y .若A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等,且始终满足212x x -=,则在此运动过程中A B 、两点的距离AB 的取值范围是______.18.已知函数()()ln ,11,1x x x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.已知函数f (x )=2,(,0],(0,)x x x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f(x 2),则x 2﹣2x 1的取值范围为_____.20.函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦的零点个数是________.三、解答题21.已知函数()323f x x ax x m =-++在3x =处取得极值.(1)求实数a 的值;(2)函数()y f x =有三个零点,求m 的取值范围. 22.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.23.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 24.已知函数()()2xf x e ax a R =-∈.(1)若12a =,求函数()f x 的单调区间 (2)当[]2,3x ∈时,()0f x ≥恒成立,求实数a 的取值范围.25.已知()()2122x f x ax ax x e =-++-. (1)当1a =-时,求()f x 的单调区间 (2)若f (x )存在3个零点,求实数a 的取值范围. 26.已知函数()(1)ln ()af x x a x a x=+-+∈R . (1)讨论函数()f x 的单调性;(2)当0a >时,若()2f x ≥恒成立,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()0g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.2.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.B解析:B 【分析】 构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>,所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.4.D解析:D 【分析】由题意得32x x x a e e e =--,令32()xxx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.5.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.6.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.7.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可. 【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减,当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.8.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x xg x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩, 由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x xx x '-⋅⋅+⋅+'==-=-⋅⋅⋅, 由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x =⋅单调递减;()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x =⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x =⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x-'=, 由()21ln 0xg x x-'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+, 所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D. 【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.9.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a .由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 1=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;10.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>,即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f fππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭()1cos14f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<64f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即264f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.11.B解析:B 【分析】函数()2xf x ae x =+,变形为2x x a e =-,令()2xxg x e =-,利用导数求函数的最值,可得20a e -<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112xae x =-,即可求得a 的最小值【详解】函数()2xf x ae x =+,变形为2x x a e =-,令()2x xg x e =-,得()()21xx g x e-'=, 当(),1x ∈-∞时,0g x ,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x 取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e-<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112xae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =.代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-. 故选:B.【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题12.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数, f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+,令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6 【点睛】关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xexf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->-故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.15.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231xf x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解. 【详解】()320x f x e x m '=+-≤,因为函数()231xf x e x mx =+-+在(],3-∞上单调递减,所以32x e x m +≤,(],3x ∈-∞恒成立;令32xy e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣. 故答案为:)336,e ⎡++∞⎣ 【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.16.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是 解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论. 【详解】解:不妨设()()f m g n t ==, ∴31ln 22m net -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >),令()1223ln t h t et -=⋅--(0t >),()1212t h t et-'=⋅-,()1221''20t h t e t -=⋅+>所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'= ⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=-⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-,故答案为:ln21-. 【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【分析】根据题意求出从初始位置出发至两点的纵坐标值再次相等时对应的的取值进而求得的取值范围用两点距离公式表示进而表示成关于的函数用导数的观点求的取值范围即可【详解】解:因为动点在函数图像上动点在函数解析:29⎡⎢⎣⎦,【分析】根据题意求出A B 、从初始位置出发至A B 、两点的纵坐标值再次相等时对应的1x 的取值,进而求得1x 的取值范围,用两点距离公式表示AB ,进而表示成关于1x 的函数,用导数的观点求AB 的取值范围即可. 【详解】解:因为动点()11,A x y 在函数()31=4f x x 图像上,动点()22,B x y 在函数函数()2g x x =-图像上,所以311221,24y x y x ==-. 由题知:10x ≥,22x ≥,212x x =+.由当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B、两点的纵坐标值再次相等时,得312124x x =-,所以31114x x =,解得10x =或12x =±. 所以,当A B 、两点同时从纵坐标=0y 的初始位置出发,沿着各自函数图像向右上方运动至A B 、两点的纵坐标值再次相等时12x =.102x ∴≤≤,AB ∴==[]10,2x =∈设[]21,0,4x t t =∈,则[]0,4AB t =∈. 设()[]2321111,0,44162g t t t t t t t ⎛⎫=-=-+∈ ⎪⎝⎭, 则()23116g t t t ='-+,由0g t 得4t =或43t =. 40,3t ⎡⎤∴∈⎢⎥⎣⎦时,()0g t '>,g t 单调递增;4,43t ⎡⎤∈⎢⎥⎣⎦时,()0g t '<,g t 单调递减; 34t ∴=时,()max 43g t g ⎛⎫= ⎪⎝⎭,此时maxAB ====; 0t =时,()()min 00g t g ==,此时,min 2AB ===.0,9AB ⎡∴∈⎢⎣⎦.故答案为:⎡⎢⎣⎦.【点睛】本题主要考查用导数求最值,考查学生用导数解决问题的能力,属于中档题.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示:解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-,所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增,当01x <<时,()0f x '<,()f x 递减, 所以当0x =时, ()f x 取得最大值1, 又当1≥x 时,()ln f x x =, 所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t , 且()()2121,(0,1),,t f x t f t x t ==∈各有3个根, 方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩,解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生解析:[ln 2,2) 【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可. 【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<, 设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减, 又(0)2g =,(2)2g ln ln =, 2()2ln g x ∴<.故答案为:[2ln ,2). 【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.20.0【分析】求得函数的导数求得函数在上单调递增在上单调递减再根据即可判定得到答案【详解】由题意函数可得令即解得所以函数在上单调递增;令即解得或所以函数在上单调递减;又由所以函数图象与轴没有交点即函数没解析:0 【分析】求得函数的导数()3(2)(2)f x x x '=-+-,求得函数()f x 在1[,2)3-上单调递增,在(2,3]上单调递减,再根据1()0,(2)0,(3)03f f f ->>>,即可判定,得到答案.【详解】由题意,函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦, 可得22()3123(4)3(2)(2)f x x x x x '=-+=--=-+-, 令()0f x '>,即(2)(2)0x x +-<,解得22x -<<, 所以函数()f x 在1[,2)3-上单调递增;令()0f x '<,即(2)(2)0x x +->,解得2x <-或2x >, 所以函数()f x 在(2,3]上单调递减; 又由11()460,(2)220,(3)130327f f f -=--+>=>=>, 所以函数图象与x 轴没有交点,即函数()f x 没有零点, 所以函数()f x 的个数为0个. 故答案为:0. 【点睛】本题主要考查了函数零点的个数的判定,以及利用导数研究函数的单调性与极值,其中解答中利用导数求得函数的单调性与极值是解答的关键,着重考查了推理与运算能力.三、解答题21.(1)5a =;(2)13,927⎛⎫- ⎪⎝⎭. 【分析】(1)由条件可知'(3)0f =,求a 后再验证是否满足条件;(2)利用导函数的符号,推出函数的单调性,得到函数的极值,列不等式求解即可. 【详解】(1)()2323f x x ax =-+',由已知得()30f '=,得27630a -+=,5a = (2)()3253f x x x x m =-++,令()231030f x x x '=-+=,得3x =或13x =, 由()0f x '>得3x >或13x <,此时()f x 为增函数, 由()0f x '<得133x <<,此时()f x 为减函数, 即当13x =时,函数()f x 取得极大值,当3x =时,()f x 取得极小值, 即()()39f x f m ==-极小值,()113327f x f m ⎛⎫==+ ⎪⎝⎭极大值, 所以函数()f x 有三个不同零点,因此,只需()10330ff ⎧⎛⎫>⎪ ⎪⎝⎭⎨⎪<⎩,即1302790m m ⎧+>⎪⎨⎪-<⎩,解得13927m -<<, m 的范围是13,927⎛⎫- ⎪⎝⎭.【点睛】方法点睛:该题考查的是有关导数的问题,解题方法如下:(1)根据函数在极值点处导数等于零,求得参数的值,之后需要验证;(2)对函数求导,得到其极值,结合三次函数有三个零点的条件为极大值大于零,极小值小于零,列出不等式组,求得结果. 22.(1;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3. 【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根. 23.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦; (2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x x x x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦. (2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=, 当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭, 又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小24.(1)函数()xf x e x =-的单调递增区间为()0,∞+;单调递减区间为(),0-∞;(2)2,4e ⎛⎤-∞ ⎥⎝⎦. 【分析】 (1)当12a =时,()xf x e x =-,利用导数可求得函数()f x 的单调递增区间和递减区间;(2)由参变量分离法得出min2x e a x ⎛⎫≤ ⎪⎝⎭,利用导数求出函数()xe g x x =在区间[]2,3上的最小值,由此可得出实数a 的取值范围. 【详解】 (1)当12a =时,()x f x e x =-,()1xf x e '=-, 令()0f x '=,得0x =.令()0f x '>,得0x >:令()0f x '<,得0x <.所以函数()xf x e x =-的单调递增区间为()0,∞+,单调递减区间为(),0-∞;(2)()202xxe f x e ax a x =-≥⇔≤对任意的[]2,3x ∈恒成立,即min2x e a x ⎛⎫≤ ⎪⎝⎭,设()xe g x x =﹐则()()21x e x g x x-'=,显然当[]2,3x ∈时()0g x '>恒成立. ()g x ∴在[]2,3单调递增,()n2mi ()22g x g e ∴==,22224e e a a ∴≤⇒≤,所以2,4 e a ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.25.(1)在(),1-∞单调递减,在()1+∞,上单调递增;(2)22(2,)(,)e e e +∞.【分析】(1)当1a =-时,()()2122x f x x x x e =-+-,求出导数,令()0f x '>,()0f x '<得出答案.(2)由2x =为()f x 的一个零点,所以方程10(2)2x ax e x -+=≠有2个实数根,即2(2,0)x e a x x =≠有两个实数根,设2()(2,0)x e h x x x =≠,分析出其导数,得出单调性,画出函数图象,由数形结合可得答案. 【详解】(1)当1a =-时,()()2122x f x x x x e =-+- ()()()()1111x x f x x x e x e '=-+-=-+由()0f x '>,得1x >,由()0f x '<,得1x <,所以()f x 在(),1-∞单调递减,在()1+∞,上单调递增 (2)由函数211()(2)(2)22()x x f x ax ax x e x ax e =-++-=--+, 可得()f x 有一个零点2x =, 要使得()f x 有3个零点,即方程10(2)2x ax e x -+=≠有2个实数根,又由方程10(2)2xax e x -+=≠,可化为2(2,0)x e a x x=≠,令2()(2,0)xe h x x x =≠,即函数y a =与()y h x =图象 有两个交点,令22222(1)()0x x x xe e e x h x x x--'===,得1x =, ()h x 的单调性如表:x (,0)-∞(0,1)1 (1,2)(2,)+∞()h x ' - - 0 + + ()h x↘↘极小值↗↗所以函数()f x 在1x =处取得极小值2e ,当0x <时,()0h x <,又2(2)h e =,()h x 的大致图象如图,由函数y a =与()()2y h x x =≠图象有两个交点,根据图象可得22(2,)(,)a e e e ∈+∞所以要使得()f x 有3个零点,则实数a 的取值范围为22(2,)(,)e e e +∞【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 26.(1)答案见解析;(2)1a e ≤≤. 【分析】(1)求出导函数()'f x ,分类讨论确定()0f x '>的解得增区间,同时可由()0f x '<得减区间;(2)由(1)得()f x 的最小值为()f a ,解不等式()2f a ≥可得.【详解】(1)函数定义域为(0,)+∞,由题意221(1)()()1a a x x a f x x x x -+-'=+-=, 当0a ≤时,在0x >时,()0f x '>恒成立,()f x 在(0,)+∞上单调递增,当0a >时,()0f x '>的解为x a >,()0f x '<的解为0x a <<, ()f x 在(,)a +∞上递增,在(0,)a 上递减.(2)由(1)知0a >时,()f x 在(,)a +∞上递增,在(0,)a 上递减.所以min ()()(1)ln 1f x f a a a a ==+-+,()2f x ≥恒成立,则(1)ln 12a a a +-+≥, 即(1)(ln 1)0a a --≤,由于01a <≤时,ln 0≤a ,不等式(1)(ln 1)0a a --≤不成立,所以1ln 1a a ≥⎧⎨≤⎩,解得1a e ≤≤. 【点睛】关键点点睛:本题考查用导数研究函数的单调性,研究不等式恒成立问题.一般地()f x m ≥恒成立等价于min ()f x m ≥,()f x m ≤恒成立,等价于max ()f x m ≤,然后解不等式可得参数范围.或者用分离参数法转化为()k g x ≤(其中k 不参数),则min ()k g x ≤,若()k g x ≥,则max ()x g x ≥.。

(易错题)高中数学选修1-1第四章《导数应用》测试(含答案解析)(2)

(易错题)高中数学选修1-1第四章《导数应用》测试(含答案解析)(2)

一、选择题1.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( ) A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞2.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .3.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A.4B .C .D .64.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f > D .(2020)(2021)ef f <5.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .56.已知函数31()sin xxf x x x e e =-+-,其中e 是自然数对数的底数,若2(1)(2)0f a f a -+≤,则实数a 的取值范围是( )A .1[,1]2- B .1[1,]2-C .1(,1][,)2-∞-⋃+∞D .1(,][1,)2-∞-⋃+∞7.已知对任意实数x 都有()()2xf x f x e '-=,()01f =-,若()()1f x k x >-恒成立,则k 的取值范围是( ) A .()1,+∞ B .323,42e ⎛⎫ ⎪⎝⎭C .()121,4eD .()321,4e8.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A .34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭>C .()14f f π⎛⎫⋅⎪⎝⎭D .426f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭< 9.函数()327f x x kx x =+-在区间[]1,1-上单调递减,则实数k 的取值范围是( )A .(],2-∞-B .[]22-,C .[)2,-+∞D .[)2,+∞10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.若函数()()11xf x e a x =--+在(0,1)上不单调,则a 的取值范围是( ) A .()2,1e + B .[]2,1e + C .(][),21,e -∞⋃++∞ D .()(),21,e -∞⋃++∞12.已知函数()2x f x =,2()g x x ax =+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数12,x x ,都有0m >;(2)对于任意的a 及任意不相等的实数12,x x ,都有0n >;(3)对于任意的a ,存在不相等的实数12,x x ,使得m n =;(4)对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题的个数有( ) A .3个B .2个C .1个D .0个二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.函数()y f x =的导函数的图像如图所示,给出下列判断:①函数()y f x =在区间(3)5,内单调递增; ②函数()y f x =在区间1(3)2-,内单调递减; ③函数()y f x =在区间(22)-,内单调递增;④当12x =-时,函数()y f x =有极大值;⑤当2x =时,函数()y f x =有极大值; 则上述判断中正确的是________.15.已知函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,则实数a 的取值范围为______.16.若函数3y x ax =-+在[)1,+∞上是单调函数,则a 的最大值是______. 17.已知函数()f x 是定义在R 上连续的奇函数,fx 为()f x 的导函数,且当 0x >时,()()20xf x f x '+>成立,则函数()()2g x x f x =的零点个数是_______________. 18.已知函数()y f x =在R 上的图象是连续不断的一条曲线,并且关于原点对称,其导函数为()f x ',当0x >时,有不等式()()22x f x xf x '>-成立,若对x R ∀∈,不等式()()2220x x e f e a x f ax ->恒成立,则正整数a 的最大值为_______.19.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________.20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围22.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)23.已知函数()ln 1f x x =+.(1)直线20l x y -+=:,求曲线()y f x =上的点到直线l 的最短距离; (2)若曲线21()(1)()(03)2g x x a x f x x =-++<<存在两个不同的点,使得在这两点处的切线都与x 轴平行,求实数a 的取值范围.24.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 25.已知函数()ln xx kf x e+=(k 为常数,e =2.71828…是自然对数的底数),曲线()y f x =在点(1,()1f )处的切线与x 轴平行. (1)求()f x 的单调区间;(2)设()()'g x xf x =,其中()f x '为()f x 的导函数,证明:对任意0x >,()21g x e -<+.26.为了美化城市环境,提高市民的精神生活,市政府计划在人民广场一块半径为10米的圆形空地进行种植花草绿化改造.规划如图所示,在中央正六边形区域和六个相同的矩形区域种植鲜花,其余地方种植草地.设OAB θ∠=,正六边形的面积为1S ,六个矩形的面积和为2S .(1)用θ分别表示区域面积1S ,2S ; (2)求种植鲜花区域面积的最大值. (参考数据:3tan 41︒≈,23tan 49︒≈)【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.2.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.3.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 5.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+ 即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x --+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时,()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.6.B解析:B 【分析】利用函数的奇偶性将函数转化为f (M )≤f (N )的形式,再利用单调性脱去对应法则f ,转化为一般的二次不等式求解即可. 【详解】由于()31sin xxf x x x e e=-+-,,则f (﹣x )=﹣x 3sin x ++e ﹣x ﹣e x =﹣f (x ),故函数f (x )为奇函数.故原不等式f (a ﹣1)+f (2a 2)≤0,可转化为f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ),即f (2a 2)≤f (1﹣a );又f '(x )=3x 2﹣cosx+e x +e ﹣x ,由于e x +e ﹣x ≥2,故e x +e ﹣x ﹣cosx>0,所以f '(x )=3x 2﹣cosx+e x +e ﹣x ≥0恒成立,故函数f (x )单调递增,则由f (2a 2)≤f (1﹣a )可得,2a 2≤1﹣a ,即2a 2+a ﹣1≤0, 解得112a -≤≤, 故选B . 【点睛】本题考查了函数的奇偶性和单调性的判定及应用,考查了不等式的解法,属于中档题.7.D解析:D【分析】由导数的运算求出()f x ,然后用分离参数法得出1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-,再设(21)()1x e x h x x -=-,求出()h x 在1x >时最小值,在1x <时的最大值,从而可得k 的范围. 【详解】因为()()2xf x f x e '-=,所以()()2x f x f x e '-=,即()2x f x e '⎡⎤=⎢⎥⎣⎦,所以()2x f x x c e =+(c 为常数),()(2)x f x e x c =+,由(0)1f c ==-,()(21)x f x e x =-,不等式()()1f x k x >-为(21)(1)xe x k x ->-,1x =时,不等式为0e >,成立,1x >时,(21)1x e x k x -<-,1x <时,(21)1x e x k x ->-, 设(21)()1x e x h x x -=-,则2(23)()(1)x xe x h x x -'=-,当312x <<或01x <<时,()0h x '<,当32x >或0x <时,()0h x '>,所以()h x 在(0,1)和31,2⎛⎫⎪⎝⎭上是减函数,在3,2⎛⎫+∞ ⎪⎝⎭和(,0)-∞上是增函数,1x >时,()h x 在32x =时取得极小值也最小值32342h e ⎛⎫= ⎪⎝⎭,由(21)1x e x k x -<-恒成立得324k e <,1x <时,()h x 在0x =时取得极大值也是最大值(0)1h =,由(21)1xe x k x ->-恒成立得1k >,综上有3214k e <<. 故选:D . 【点睛】本题考查导数的运算,考查用导数研究不等式恒成立问题,用分离参数法转化为求函数的最值是解题关键,解题时注意分类讨论思想的应用.8.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即2624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即264f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D . 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.9.B解析:B 【分析】由题意得出()0f x '≤对于任意的[]1,1x ∈-恒成立,由此得出()()1010f f ⎧-≤⎪⎨≤''⎪⎩,进而可求得实数k 的取值范围. 【详解】()327f x x kx x =+-,()2327f x x kx '∴=+-,由题意可知,不等式()0f x '≤对于任意的[]1,1x ∈-恒成立,所以,()()12401240f k f k ⎧-='--≤⎪⎨='-≤⎪⎩,解得22k -≤≤.因此,实数k 的取值范围是[]22-,. 故选:B. 【点睛】本题考查利用函数在区间上的单调性求参数,一般转化为导数不等式在区间上恒成立,考查运算求解能力,属于中等题.10.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.11.A解析:A 【分析】求导得()1x f x e a '=-+,原问题可转化为()'f x 在(0,1)上有变号零点,由于()'f x 单调递增,只需满足()()010f f ''<,解之即可. 【详解】 解:()(1)1x f x e a x =--+,()1x f x e a '∴=-+,若()f x 在(0,1)上不单调,则()'f x 在(0,1)上有变号零点, 又()f x '单调递增,()()010f f ''∴<,即(11)(1)0a e a -+-+<,解得21a e <<+.a ∴的取值范围是(2,e +1).故选:A . 【点睛】本题考查利用导数研究函数的单调性、零点存在定理,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.12.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果. 【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭, 令22x e t x =,则4e t e ≤≤,所以()12x f x 24t et =-()2224t e e =--,所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦. 故答案为:24,0e ⎡⎤-⎣⎦ 【点睛】关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.③⑤【分析】根据导函数图像得出导数正负根据导数正负判定单调区间根据左正右负和左负有正判定极值【详解】解:对于①当时单调递减当时单调递增所以①错;对于②当时单调递增当时单调递减所以②错;对于③当时单调解析:③⑤ 【分析】根据导函数图像得出导数正负,根据导数正负判定单调区间,根据左正右负和左负有正判定极值. 【详解】解:对于①,当(34)x ∈,时()0f x '<,()f x 单调递减, 当(4,5)x ∈时()0f x '>,()f x 单调递增,所以①错;对于②,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,所以②错; 对于③,当(22)x ∈-,时()0f x '>,()f x 单调递增,所以③对; 对于④,当(22)x ∈-,时()0f x '>,()f x 单调递增,故当12x =-时()f x 不是极大值,所以④错;对于⑤,当1(2)2x ∈-,时()0f x '>,()f x 单调递增, 当(23)x ∈,时()0f x '<,()f x 单调递减,故2x =时函数()y f x =取得极大值,所以⑤对.故答案为:③⑤. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.15.【分析】先由题意得到关于的方程在上有两不等实根即在上有两不等实根令对其求导判定其单调性以及的取值情况即可得出结果【详解】因为函数的图象与x 轴交于不同两点所以关于的方程在上有两不等实根即在上有两不等实 解析:1a >【分析】先由题意,得到关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a +=在()0,∞+上有两不等实根,令()2ln x x g x x +=,对其求导,判定其单调性,以及()g x 的取值情况,即可得出结果.因为函数()2ln ()x ax a a x x R f =--∈的图象与x 轴交于不同两点,所以关于x 的方程2ln 0x ax a x --=在()0,∞+上有两不等实根,即2ln 1x x x a+=在()0,∞+上有两不等实根,令()2ln x x g x x +=,则()2ln x x g x x +=与直线1y a =有两个不同交点, 又()()24311ln 212ln x x x x x x x g x x x ⎛⎫+-+⋅ ⎪--⎝⎭'==, 令()12ln h x x x =--,则()210h x x'=--<在()0,∞+上恒成立,则()12ln h x x x =--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()312ln 0x xg x x --'=>,则()g x 单调递增;当()1,x ∈+∞时,()0h x <,即()312ln 0x xg x x --'=<,则()g x 单调递减; 所以()()max 110g x g ==>,又211101eg e e-⎛⎫=< ⎪⎝⎭,所以存在01,1x e ⎛⎫∈ ⎪⎝⎭,使得()0g x =;因此当()00,x x ∈时,()0g x <;当()0,1x x ∈时,()0g x >; 又当1x >时,ln 0x >,所以()0g x >; 因此,为使()2ln x x g x x +=与直线1y a =有两个不同交点,只需101a<<,解得1a >. 故答案为:1a >. 【点睛】 思路点睛:利用导数的方法处理由函数零点个数求参数问题时,一般需要根据函数零点个数,得到对应方程的根的个数,再分离参数,构造新的函数,对新函数求导,利用导数的方法判定其单调性,确定函数的取值情况,进而可求出结果.(也可利用数形结合的方法求解)16.3【分析】首先求解导函数然后利用导函数研究函数的性质确定实数a 的最大值即可【详解】由题意可得:由题意导函数在区间上的函数值要么恒非负要么恒非正很明显函数值不可能恒非负故即在区间上恒成立据此可得:即的解析:3首先求解导函数,然后利用导函数研究函数的性质确定实数a 的最大值即可. 【详解】由题意可得:2'3y x a =-+,由题意导函数在区间[)1,+∞上的函数值要么恒非负,要么恒非正,很明显函数值不可能恒非负,故230x a -+≤, 即23a x ≤在区间[)1,+∞上恒成立,据此可得:3a ≤, 即a 的最大值是3. 故答案为3. 【点睛】本题主要考查导函数研究函数的单调性,恒成立问题的处理方法等知识,意在考查学生的转化能力和计算求解能力.17.1【分析】分析可得g (x )为R 上连续的奇函数且在R 上为增函数说明函数只有1个零点可得选项【详解】函数是定义在R 上连续的奇函数则函数其定义域为R 则则为R 上连续的奇函数则又由当时则有即函数为上的增函数又解析:1 【分析】分析可得g (x )为R 上连续的奇函数,且在R 上为增函数,说明函数()2()g x x f x =只有1个零点,可得选项. 【详解】()()2g x x f x =,函数()f x 是定义在R 上连续的奇函数,则函数()()2g x x f x =,其定义域为R ,则()()()()2g x x f x g x -=--=-,则()g x 为R 上连续的奇函数,()()2g x x f x =,则()()()()()222g x xf x x f x x xf x f x '''=+=+⎡⎤⎣⎦,又由当 0x >时,()()20xf x f x '+>,则有()0g x '>,即函数() g x 为()0,∞+上的增函数, 又由()g x 为R 上连续的奇函数,且()00g =, 则()g x 为R 上的增函数,故函数()()2g x x f x =只有1个零点,故答案为:1. 【点睛】本题考查函数的单调性、奇偶性、以及函数的零点个数的判断,属于中档题.18.【分析】令先判断函数g(x)的奇偶性和单调性得到在R 上恒成立再利用导数分析解答即得解【详解】因为当时有不等式成立所以令所以函数g(x)在(0+∞)上单调递增由题得所以函数g(x)是奇函数所以函数在R 解析:2【分析】令2()(),g x x f x =先判断函数g(x)的奇偶性和单调性,得到e x ax >在R 上恒成立,再利用导数分析解答即得解. 【详解】因为当0x >时,有不等式()()22x f x xf x '>-成立,所以()()22+20,[()]0x f x xf x x f x ''>∴>,令2()(),g x x f x =所以函数g(x)在(0,+∞)上单调递增, 由题得22()()()g(x),g x x f x x f x -=-=-=- 所以函数g(x)是奇函数,所以函数在R 上单调递增. 因为对x R ∀∈,不等式()()2220xxe f e a x f ax ->恒成立,所以()()222,()()e xxxxe f ea x f ax g e g ax ax >∴>∴>,,因为a >0,所以当x≤0时,显然成立.当x >0时,()(0)xe a h x x x<=>,所以2(1)()xx e h x x-'=,所以函数h (x)在(0,1)单调递减,在(1,+∞)单调递增. 所以min ()(1)h x h e ==, 所以a <e,所以正整数a 的最大值为2. 故答案为2 【点睛】本题主要考查函数的奇偶性及其应用,考查函数单调性的判断及其应用,考查利用导数研究不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.属于中档题.19.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x '=,则()2x f x e c x =+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可.【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x=+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x =,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31kE X ke k -=-++,将不等式()E X k <化为ln 3kk >,构造函数()ln ,03kf k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果. 【详解】 由题意,()()333111k k k E X ek e ke k ---⎛⎫=++-=-++ ⎪⎝⎭,所以()E X k <可化为310kke --+<,即3kk e >,其中0k >显然成立; 两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3kf k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3kf k k =-单调递减;因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<,因此满足ln 3kk >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4. 故答案为:4. 【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)在(0,1)上单调递减,在()1,+∞上单调递增;(2)211b e-≤. 【分析】(1)对函数求导得()11ax f x a x x-'=-=,由题意,()110f a '=-=,得1a =,再代入计算()0f x '>与()0f x '<,即可得单调性;(2)参变分离得1ln ()1=+-≥xg x b x x ,利用恒成立方法,对函数1ln ()1x g x x x=+-求导,判断单调性,求最小值即可. 【详解】(1)函数的定义域为(0,)+∞,()11ax f x a x x-'=-=,由题意,()110f a '=-=,所以1a =,即1()x f x x'-=,由()0f x '>得1x >,由()0f x '<得01x <<,故函数()f x 在(0,1)上单调递减,在()1,+∞上单调递增. (2)1ln ()21x f x bx b x x≥-⇒+-≥,令1ln ()1x g x x x =+-,则min ()≥g x b 成立,2ln 2()x g x x-'=,由()0g x '>,得2x e >,由()0g x '<,得20x e <<, 故()g x 在2(0,)e 上递减,在2(,)e +∞上递增,2min 21()()1==∴-x g e e g ,即211b e -≤. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.22.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=.【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ; (2)利用导数可求得结果. 【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠= 所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增,当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键. 23.(12;(2)7(1,)3. 【分析】(1)可得与l 平行且与()y f x =相切的切线的切点到直线距离最短,求出切点即可得出;(2)求出()g x 的导数,题目等价于2(1)10x a x -++=在()0,3上有两个不同的根,则列出式子即可求出. 【详解】解:(1)设曲线()y f x =上的点()00,A x y 到直线l 的距离最短,则在点A 的切线与l 平行,001()1f x x ='=,∴01x =,求得01y =, ∴在点A 的切线方程为y x =, ∴点A 到直线l= (2)由题意得21()(1)ln 1(03)2g x x a x x x =-+++<<, ∴21(1)1()(1)x a x g x x a x x-++'=-++=,∵曲线()y g x =上存在两个不同的点,使得在这两点处的切线都与x 轴平行, ∴关于x 的方程()0g x '=,即2(1)10x a x -++=在()0,3上有两个不同的根, 设2()(1)1h x x a x =-++,则()()()()21400101032393110a h a h a ⎧∆=+->⎪=>⎪⎪⎨+<<⎪⎪=-++>⎪⎩,解得713<<a , ∴实数a 的取值范围是7(1,)3. 【点睛】本题考查利用导数解决方程的根的问题,解题的关键是将题目等价为2(1)10x a x -++=在()0,3上有两个不同的根.24.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x x x x x ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x xx x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥ 所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减; 当0x x >时,()0x ϕ>,()g x 单调递增 故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈,()()22222204646xxx x e e x x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦,综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤⎥⎝⎦,【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.25.(1)()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞;(2)证明见详解. 【分析】(1)先利用导数的几何意义列式()01f '=,求得参数1k =,再通过研究导数的正负来判断函数()f x 的单调性即可;(2)根据e 1x >,先进行不等式放缩()1ln g x x x x <--,再令1l ()n x x F x x --=,利用导数证明2l ()1n 1x x F x x e -=--≤+,即得结果. 【详解】解:(1)由ln ()x x k f x e +=,得1l (n )xkx x x xf xe--'=,(0,)x ∈+∞, 由于曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.所以()110kf e-'==,因此1k =.此时ln 1()x x f x e+=,1ln 1()xx x f x e --'=,(0,)x ∈+∞, 令1()ln 1h x x x=--,(0,)x ∈+∞,则22111()0x h x x x x +'=--=-<,故1()ln 1h x x x=--在(0,)x ∈+∞上递减,且(1)1ln110h =--=, 故当(0,1)x ∈时,()0h x >,()0f x '>;当(1,)x ∈+∞时,()0h x <,()0f x '<.因此()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞;(2)因为1l ()n ()xg x xf x x x xe'==--,0x >即e 1x >,所以()1ln g x x x x <--, 令1l ()n x x F x x --=,(0,)x ∈+∞,则2l (n )F x x --'=,令()0F x '=得2x e -=,当()20,x e-∈时,()0F x '>,函数()F x 单调递增; 当()2,x e-∈+∞时,()0F x '<,函数()F x 单调递减.故()()22max 1F x F ee--=+=,即2l ()1n 1x x F x x e -=--≤+,所以2()1ln 1g x x x x e -<--≤+, 即证()21g x e -<+.【点睛】利用导数研究函数()f x 的单调性的步骤:①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<③根据不等式解集写出单调区间.26.(1)216003sin S θ=,221200sin cos 12003sin S θθθ=-;(2)()30073-.【分析】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F ,OAD △为等腰三角形,可得AOF OAB θ∠=∠=即可求出BC 的长,进而可得1S ,求出OBC 的高OE ,AB EF OF OE ==-,26S AB BC =⨯⨯即可求解;(2)将面积之和12S S +用角θ表示出来,在求其求导,利用导数判断单调性即可求最值. 【详解】 (1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F , 由对称性可知OAD △为等腰三角形,E 、F 分别为BC 、AD 的中点, 由AB BC ⊥,OF BC ⊥,可得//AB OF ,所以AOF OAB θ∠=∠=, 所以22sin 20sin BC AD AF OA θθ====, 所以正六边形的面积212233666400sin 600344OBCS BC S θθ==⨯=⨯=, 在OBC 中,3320sin 103OE BC θθ===, 所以10cos 103AB EF OF OE θθ==-=-, 所以()26610cos 103sin 20sin S AB BC θθθ=⨯⨯=-⨯ 21200sin cos 12003sin θθθ=-,综上所述:21S θ=,221200sin cos S θθθ=-. (2)求种植鲜花区域面积的最大值即是求12S S +的最大值.设22121200sin cos y S S θθθθ=+=+-21cos21200sin cos 600sin 22θθθθθ-=-=-600sin 2θθ=+-所以1200cos 22y θθ'=- 令0y '=,可得tan 2θ=当249θ>时,0y '<;当249θ<时,0y '>, 所以当249θ=时,y 取得最大值,max 600sin 493003cos 493003y =+-因为tan 49︒≈,可得22sin 49cos 491sin 49cos 493︒︒︒︒⎧+=⎪⎨=⎪⎩, 解得2sin 4921cos 497⎧=⎪⎪⎨⎪=⎪⎩,所以max 600300y =+-=-.【点睛】关键点点睛:本题解题的关键是得出AOFOAB θ∠=∠=,求出2BC AD AF ==,OE =,AB EF OF OE ==-即可将面积1S ,2S 用θ表示出来,利用导数求面积之和的最值.。

(易错题)高中数学选修1-1第四章《导数应用》检测题(含答案解析)(1)

(易错题)高中数学选修1-1第四章《导数应用》检测题(含答案解析)(1)

一、选择题1.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞2.已知α,β∈R ,则“0αβ+<”是“sin sin αβαβ+<+”的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件D .充分必要条件3.已知关于x 的不等式32ln x ax x -≥恒成立,则实数a 的取值范围为( ). A .(,1]-∞B .(0,1]C .10,e⎛⎤ ⎥⎝⎦D .(,0]-∞4.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭5.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞6.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞- ⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭7.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π8.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-9.已知函数()13log xf x e x =-,给出下列两个命题:命题:p 若01x ≥,则()03f x ≥;命题[)0:1,q x ∃∈+∞,()03f x =.则下列叙述错误的是( )A .p 是假命题B .p 的否命题是:若01x <,则()03f x <C .[):1,q x ⌝∀∈+∞,()3f x ≠D .q ⌝是真命题10.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A .34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭>C .()14f f π⎛⎫⋅⎪⎝⎭D .46f f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭11.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e --+∞ B .21[,)2e -+∞ C .[2-,)+∞ D .211(2,]22e --- 12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.已知定义在R 上的函数()f x 满足()11f =,且对于任意的x ,1()2f x '<恒成立,则不等式()22lg 1lg 22x f x <+的解集为________.14.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.15.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.16.已知a R ∈,设函数232,1()1,1x x a x f x x a nx x ⎧-+=⎨->⎩,若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围是_________.17.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.18.函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦的零点个数是________.19.已知函数()xf x e x =-,()22g x x mx =-,若对任意1x ∈R ,存在[]21,2x ∈,满足()()12f x g x ≥,则实数m 的取值范围为______.20.已知定义在()0,∞+上的函数()f x 的导函数为()f x ',且()()32xxf x f x x e'-=,()339f e =,则关于x 的方程()>f x e 的解集为_____________. 三、解答题21.已知函数1()ln1xf x x+=-. (1)求证:当(0,1)x ∈时,3()2()3x f x x >+;(2)设实数k 使得3()()3x f x k x >+对(0,1)x ∈恒成立,求k 的最大值.22.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围. 23.已知函数()()222ln f x x mx x m m R =+++∈.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)函数()f x 有两个不同的极值点()1212,x x x x <,求()211f x x x +的取值范围. 24.设23()252x f x x x =--+(1)求函数()f x 的单调递增、递减区间;(2)当[1,2]x ∈-时,()f x m <恒成立,求实数m 的取值范围. 25.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围.26.已知函数()1ln f x x x =--. (1)求证:()0f x ≥;(2)求证:对于任意正整数n ,2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.2.D解析:D 【分析】首先构造函数()sin x x x f -=,利用导数判断函数的单调性,再判断选项. 【详解】构造函数()sin x x x f -=,()1cos 0f x x '=-≥恒成立,()f x ∴是单调递增函数,0αβ+<,即αβ<-,()()f f αβ∴<-,即()()sin sin ααββ-<---,即sin sin αβαβ+<+,反过来,若sin sin αβαβ+<+,即()()sin sin ααββ-<---,αβ∴<-,即0αβ+<.故选:D 【点睛】关键点点睛:本题的关键是通过条件观察后构造函数()sin x x x f -=,通过判断函数的单调性,比较大小.3.A解析:A 【分析】将不等式32ln x ax x -≥恒成立,转化为不等式2ln x xa x≤-在()0,∞+上恒成立,令()2ln xx xg x =-,用导数法求得其最小值即可. 【详解】因为不等式32ln x ax x -≥恒成立, 所以不等式2ln x xa x≤- 在()0,∞+上恒成立, 令()2ln x x xg x =-, 则()3312ln x xg x x-+'=, 令()312ln h x x x =-+,则()2230h x x x'=+>, 所以()h x 在()0,∞+上是递增,又()10h =, 所以当01x <<时,()0h x <,即()0g x '<,当1x >时,()0h x >,即()0g x '>, 所以当1x =时,()g x 取得最小值()11g =, 所以 1a ≤, 故选:A 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<. 4.D解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.5.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.6.C解析:C 【分析】转化为()y f x =的图象与直线y a =仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解. 【详解】当0x >时,ln ()x f x x=,21ln ()x x x f x x ⋅-'=21ln xx -=, 当0x e <<时,()'f x 0>,当x e >时,()0f x '<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e --=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r=代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r=圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S r ππ-'=<可得02r <<,所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.8.D解析:D 【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 9.D解析:D 【分析】分析函数()13log xf x e x =-为增函数,若01x ≥,求出[)1,x ∈+∞时函数的值域,结合命题间的基本关系即可得答案. 【详解】由函数的解析式可得函数的定义域为: ()0,∞+,且导函数()10ln 3xf x e x '+=>, 则函数单调递增,结合()1131log 1e f e =-=, 可得当1≥x 时,函数的值域为[),e +∞.据此可知p 是假命题, q 是真命题, q ⌝是假命题. 结合全称命题与特称命题的关系可得:p 的否命题是:若01x <,则()03f x <.[):1,q x ⌝∀∈+∞,()3f x ≠故选:D 【点睛】本题通过考查函数的单调性和极值来考查命题间的基本关系,属于中档型综合题.10.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<1423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即2624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即64f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D . 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.11.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a ⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)x f x x e =-+的导数为()(2)x f x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)aa e =-+,由题意可得(1)21a a e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e--, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】由构造单调递减函数利用其单调性求解【详解】设则是上的减函数且不等式即为所以得解得或原不等式的解集为故答案为:【点睛】利用导数研究函数的单调性构造函数比较大小属于难题联系已知条件和结论构造辅助解析:10,10,10.【分析】 由()12f x '<,构造单调递减函数()()12h x f x x =-,利用其单调性求解.【详解】()()11,022f x f x <∴-''<,设()()12h x f x x =-, 则()()102h x f x ''=-<, ()h x ∴是R 上的减函数,且()()111111222h f =-=-=, 不等式()22lg 1lg 22x f x <+,即为()22lg 1lg 22x f x -<,所以()()2lg 1h x h <,得2lg 1x >,解得10x >或110x, ∴原不等式的解集为10,10,10.故答案为:10,10,10.【点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题,联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.14.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.15.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-. 故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.16.【分析】根据分段函数当时将恒成立转化为恒成立令利用二次函数的性质求得其最大值当时将转化为恒成立令用导数法求得其最小值然后两种情况取交集【详解】当时等价于恒成立令其中则所以当时等价于恒成立令则当时递增 解析:[]1,e【分析】根据分段函数,当1x ≤时,将()2320f x x x a =-+≥恒成立,转化为232x x a -恒成立,令23()2x x g x -=,利用二次函数的性质求得其最大值,当1x >时,将()ln 0f x x a x =-≥,转化为1xanx 恒成立,令()ln x h x x=,用导数法求得其最小值,然后两种情况取交集. 【详解】当1x ≤时,()2320f x x x a =-+≥等价于232x x a -恒成立,令()22231139()322228x x g x x x x -⎛⎫==--=--+ ⎪⎝⎭,其中1x ≤,则()max 1g x =, 所以1a ≥,当1x >时,()ln 0f x x a x =-≥等价于1xanx恒成立, 令()ln xh x x=,则221ln ln 1()(ln )(ln )x x x x h x x x -⋅-'==, 当x e >时,()()0,h x h x '>递增, 当1x e <<时,()()0,h x h x '<递减, ∴x e =时,()h x 取得最小值()h e e =, ∴()min a h x e ≤=, 综上:a 的取值范围是[]1,e . 故答案为:[]1,e . 【点睛】本题主要考查二次函数的最值,函数的最值与导数以及导数与不等式恒成立问题,还考查了运算求解的能力,属于中档题.17.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-,故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.18.0【分析】求得函数的导数求得函数在上单调递增在上单调递减再根据即可判定得到答案【详解】由题意函数可得令即解得所以函数在上单调递增;令即解得或所以函数在上单调递减;又由所以函数图象与轴没有交点即函数没解析:0 【分析】求得函数的导数()3(2)(2)f x x x '=-+-,求得函数()f x 在1[,2)3-上单调递增,在(2,3]上单调递减,再根据1()0,(2)0,(3)03f f f ->>>,即可判定,得到答案.【详解】由题意,函数3()126f x x x =-++,1,33x ⎡⎤∈-⎢⎥⎣⎦, 可得22()3123(4)3(2)(2)f x x x x x '=-+=--=-+-, 令()0f x '>,即(2)(2)0x x +-<,解得22x -<<,所以函数()f x 在1[,2)3-上单调递增; 令()0f x '<,即(2)(2)0x x +->,解得2x <-或2x >,所以函数()f x 在(2,3]上单调递减; 又由11()460,(2)220,(3)130327f f f -=--+>=>=>, 所以函数图象与x 轴没有交点,即函数()f x 没有零点, 所以函数()f x 的个数为0个. 故答案为:0. 【点睛】本题主要考查了函数零点的个数的判定,以及利用导数研究函数的单调性与极值,其中解答中利用导数求得函数的单调性与极值是解答的关键,着重考查了推理与运算能力.19.【分析】首先对进行求导利用导数研究函数的最值问题根据题意对任意存在使只要的最小值大于等于在指定区间上有解【详解】由得当时当时∴在上单调递减在上单调递增∴在上有解在上有解函数在上单调增故答案为:【点睛 解析:[)0,+∞【分析】首先对()f x 进行求导,利用导数研究函数()f x 的最值问题,根据题意对任意1x R ∈,存在[]21,2x ∈,使12()()f x g x ,只要()f x 的最小值大于等于()g x 在指定区间上有解 . 【详解】由()x f x e x =-,得()1xf x e '=-,当()1,0x ∈-时,()0f x '<,当()0,1x ∈时,()0f x '>, ∴()f x 在()1,0-上单调递减,在()0,1上单调递增, ∴()()min 01f x f ==()1g x ≤在[]1,2上有解,21212x mx m x x -≤⇔≥-在[]1,2上有解,函数1y x x =-在[]1,2上单调增,1101min y ∴=-=,20,0m m ≥≥.故答案为: [)0,+∞ 【点睛】不等恒成立与能成立的等价转换:任意1x A ∈,存在2x B ∈,使()()12min min ()()f x g x f x g x ⇔≥ 任意1x A ∈,任意2x B ∈,使()()12min max ()()f x g x f x g x ⇔= 存在1x A ∈,存在2x B ∈,使()()12max min ()()f x g x f x g x ⇔⇔20.【分析】由所给等式变形可得则令可求得c 从而求出的解析式利用导数研究函数的单调性利用函数单调性解不等式即可【详解】因为所以即所以因为所以解得则当时函数在上单调递增又所以的解集为故答案为:【点睛】本题考 解析:()1,+∞【分析】由所给等式变形可得()2[]x f x e x'=,则()2x f x e c x=+,令3x =可求得c 从而求出()f x 的解析式,利用导数研究函数()f x 的单调性,利用函数单调性解不等式即可. 【详解】因为()()32x xf x f x x e '-=,所以()()242xx f x xf x e x'-=,即()2[]x f x e x '=, 所以()2x f x e c x =+,因为()339f e =,所以33e e c =+,解得0c,则()2x f x e x=,()()20xf x x e x =>,当0x >时,()()22220x x x f x x e x e e x x '=⋅+⋅=+>,函数()f x 在()0,∞+上单调递增,又()1f e =,所以()()1f x e f >=的解集为()1,+∞. 故答案为: ()1,+∞ 【点睛】本题考查导数的运算法则、利用导数研究函数的单调性、利用函数的单调性解不等式,属于中档题.三、解答题21.(1)证明见详解;(2)2 【分析】(1)构造新函数利用函数的单调性证明命题成立.(2)对k 进行讨论,利用新函数的单调性求参数k 的取值范围. 【详解】(1)证明:()()1()lnln 1ln 11xf x x x x+==+---, ()2112111f x x x x '=+=+-- 令()3()2()3x g x f x x =-+,则()()()4222211x g x f x x x''=-+=-, 因为()()001g x x '><<,所以()g x 在()0,1上单调递增, 所以()()00g x g >=,()0,1x ∈,即当()0,1x ∈时,3()2()3x f x x >+.(2)由(1)可知,当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,当2k >时,令()3()()3x h x f x k x =-+,则()()2222()(1)1kx k h x f x k x x--''=-+=-,所以当0x <<()0h x '<,因此()h x 在区间⎛ ⎝上单调递减,当0x <<()()00h x h <=,即3()()3x f x k x <+,所以当2k >时,3()()3x f x k x >+并非对(0,1)x ∈恒成立,综上可知,k 的最大值为2. 【点睛】关键点点睛:本题考查了构造新函数,利用导数判断函数的单调性,证明不等式,利用导数研究不等式恒成立,解题的关键是由(1)确定当k 2≤时,3()()3x f x k x >+对(0,1)x ∈恒成立,考查了运算求解能力.22.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x-+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.23.(1)()4230m x y m +-+-=;(2)(),4-∞-. 【分析】(1)对()y f x =求导,切线斜率为()1f ',再求切点坐标,利用点斜式即可写出切线方程;(2)由题意可得1x ,2x 是方程()0f x '=的两个不等式的实根,等价于1x ,2x 是方程210x mx ++=的两个根,由根与系数的关系可得12x x m +=-,121=x x ,将()211f x x x +转化为关于2x ()21x >的函数,再利用单调性求最值即可求解. 【详解】(1)由题意知()0,x ∈+∞,因为()222f x x m x'=++, 所以()142f m '=+,()113f m =+,所以所求切线方程为()()()13421y m m x -+=+-,即()4230m x y m +-+-=;(2)由(1)知()()221222x mx f x x m x x++'=++=, 因为()1212,x x x x <是()f x 的两个不同的极值点,所以1x ,2x 是方程210x mx ++=的两个根,可得12x x m +=-,121=x x ,221m x x ⎛⎫=-+ ⎪⎝⎭,易得21>x ,所以()22122211222ln 1f x x x mx x m x x x +++++=22222222222222211122ln 2ln 211x x x x x x x x x x x x x ⎛⎫⎛⎫-++-++ ⎪ ⎪--+-⎝⎭⎝⎭==()3222222222ln 1x x x x x x =---+>,()()32222222222ln 1g x x x x x x x =---+>,()()2222232ln g x x x x '=-+-,()2221621g x x x ⎛⎫''=-+- ⎪⎝⎭,因为21>x 可得2110x -<,260x -<所以()20g x ''<,()()2222232ln g x x x x '=-+-在()1,+∞单调递减,()()()2132ln1150g x g ''<=-+-=-<,所以()2g x 在()1,x ∈+∞上单调递减,()()214g x g <=-,从而()211f x x x +的取值范围为(),4-∞-.【点睛】方法点睛:求曲线切线方程的一般步骤是(1)求出()y f x =在0x x =处的导数,即()y f x =在点P 00(,())x f x 出的切线斜率(当曲线()y f x =在P 处的切线与y 轴平行时,在P 处导数不存在,切线方程为0x x =);(2)由点斜式求得切线方程'00()()y y f x x x -=⋅-.24.(1)单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间2,13⎡⎤-⎢⎥⎣⎦;(2)7m >.【分析】(1)求导2()32f x x x '=--,分别由()0f x '>和()0f x '<求解.(2)根据[1,2]x ∈-时,()f x m <恒成立,则由max ()f x m <求解即可. 【详解】(1)2()32f x x x '=--,令()0f x '=,解得1x =或23x =-, 当23x <-或1x >时,()0f x '>,()f x 为增函数, 当213x -<<时, ()0f x '<,()f x 为减函数 综上:函数()f x 的单调递增区间为2,3⎛⎤-∞- ⎥⎝⎦和[1,)+∞,递减区间为2,13⎡⎤-⎢⎥⎣⎦.(2)当[1,2]x ∈-时,()f x m <恒成立, 只需使()f x 在[1,2]-上最大值小于m 即可 由(1)知()f x 最大值为2225327f ⎛⎫-=+ ⎪⎝⎭、端点值1(1)5,(2)72f f -==中的较大者. ∴()f x 在[1,2]-上的最大值为(2)7f =, ∴7m >,所以实数m 的取值范围是7m > 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.25.(1)证明见解析;(2)(,0]-∞. 【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围. 【详解】(1)若0a =,则()ln(1)f x x =+,()xg x e =.所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1xg x e x '==+,则01ln 1x x =+,曲线()y g x =在点0011ln ,11x x ⎛⎫⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++, 整理可得()000ln 111x x x +=+,00x =显然不满足,因此()0001ln 1x x x ++=. (2)令()()()ln(1)x ah x g x f x e x a -=-=-+-若0a >,0(0)01ah ea e -=-<-=,不符合条件;若0a =,()ln(1)xh x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减, 当(0,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以()(0)1h x h ≥=,符合条件; 若0a <,则()ln(1)ln(1)1x ax h x ex a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞. 【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.26.(1)证明见解析;(2)证明见解析. 【分析】(1)求导根据导数()0f x '>,()0f x '<求出最小值()10f =进而有()0f x ≥成立 (2)有(1)得ln 1≤-x x ,令112nx =+得11ln 122n n ⎛⎫+< ⎪⎝⎭,不等式通项可加性相加,根据等比数列求和化简即可证明. 【详解】解:(1)由题意得()111x f x x x-'=-= 当1x >时()0f x '>,()f x 单调增 当01x <<时()0f x '<,()f x 单调减 所以()f x 的最小值为()10f =, 所以()()01x f f ≥=即()0f x ≥成立 (2)由(1)知ln 1≤-x x 令112nx =+得11ln 122n n ⎛⎫+< ⎪⎝⎭ 所以2212111111ln 1ln 1ln 1222222n ⎛⎫⎛⎫⎛⎫+++++<++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111221111212nn ⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎛⎫⎝⎭==-< ⎪⎝⎭-即22111ln 1111ln 222e ⎛⎫⎛⎫⎛⎫⎛⎫+⋅++<= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以2111111222n e ⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【点睛】已知不等式证明问题常用的方法: (1)证明()min f x a ≥或()max f x a ≤;(3)构造两个函数()()f x g x <,证明()min max ()f x g x <。

(好题)高中数学选修1-1第四章《导数应用》测试题(含答案解析)

(好题)高中数学选修1-1第四章《导数应用》测试题(含答案解析)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 3.函数2()2ln 1f x ax x =--有两个不同零点,则a 的取值范围为( ) A .(,e)-∞B .(0,e)C .(0,1)D .(,1)-∞4.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e5.已知函数ln ,0()(2),0x xx f x x x e x ⎧>⎪=⎨⎪+≤⎩,若函数()()g x f x a =-仅有一个零点,则实数a的取值范围为( ). A .(2,)+∞B .31(2,),e ⎛⎫+∞⋃-∞-⎪⎝⎭C .311,2,e e⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭D .31,e ⎛⎫-∞-⎪⎝⎭6.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f > D .(2020)(2021)ef f <7.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点8.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为( )A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<<9.函数()2f x x =+的值域是( ) A.0,3⎡⎢⎣⎦B.3⎛⎫∞ ⎪ ⎪⎝⎭C.(D.)+∞10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( ) A .[1B .[1,)+∞C .(1D .(1,)+∞11.函数()2xf x ae x =+在R 上有两个零点1x ,2x ,且212x x ≥,则实数a 的最小值为( ) A .ln 22-B .ln 2-C .2e-D .ln 212.已知函数()2x f x =,2()g x x ax =+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数12,x x ,都有0m >;(2)对于任意的a 及任意不相等的实数12,x x ,都有0n >;(3)对于任意的a ,存在不相等的实数12,x x ,使得m n =;(4)对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题的个数有( ) A .3个B .2个C .1个D .0个二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.若函数()()()()21222xf x a x e ax ax a R ⎡⎤=---+∈⎢⎥⎣⎦在1,12⎛⎫⎪⎝⎭上有最大值,则a 的取值范围是___________.15.若函数()ln 1f x x x =+的图象总在直线y ax =的上方,则实数a 的取值范围是______.16.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.17.函数21f xx x 的极大值为_________.18.已知函数()21ln 2f x a x x =+(0a >),若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,则实数a 的取值范围是_____.19.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________.20.已知函数()21ln 2f x a x x bx =-+存在极小值,且对于b 的所有可能取值,()f x 的极小值恒大于0,则a 的最小值为__________.三、解答题21.已知函数32()2f x x ax bx =+++在1x =-处取得极值7. (1)求,a b 的值;(2)求函数()f x 在区间[2,2]-上的最大值 22.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围.23.已知函数()xae f x x =,0a ≠,0x >,若函数()f x 的最小值为e (e 为自然对数的底数).(1)求实数a 的值; (2)方程1()0f x m x x ⎛⎫++= ⎪⎝⎭在[]1,2有解,求m 的取值范围. 24.已知R a ∈,函数()1ln f x ax x =--在1x =处取得极值. (1)求函数()f x 的单调区间;(2)若对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围25.已知函数()ln 1f x a x =,a R ∈.(1)若函数()f x 在()1,+∞上单调递减,求a 的取值范围; (2)若函数()f x 存在最大值,且最大值不大于0,求a 的值.26.已知函数321()23f x x x ax =-++,21()42g x x =-. (1)若函数()f x 在()0,∞+上存在单调递增区间,求实数a 的取值范围;(2)设()()()G x f x g x =-.若02a <<,()G x 在[]1,3上的最小值为13-,求()G x 在[]1,3上取得最大值时,对应的x 值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.A解析:A 【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A 【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.3.C解析:C 【分析】先令()0f x =,分离参数得到22ln 1x a x +=,令()22ln 1x g x x+=根据函数有两个不同零点,可得y a =与()22ln 1x g x x+=的图象有两个不同交点,对()g x 求导,判定其单调性,得出最值,画出大致图象,结合图象,即可得出结果. 【详解】因为函数2()2ln 1f x ax x =--有两个不同零点, 所以方程22ln 10ax x --=有两不同实根,即22ln 1x a x+=有两个不同的零点, 令()22ln 1x g x x +=,0x >,则得y a =与()22ln 1x g x x +=的图象有两个不同交点, 因为()()24322ln 124ln x x xx x g x x x ⋅-+⋅-'==,由()0g x '=可得1x =, 当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 所以()()max 11g x g ==, 又由()22ln 10x g x x +=>可得x >()22ln 10x g x x +=<可得0x <<, 画出()22ln 1x g x x +=的大致图象如下:由图像可得,当01a <<时,y a =与()22ln 1x g x x +=的图象有两个不同交点, 即原函数有两个不同零点. 故选:C. 【点睛】 思路点睛:利用导数的方法研究函数零点个数(方程根的个数)求参数问题时,一般需要先分离参数,根据分离后的结果,构造新的函数,利用导数的方法研究函数单调性,确定函数最值,利用数形结合的方法求解.4.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点),要求nm的最大值,且满足不等式恒成立,可得2nm的最大值,由于点,02nm⎛⎫⎪⎝⎭在x轴上移动,只需找到合适的0m>,且()lneg x xx=-切于点,02nm⎛⎫⎪⎝⎭,如图所示:此时2nem=,即nm的最大值为2e.故选:D【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln eg x xx=-切于点,02nm⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.5.C解析:C【分析】转化为()y f x=的图象与直线y a=仅有一个交点,利用导数得到函数的性质,根据函数的性质作出函数的图象,根据图象可得解.【详解】当0x>时,ln()xf xx=,21ln()x xxf xx⋅-'=21ln xx-=,当0x e<<时,()'f x0>,当x e>时,()0f x'<,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以()f x 在x e =处取得极大值为1()f e e=,当0x ≤时,()(2)x f x x e =+,()(2)(3)x x xf x e x e x e '=++=+,当3x <-时,()0f x '<,当3x >-时,()0f x '>, 所以()f x 在(,3)-∞-上递减,在(3,0]-上递增,所以()f x 在3x =-处取得极小值为331(3)f e e --=-=-,又(0)2f =, 因为函数()()g x f x a =-仅有一个零点,所以()y f x =的图象与直线y a =仅有一个交点,作出函数()f x 的图象,如图:由图可知:12a e <≤或31a e<-. 故实数a 的取值范围为311,2,e e ⎛⎤⎛⎫⋃-∞- ⎪⎥⎝⎦⎝⎭.故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()x g x e f x =在R 上单调递减,所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒> 故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 7.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误. 故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.8.B解析:B 【分析】构造新函数()()2g x x f x =,求导后可证明()g x 在()0,∞+上单调递增,而不等式()()()202020202222020x f x f x ++<+可等价于()()20202+<g x g ,故2020020202x x +>⎧⎨+<⎩,解之即可. 【详解】令()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦, ∵定义域为()0,∞+,且()()20xf x f x '+>,()0g x '∴>,()g x 在()0,∞+上单调递增,不等式()()()202020202222020x f x f x ++<+等价于()()20202+<g x g ,2020020202x x +>⎧∴⎨+<⎩,解得20202018-<<-x 故选:B 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.9.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.B解析:B 【分析】函数()2xf x ae x =+,变形为2x x a e =-,令()2xxg x e=-,利用导数求函数的最值,可得20a e-<<,结合212x x ≥,可得212x x =时,a 取得最小值,再把1x ,2x 代入20x ae x +=,求解1x ,再代入112xae x =-,即可求得a 的最小值【详解】函数()2xf x ae x =+,变形为2x x a e =-,令()2x xg x e =-,得()()21xx g x e -'=,当(),1x ∈-∞时,0g x ,当()1,∈+∞x 时,0g x ,可得1x =时,函数()g x取得最小值2e-. 又当x →-∞时,()g x →+∞,当x →+∞时,()0g x <, 且函数()2xf x ae x =+在R 上有两个零点1x ,2x ,得20a e-<<. 由212x x ≥,可得212x x =时,a 取得最小值. 由112xae x =-,222x aex =-,得1214x ae x =-,∴12x e =,解得1ln 2x =.代入112x ae x =-,解得ln 2a =-.∴a 的最小值为ln 2-. 故选:B. 【点睛】此题考查利用导数研究函数的单调性与最值,考查化归与转化的数学思想,考查计算能力,属于中档题12.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4). 【详解】解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】先通过有根在上求得参数范围再验证其左右的导数符号以保证取得极大值即得结果【详解】依题意在开区间上函数有最大值即说明在上有极大值故在上有根易见导函数的一个根故有根且在上故即故此时有两个根要使为解析:)【分析】先通过()0f x '=有根在1,12⎛⎫⎪⎝⎭上求得参数范围,再验证其左右的导数符号,以保证取得极大值,即得结果. 【详解】依题意,在开区间1,12⎛⎫ ⎪⎝⎭上,函数()f x 有最大值,即说明()f x 在1,12⎛⎫⎪⎝⎭上有极大值,故()()()()()()21210x xf x a x e ax a a x e a '⎡⎤=---+=---=⎣⎦在1,12⎛⎫ ⎪⎝⎭上有根, 易见,导函数的一个根11,12x ⎛⎫=∉ ⎪⎝⎭,故0x e a -=有根,且在1,12⎛⎫⎪⎝⎭上,故10,ln ,12a x a ⎛⎫>=∈⎪⎝⎭,即ln ln ln a e <e a <<, 此时()()()()210xf x a x e a '=---=有两个根,要使ln x a =为极大值点,则需(),ln x a ∈-∞时,()0f x '>,()ln ,1x a ∈时,()0f x '<,故20a ->,即2a <.综上,a 的取值范围是).故答案为:).【点睛】 易错点点睛:()00f x '=是0x x =为极值点的必要条件,利用其求得参数值(或范围)后必须验证()f x '在0x x =左右的符号,也进而能确定0x x =是极大值点还是极小值点,这是这类题的易错点.15.【分析】根据图象关系利用分离变量法将问题转化为恒成立问题令利用导数可求得则【详解】图象总在上方恒成立定义域为恒成立令当时;当时在上单调递减在上单调递增即实数的取值范围为故答案为:【点睛】结论点睛:分 解析:(),1-∞【分析】根据图象关系,利用分离变量法将问题转化为1ln a x x<+恒成立问题,令()()1ln 0g x x x x=+>,利用导数可求得()()min 1g x g =,则()1a g <. 【详解】()f x 图象总在y ax =上方,ln 1x x ax ∴+>恒成立, ()f x 定义域为()0,∞+,1ln a x x∴<+恒成立,令()()1ln 0g x x x x =+>,()22111x g x x x x-'∴=-=, 当()0,1x ∈时,()0g x '<;当()1,x ∈+∞时,()0g x '>,()g x ∴在()0,1上单调递减,在()1,+∞上单调递增,()()min 11g x g ∴==, 1a ∴<,即实数a 的取值范围为(),1-∞.故答案为:(),1-∞. 【点睛】结论点睛:分离变量法是处理恒成立问题的基本方法,若()a f x ≤恒成立,则()min a f x ≤;若()a f x ≥恒成立,则()max a f x ≥.16.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】设由题意得令则所以函数是增函数原问题转化为恒成立然后利用参变分离法有恒成立运用配方法求出函数在上的最大值即可【详解】若对任意两个不相等的正实数都有恒成立不妨设所以即令则所以函数在单调递增则恒 解析:[)4,+∞【分析】设12x x >,由题意得()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 是增函数,原问题转化为()40,0()a g x x x x'=+-≥>恒成立,然后利用参变分离法,有2,)40(a x x x ≥-+>恒成立,运用配方法求出函数24y x x =-+在(0,)+∞上的最大值即可.【详解】若对任意两个不相等的正实数12,x x 都有()()12124f x f x x x ->-恒成立,不妨设12x x >所以()()121244f x f x x x >--,即()()112244f x x f x x >--,令()()24l 12n 4g x f x x a x x x =-=+-,则()()12g x g x >,所以函数()g x 在(0,)+∞单调递增, 则()40,0()ag x x x x'=+-≥>恒成立,所以2,)40(a x x x ≥-+>恒成立, 又函数()224244y x x x =-+=--+≤,当2x =时,等号成立, 所以4a ≥, 所以实数a 的取值范围是[)4,+∞. 故答案为:[)4,+∞. 【点睛】本题考查了导数在函数单调性中的应用,本题采用参变分离法,将其转化为函数的最值问题是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.19.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞【分析】求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果.【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-,整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x+>=+成立,12x x +≥=12x x =,即x =时取等号),a ∴>, 即实数a的取值范围为)+∞.故答案为:)+∞.【点睛】本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.20.【解析】因故有解即有解令取得极小值点为则则函数的极小值为将代入可得由题设可知令则由即当时函数取最小值即也即所以即应填答案点睛:本题是一道较为困难的试题求解思路是先确定极小值的极值点为则进而求出函数的解析:3min a e =-【解析】 因()a f x x b x -'=+,故()0af x x b x-+'==有解,即20x bx a --=有解.令取得极小值点为t ,则2bt t a =-,则函数的极小值为21()ln 2f t a t t bt =-+,将2bt t a =-代入可得21()ln 2f t a t t a =+-,由题设可知21ln 02a t t a +->,令21()ln 2h t a t t a =+-,则()a h t t t =+',由2()0ah t t t a t=+'=⇒=-,即当2t a =-时,函数21()ln 2h t a t t a =+-取最小值1()02h a a a =--≥,即3322a a ≥-⇒≤,也即13ln()ln()322a a -≤⇒-≤,所以33a e a e -≤⇒≥-,即3min a e =-,应填答案3min a e =-.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为t ,则2bt t a =-,进而求出函数的极小值21()ln 2f t a t t bt =-+,通过代入消元将未知数b 消掉,然后求函数21()ln 2h t a t t a =+-的最小值为1()02h a a a =--≥,从而将问题转化为3322a a ≥-⇒≤,然后通过解不等式求出即3min a e =-.三、解答题21.(1)39a b =-⎧⎨=-⎩;(2)max ()7f x =.【分析】(1)先对函数求导,根据题中条件,列出方程组求解,即可得出结果;(2)先由(1)得到32()392f x x x x =--+,导数的方法研究其单调性,进而可求出最值. 【详解】(1)因为32()2f x x ax bx =+++,所以2()32f x x ax b '=++,又函数32()2f x x ax bx =+++在1x =-处取得极值7,(1)17(1)320f a b f a b -=+-=⎧⎨-=-+='⎩,解得39a b =-⎧⎨=-⎩;, 所以3()3693(3)(1)f x x x x x '=--=-+, 由()0f x '>得3x >或1x <-;由()0f x '<得13x ;满足题意;(2)又[2,2]x ∈-,由(1)得()f x 在(2,1)x ∈--上单调递增,在(1,2)x ∈-上单调递减, 因此max ()(1)7f x f =-=. 【点睛】方法点睛:该题考查的是有关利用导数研究函数的问题,解题方法如下:(1)先对函数求导,根据题意,结合函数在某个点处取得极值,导数为0,函数值为极值,列出方程组,求得结果;(2)将所求参数代入,得到解析式,利用导数研究其单调性,得到其最大值. 22.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x -+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.23.(1)1;(2)2[,]52--e e;【分析】(1)求导然后分类讨论0a <与0a >两种情况,求出最小值即可计算a 的值;(2)参变分离将等式转化为21-=+x e m x ,设2()1=+xe g x x ,然后求导判断单调性,求解最值,即可得m 的取值范围. 【详解】(1)22(1)()x x x axe ae ae x f x x x'--==,当0a <时,函数在(0,1)上单调递增,在(1,)+∞上单调递减,此时函数有最大值,与题意不符;当0a >时,函数在(0,1)上单调递减,在(1,)+∞上单调递增,所以()min (1)===f x f ae e ,可得1a =;(2)1()0f x m x x ⎛⎫++= ⎪⎝⎭在[]1,2有解,即2(1)0++=x e m x 在[]1,2有解,即21-=+x e m x 在[]1,2有解,设2()1=+xeg x x ,()()2221()01-'=≥+xx e g x x恒成立,所以()g x 在[]1,2上单调递增,2minmax ()(1),()(2)25====e e g x g g x g ,所以225≤-≤e e m ,得252-≤≤-e em ,所以m 的取值范围为2[,]52--e e.【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号,关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数()f x 在指定的区间D 上单调递增(减),求参数范围问题,可转化为()0f x '≥ (或()0f x '≤)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 24.(1)在(0,1)上单调递减,在()1,+∞上单调递增;(2)211b e -≤. 【分析】(1)对函数求导得()11ax f x a x x-'=-=,由题意,()110f a '=-=,得1a =,再代入计算()0f x '>与()0f x '<,即可得单调性;(2)参变分离得1ln ()1=+-≥x g x b x x ,利用恒成立方法,对函数1ln ()1x g x x x=+-求导,判断单调性,求最小值即可.【详解】 (1)函数的定义域为(0,)+∞,()11ax f x a x x -'=-=,由题意,()110f a '=-=,所以1a =,即1()x f x x'-=,由()0f x '>得1x >,由()0f x '<得01x <<,故函数()f x 在(0,1)上单调递减,在()1,+∞上单调递增.(2)1ln ()21x f x bx b x x≥-⇒+-≥,令1ln ()1x g x x x =+-,则min ()≥g x b 成立,2ln 2()x g x x-'=,由()0g x '>,得2x e >,由()0g x '<,得20x e <<, 故()g x 在2(0,)e 上递减,在2(,)e +∞上递增,2min 21()()1==∴-x g e e g ,即211b e-≤. 【点睛】 导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.25.(1)12a ≤;(2)12a =. 【分析】(1)对函数求导,根据题中条件,得到()0f x '≤在()1,+∞上恒成立,推出a ≤()1,+∞上恒成立,进而可得出结果;(2)对函数求导,先讨论0a ≤,判断函数在定义域上单调,无最值,舍去;再讨论0a >,利用导数的方法研究函数的单调性,得出最大值,进而可求出结果.【详解】(1)因为()ln 1f x a x =,所以()0a f x x '=≤在()1,+∞上恒成立,所以2a ≤在()1,+∞上恒成立,又1x >12>,所以只需12a ≤即可, 即a 的取值范围是12a ≤;(2)因为函数()ln 1f x a x =的定义域为()0,∞+,为使函数()f x 存在最大值,则()f x 在定义域内不单调;因为()a f x x '=, 当0a ≤时,()0a f x x '=-<在()0,∞+上显然恒成立,所以()f x 在定义域上单调递减,无最值,不满足题意; 当0a >时,由()0a f x x '==可得24x a =, 所以当()20,4x a ∈时,()0a f x x '=>,则()f x 单调递增; 当()24,x a ∈+∞时,()0a f x x '=<,则()f x 单调递减;所以()()()()22max 4ln 412ln 221f x f a a a a a a ===-+, 又最大值不大于0,即()()()2max 42ln 2210f x f a a a a ==-+≤, 令()ln 1h x x x x =-+,0a >,则()10110h =-+=,又()ln 11ln h x x x '=+-=,当()0,1x ∈时,()ln 0h x x '=<,则()ln 1h x x x x =-+单调递减;当()1,x ∈+∞时,()ln 0h x x '=>,则()ln 1h x x x x =-+单调递增,所以()()min 10h x h ==,即()()22ln 221h a a a a =-+的最小值为0,此时12a =, 为使()2ln 2210a a a -+≤恒成立,只能()2ln 2210a a a -+=,即12a =.综上,12a =. 【点睛】 思路点睛:利用导数的方法研究函数的最值问题时,一般需要先对函数求导,根据导数的方法研究函数单调性,求出极值,结合题中条件,即可求出最值.(有时解析式中会含有参数,求解时,要讨论参数的不同取值范围,再判断函数的单调性,进行求解)26.(1)12a >-;(2)最大值点为36+.36x +=. 【分析】(1)根据()f x 在()0,∞+上存在单调递增区间,由()2220f x x x a =-++>'在()0,∞+上有解求解.(2)由()0G x '=得112x =212x =,根据02a <<,易得10x <,213x <<,则()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G ,然后由()()143143G G a -=-+,分14403a -+<,14403a -+≥确定最小值进而求得a 即可 【详解】 (1)∵()f x 在()0,∞+上存在单调递增区间,∴()2220f x x x a =-++>'在()0,∞+上有解, 即()max 0f x '>在()0,∞+上成立,而()f x '的最大值为()112f a '=+,∴120a +>, 解得:12a >-. (2)3211()()()2432G x f x g x x x ax =-=-+++, ∴()22G x x x a '=-++,由()0G x '=得:1x =2x =, 则()G x 在()1,x -∞,()2,x +∞上单调递减,在()12,x x 上单调递增,又∵当02a <<时,10x <,213x <<,∴()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G ,而()()143143G G a -=-+,1︒ 当14403a -+<,即706a <<时,()113623G a =-=-,得136a =,此时,最大值点236x +=; 2︒ 当14403a -+≥,即726a ≤<时,()2511263G a =+=-,得94a =-(舍).综上()G x 在[]1,3上的最大值点为36+. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得;(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

(易错题)高中数学选修1-1第四章《导数应用》测试(答案解析)(3)

(易错题)高中数学选修1-1第四章《导数应用》测试(答案解析)(3)

一、选择题1.定义在R 上的偶函数()f x 的导函数为(),f x '若对任意的0x >的实数,都有:()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的取值范围为( )A .{}1xx ≠±∣ B .(-1,1) C .()(),11,-∞-+∞D .(-1,0)()0,1⋃2.已知函数()()22ln x x t f x x+-=,若对任意的[]2,3x ∈,()()0f x f x x '+>恒成立,则实数t 的取值范围是( )A .(),2-∞B .5,2⎛⎫-∞ ⎪⎝⎭C .103⎛⎫-∞ ⎪⎝⎭,D .()2,+∞3.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-4.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞- B .(),1-∞-C .[)1,-+∞D .()1,-+∞5.已知函数3213()32f x x x c =++有3个不同的零点,则c 的取值范围是( ) A .9,02⎛⎫-⎪⎝⎭ B .4,(0,)3⎫⎛-∞-⋃+∞ ⎪⎝⎭C .4,03⎛⎫- ⎪⎝⎭D .9,(0,)2⎫⎛-∞-⋃+∞ ⎪⎝⎭6.将一个边长为a 的正方形铁片的四角截去四个边长相等的小正方形,做成一个无盖方盒.若该方盒的体积为2,则a 的最小值为( )A .1B .2C .3D .7.已知函数()()221x g x x e ax a =--+在()0,∞+上单调递增,则实数a 的取值范围是( )A .(,-∞B .(0,C .(,-∞D .(0,8.对任意0x >,若不等式2e ln e xa x ax x++≥恒成立(e 为自然对数的底数),则正实数a 的取值范围是( )A .(0,e]B .2(0,e ]C .2[,e]eD .22[,e ]e9.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤10.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( )A .1-B .0C .1D .211.已知函数,0(),0x e x f x x x ⎧≥=⎨-<⎩(其中e 为自然对数的底数),若函数2()y f x ax =-恰有三个零点,则( )A .24e a >B .24e aC .22e a >D .2e a >12.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞D .(0,2)(2,)⋃+∞二、填空题13.若函数()22ln 2f x x x a =++-在()1,e 上有零点,则实数a 的取值范围为______. 14.若0x ∀>,不等式ln 2(0)a x b a x ++≥>恒成立,则ba的最大值为________. 15.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.16.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.17.已知奇函数()f x 是定义在R 上的可导函数,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为________.18.已知函数()()ln ,11,1xx x f x x e x ≥⎧=⎨-<⎩,若函数()()()2g x f x f x a =--⎡⎤⎣⎦有6个零点,则实数a 的取值范围是______.19.已知函数()(ln )f x x x ax =-有且仅有一个极值点,则实数a 的取值范围是_____.20.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________.三、解答题21.已知函数22()1ln f x x ax a x =++-. (1)当1a =时,求()f x 的单调区间; (2)若0a =,且(0,1)x ∈,求证:2()2ln 122xf x x x e x-+-<. 22.已知函数()3f x x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间. 23.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 24.(1)证明下列不等式:1x e x ≥+;(2)求函数32()39f x x x x =--的极值.25.已知函数2()ln (0)f x x a x a =->.(1)若2a =,求曲线()y f x =的斜率等于3的切线方程; (2)若()y f x =在区间1,e e ⎡⎤⎢⎥⎣⎦上恰有两个零点,求a 的取值范围.26.已知函数1()(0,1)xxf x a a a a =->≠. (I )若1a >,不等式()2(4)0f x bx f x ++->在x ∈R 上恒成立,求实数b 的取值范围; (II )若3(1)2f =且221()2()xx h x a mf x a=+-在[1,)+∞上的最小值为2-,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:C 【点睛】关键点点睛:主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.2.B解析:B 【分析】求导函数()f x ',化简()()0f x f x x'+>得10x t x+->在[]2,3x ∈恒成立,参变分离即可求参数范围. 【详解】∵()2222ln 2x x t f x x-+-'=, ∴对任意的[]2,3x ∈,()()0f x f x x'+>恒成立⇔对任意的[]2,3x ∈,()()0xf x f x '+>恒成立, ⇔对任意的[]2,3x ∈,10x t x+->恒成立, ⇔1x t x+>恒成立, 又()1g x x x =+在[]2,3上单调递增,∴()()225min g x g ==, ∴52t <.则实数t 的取值范围是5,2⎛⎫-∞ ⎪⎝⎭.故选:B 【点睛】对于恒成立问题,常用到以下两个结论: (1)()a f x ≥ 恒成立()max a f x ⇔≥; (2) ()a f x ≤ 恒成立()min a f x ⇔≤.3.B解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值. 【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.4.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.5.A解析:A 【分析】求出三次函数的导数,根据导函数正负情况分析单调性和极值,图象要与x 轴三个交点,据此得出取值范围. 【详解】由条件得2()3(3)f x x x x x '=+=+, 令()0f x '>,可得解集为(,3)(0,)-∞-⋃+∞ 令()0f x '<,可得解集为(3,0)-则()f x 在(,3)-∞-和(0,)+∞上单调递增,在(3,0)-上单调递减,又9(3)2f c -=+,(0)f c =,要使()f x 有3个不同的零点,则902c c <<+,所以902c -<<. 故选:A 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.6.C解析:C 【分析】设出小正方形的边长,表示出方盒的体积,然后求导,判断出单调性,然后求解最大值即可. 【详解】设截去的小正方形边长为x ,则方盒高为x ,底边长为2a x -,所以()22,0,2a V a x x x ⎛⎫=-⋅∈ ⎪⎝⎭,则()224(2)(2)(6)V a x x a x x a x a '=-+-=--,令0V '=,得2a x =(舍) 或6a x =,当06ax <<时,0V '>,单调递增;当62a a x <<时,0V '<,单调递减;由题意,则23max 2263627a a a a V V a ⎛⎫⎛⎫==-⋅=≥ ⎪ ⎪⎝⎭⎝⎭,则3a ≥,故a 的最小值为3. 故选:C. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决生活中的优化问题;(4)考查数形结合思想的应用.7.A解析:A 【分析】先求导数,利用单调性转化为()()2120xg x x e ax '=+-≥,构造新函数()()21x xf x x e +=求解()f x 的最小值即可. 【详解】()()212x g x x e ax '=+-,由题意可知()()2120x g x x e ax '=+-≥在()0,∞+恒成立,即()212x x e a x+≥恒成立,设()()21x xf x x e +=,()()()()22221211x x x x e x x e x x f x +--+='=10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 为减函数; 1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 为增函数; ()f x的最小值为12f ⎛⎫= ⎪⎝⎭,所以a ≤故选:A. 【点睛】利用函数单调性求解参数时,通常转化为恒成立问题求解:(1)()f x 在区间D 上单调递增等价于()0f x '≥在区间D 上恒成立; (2)()f x 在区间D 上单调递减等价于()0f x '≤在区间D 上恒成立.8.B解析:B 【分析】将不等式化简并换元,构造函数2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,对函数求导,判断导函数零点与区间端点的关系,分类讨论得出函数的单调性和最小值,代入求解可得正实数a 的取值范围. 【详解】22e e e ln e ln e 0x x x a x ax a x x x ++≥⇔-+≥,令e x t x=(由e e x x ≥可知e t ≥),则2ln e 0t a t -+≥,设2()ln e (e)f t t a t t =-+≥,则min ()0f t ≥即可,易得()1(e)a t a f t t t t-'=-=≥, ①当0e a <≤时,()0f t '≥,所以此时()(e)y f t t =≥是增函数,故2min ()(e)e e 0f t f a ==-+≥,解得2e e a ≤+,又0e a <≤,所以0e a <≤;②当e a >时,则()y f t =在[,)e a 上递减,在(,)a +∞上递增,故min ()()f t f a =,min ()0()0f t f a ≥⇔≥,所以2ln e 0a a a -+≥,设2()ln e (e)g a a a a a =-+>,故()0g a ≥即可,而()ln (e)g a a a '=->,显然()0g a '<,即()y g a =在(e,)+∞上递减,又2(e )0g =,而()0g a ≥,所以2()(e )g a g ≥,所以2e a ≤,又e a >,因此2e e a <≤.综上所述,0e a <≤或2e e a <≤,即2(0,e ]a ∈. 故选:B 【点睛】方法点睛:本题考查不等式的恒成立问题,考查导数在单调性和最值中的应用,考查分类讨论思想,关于恒成立问题的几种常见解法总结如下: 1.参变分离法,将不等式恒成立问题转化为函数求最值问题;2.主元变换法,把已知取值范围的变量作为主元,把求取值范围的变量看作参数;3.分类讨论,利用函数的性质讨论参数,分别判断单调性求出最值;4.数形结合法,将不等式两端的式子分别看成两个函数,作出函数图象,列出参数的不等式求解.9.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.10.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212ln x kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.11.A解析:A 【分析】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠,令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点,利用导数研究函数()y g x =的性质并作出示意图可求得答案.【详解】由(0)1f =,故0不是函数()2y f x ax =-的零点,则由2()0f x ax -=,得2()(0)f x a x x =≠, 令2()()f x g x x =2,01,0xe x x x x⎧>⎪⎪=⎨⎪-<⎪⎩,则题目转化为y a =与()y g x =有三个零点, 当0x >时,2()x e g x x =,则4(2)()x xe x g x x -'=, 则()g x 在(0,2)上递减,在(2,)+∞上递增,当2x =时,()g x 有最小值为2(2)4e g =, 当0x →时,()g x →+∞,作出()y g x =的示意图如图所示:由图知,若函数()2y f x ax =-恰有三个零点,则24e a >. 故选:A.【点睛】 方法点睛:求函数()f x 的零点个数的方法如下:直接解方程()0f x =,求出零点可得零点个数.;数形结合法:转化为两个函数的交点;参变分离法:将参数分离出来,再作函数的图像进而转化为y a =与()y g x =(分离后的函数)的交点问题.12.C解析:C【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x ,当0x >时,()3()0xf x f x '+>, ∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减,∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C .【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.二、填空题13.【分析】令得构造函数并求值域可得答案【详解】由则令因为在上都递减所以在上是单调递减函数且可得故答案为:【点睛】方法点睛:本题考查由函数零点求参数问题解答时要先将函数的零点问题转化为方程有根的问题进而 解析:21e a -<<【分析】令0f x得222ln a x x =--,构造函数2()22ln (0)g x x x x =-->并求值域可得答案.【详解】由()22ln 20f x x x a =++-=,则222ln a x x =--, 令2()22ln (0)g x x x x =-->,因为222ln ,y x y x =-=-在()1,e 上都递减, 所以()g x 在()1,e 上是单调递减函数,且()()(1)g e g x g <<,可得21e a -<<.故答案为:21e a -<<.【点睛】方法点睛:本题考查由函数零点求参数问题,解答时要先将函数的零点问题转化为方程有根的问题,进而分离参数,再运用函数思想将问题转化为研究函数图象的性质和最大最小值的问题,考查了分析问题解决问题的能力.14.【分析】先设对其求导求出其最小值为得到再令对其求导导数的方法研究其单调性得出最大值即可得出结果【详解】设则因为所以当时则函数单调递减;当时则函数单调递增;所以则令则;由可得;所以当时则函数单调递增; 解析:2e【分析】先设()ln 2a f x x x=++,对其求导,求出其最小值为()min ln 3f x a =+,得到ln 3b a a a +≤,再令()ln 3a g a a+=,对其求导,导数的方法研究其单调性,得出最大值,即可得出结果.【详解】设()ln 2a f x x x =++,则()221a x a f x x x x '-=-=,因为0a >, 所以当()0,x a ∈时,()20x a f x x -'=<,则函数()f x 单调递减; 当(),x a ∈+∞时,()20x a f x x '-=>,则函数()f x 单调递增; 所以()()min ln 3f x f a a b ==+≥, 则ln 3b a a a +≤,令()ln 3a g a a +=,则()221ln 32ln a a g a a a --+'==-; 由()0g a '=可得,2a e -=;所以当()20,a e -∈时,()22ln 0a g a a +'=->,则函数()g a 单调递增; 当()2,a e -∈+∞时,()22ln 0a g a a +'=-<,则函数()g a 单调递减; 所以()()2222max ln 3e g a g ee e---+===,即b a 的最大值为2e . 故答案为:2e【点睛】思路点睛: 导数的方法研究函数最值时,通常需要先对函数求导,解对应的不等式,求出单调区间,得出函数单调性,得出极值,进而可得出最值.15.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解. 【详解】 由题意,分式(1)(1)f m f n m n+-+-的几何意义为: 表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率, 因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立, 所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立,由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立, 设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数, 可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大. 16.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<,所以当2x <时()0f x '>,()f x 单调递增,当2x >时()0f x '<,()f x 单调递减,又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <,当x 与()f x 同号时,()0xf x >,所以()0xf x >的解集为:()(),01,3-∞⋃,故答案为:()(),01,3-∞⋃【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.17.【分析】构造函数判断函数的单调性和奇偶性得到解得答案【详解】设函数当时函数单调递增为奇函数故为奇函数故函数在上单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式构造函数判断 解析:(),2019-∞-【分析】构造函数()()2g x x f x =,判断函数的单调性和奇偶性,得到()()20212g x g +<,解得答案.【详解】设函数()()2g x x f x =, 当0x >时,()()()()()23220g x xf x x f x x f x xf x x '''=+=+>>⎡⎤⎣⎦,函数单调递增,()f x 为奇函数,故()g x 为奇函数,故函数()g x 在R 上单调递增,22(2021)(2021)4(2)(2021)(2021)4(2)0x f x f x f x f +++-=++-<,即()()20212g x g +<,即20212x +<,解得2019x <-.故答案为:(),2019-∞-.【点睛】本题考查了利用函数的单调性和奇偶性解不等式,构造函数判断单调性和奇偶性是解题的关键.18.【分析】当时利用导数法得到函数的单调性与极值再由时作出函数的大致图象令将问题转化为方程有两个不等根且即各有3个根求解【详解】当时所以当时递增当时递减所以当时取得最大值1又当时所以的大致图象如图所示: 解析:1,04⎛⎫- ⎪⎝⎭【分析】当1x <时,()()1xf x x e =-,利用导数法得到函数的单调性与极值,再由1≥x 时,()ln f x x =,作出函数()f x 的大致图象,令()f x t =,将问题转化为方程20t t a --=有两个不等根12,t t ,且12,(0,1)t t ∈即()()12,f x t f x t ==各有3个根求解.【详解】当1x <时,()()1xf x x e =-, 所以()xf x xe '=-,当0x <时,()0f x '>,()f x 递增, 当01x <<时,()0f x '<,()f x 递减,所以当0x =时, ()f x 取得最大值1,又当1≥x 时,()ln f x x =,所以()f x 的大致图象如图所示:令()f x t =,则转化为方程20t t a --=有两个不等根12,t t ,且()()2121,(0,1),,t f x t f t x t ==∈各有3个根,方程20t t a --=在(0,1)有两个不同的解,设2()g t t t a =--,所以(0)0140(1)0g a a g a =->⎧⎪∆=+>⎨⎪=->⎩, 解得104a -<<. 故答案为:1,04⎛⎫- ⎪⎝⎭【点睛】本题主要方程的根与函数的零点问题,利用导数研究函数的单调性与极值,还考查了转化化归思想、数形结合思想和运算求解的能力,属于中档题.19.【分析】根据题意可得只有一个解只有一个解与只有一个交点求导数分析单调性及当时;当时画出函数的草图及可得的取值范围再检验是否符合题意即可得出答案【详解】解:因为函数有且仅有一个极值点所以只有一个解即只 解析:(,0]-∞【分析】根据题意可得()210f x lnx ax '=-+=只有一个解12lnx a x +⇒=只有一个解2y a ⇒=与1()lnx y g x x+==只有一个交点,求导数()g x ',分析单调性,及当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图,及可得a 的取值范围,再检验是否符合题意,即可得出答案.【详解】解:因为函数()(ln )f x x x ax =-有且仅有一个极值点, 所以1()ln ln 210f x x ax x a x ax x ⎛⎫'=-+-=-+=⎪⎝⎭只有一个解, 即ln 12x a x+=,只有一个解, 即2y a =与ln 1()x y g x x +==只有一个交点, 因为2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,函数()g x 单调递增,当(1,)x ∈+∞时,()0g x '<,函数()g x 单调递减,所以max ()(1)1g x g ==,当0x →时,()g x →-∞;当x →+∞时,()0g x →,画出函数()g x 的草图如下:结合图象可得21a =或20a ≤, 解得12a =或0a ≤, 当12a =时,21()ln 2f x x x x =-, 所以()1ln f x x x '=+-,令()1ln h x x x =+-, 所以1()1h x x'=-, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减, 所以()(1)0h x h ≤=,所以()1ln 0f x x x '=+-≤恒成立,所以()f x 在(0,)+∞上单调递减,所以函数()f x 没有极值点.所以实数a 的取值范围是(,0]-∞.故答案为:(,0]-∞【点睛】本题考查利用导数分析极值,解题关键是转化思想的应用,属于中档题.20.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】 求出函数的导数,问题转化为10a x -在区间(0,1)恒成立,求出a 的范围即可. 【详解】 ()f x ax lnx =-,(0)x >,1()f x a x∴'=-, 若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x -在区间(0,1)恒成立, 即1()min a x, 因为(0,1)x ∈,所以min11x ⎛⎫> ⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1].【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题.三、解答题21.(1)单调递增区间为(]0,1,单调递减区间为[1,)+∞;(2)证明见解析.【分析】 (1)先求出函数的定义域,再对函数求导,然后分别令0f x 和0f x ,解不等式可求出函数的单调区间; (2)22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<,即()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<和()3()221x h x e x x =-++,利用导数分别求出()()11g x g <=,()1h x >,从而可得结论【详解】(1)当1a =时,2()1ln f x x x x =++-,定义域为(0,)+∞,∴1(1)(21)()12x x f x x x x --+'=+-=, 令0f x ,得01x <<;令0f x ,得1x >,∴()f x 的单调递增区间为(]0,1,单调递减区间为[1,)+∞.(2)当0a =时,()1ln f x x =+, ∴22()2ln 11ln 12222x x f x x x x x e x e x--+-<⇔+-<, 即()3(1ln )221(01)x x x e x x x -<-++<<,令()(1ln )(01)g x x x x =-<<,∴()ln 0g x x '=->,∴()g x 在0,1上单调递增,∴()()11g x g <=.令()3()221x h x e x x =-++(01x <<),∴()32()2623x h x e x x x '=--++, 令32()2623x x x x ϕ=--++,∴2()6122x x x ϕ'=--+在0,1上递减,又(0)20ϕ'=>,(1)160ϕ'=-<,∴0(0,1)x ∃∈使()00x ϕ'=,且()00,x x ∈时,()0x ϕ'>,()ϕx 递增, ()0,1x x ∈时,()0x ϕ'<,()ϕx 递减,而(0)30ϕ=>,(1)30ϕ=-<,∴1(0,1)x ∃∈使()10x ϕ=,即()10h x '=,()10,x x ∈时()0h x '>,()h x 单调递增,()1,1x x ∈时()0h x '<,()h x 单调递减, 而(0)1h =,(1)h e =,∴()1h x >恒成立,∴()()g x h x <,即()3(1ln )221(01)x x x e x x x -<-++<<, 即2()2ln 122x f x x x e x-+-<. 【点睛】 关键点点睛:此题考查导数的应用,利用导数求函数的单调区间,利用导数求函数的最值,第2问解题的关键是把2()2ln 122x f x x x e x-+-<等价转化为()3(1ln )221(01)x x x e x x x -<-++<<,然后构造函数()(1ln )(01)g x x x x =-<<,()3()221x h x e x x =-++,分别求出两个函数的最值即可,考查数学转化思想,属于中档题22.(1)220x y --=;(2)函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为⎛⎝⎭. 【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)解方程()0f x '=,列表分析()f x '的符号变化,由此可得出函数()f x 的单调递增区间和递减区间. 【详解】(1)由()3f x x x =-,得()231f x x '=-,所以()12f '=,又()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为:()21y x =-,即220x y --=.(2)令()2310f x x '=-=,得x =,x 、()f x '、()f x 在R 上的情况如下:所以函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为33⎛- ⎝⎭. 【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.23.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤ ⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x x x x x ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x xx x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥ 所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减; 当0x x >时,()0x ϕ>,()g x 单调递增 故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈,()()22222204646xxx x e e x x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦,综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤⎥⎝⎦,【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)证明见解析;(2)极大值为5,极小值为27-. 【分析】(1)设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =,分析函数的单调性,可求得函数的最值,不等式可得证;(2)对函数求导,求出函数()y f x =的极值点,分析函数的单调性,可求得函数的极值. 【详解】解:(1)证明:设()1x f x e x =--,则'()1x f x e =-,由'()0f x =得0x =, 所以当0x <时,'()0f x <,当0x >时,'()0f x >,所以()f x 在(),0-∞单调递减,在()0,∞+单调递增,所以()(0)0f x f ≥=,即10x e x --≥,所以1x e x ≥+;(2)32()39f x x x x =--2()3693(1)(3)f x x x x x ==+'---,令()0f x '=,得1x =-或3x =,则所以当时函数取极大值为,当时函数取极小值为;【点睛】关键点点睛:本题考查利用导数证明不等式和求函数在定区间上的极值,关键在于构造函数,分析其导函数的符号,得出原函数的单调性.25.(1)322ln 20x y ---=;(2)(22,e e ⎤⎦.【分析】(1)求出导函数,令()3f x '=求得切点坐标后可得切线方程;(2)求导函数()'f x ,确定()f x 在定义域内只有一个极值点,因此这个极值点必在区间1e e ⎛⎫ ⎪⎝⎭,上,然后得函数在1,e e ⎡⎤⎢⎥⎣⎦上的极小值,由极小值小于0,区间两个端点处函数值大于或等于0可得结论. 【详解】由已知函数()f x 定义域是(0,)+∞,(1)2()2ln f x x x =-,22(1)(1)()2x x f x x x x'+-=-=, 由2()23f x x x'=-=解得2x =(12x =-舍去),又()422ln 2f =-,所以切线方程为(42ln 2)3(2)y x --=-,即322ln 20x y ---=;(2)222()2x x a x a f x x x x x⎛-+ -⎝⎭⎝⎭'=-==,易知()f x()f x有两个零点,则1e e <<,即2222a e e<<,此时在1e ⎛ ⎝上()0f x '<,()f x递减,在e ⎫⎪⎪⎭上()0f x '>,()f x 递增, ()f x在x =时取得极小值2a f a =-,所以22111ln 0()ln 002f a e ee f e e a e a f a ⎧⎛⎫⎪=-≥ ⎪⎪⎝⎭⎪=-≥⎨⎪⎪=-<⎪⎩解得22e a e <≤.综上a 的范围是(22,e e ⎤⎦.【点睛】关键点点睛:本题考查导数的几何意义,考查用导数研究函数的零点问题.函数在某个区间上的零点,解题时先从大处入手,由导数确定函数的极值点,利用单调区间上的零点最多只有一个,因此函数的极值点必在给定区间内,从而缩小参数的a 范围,在此范围内计算()f x 的单调性与极值,结合零点存在定理可得结论. 26.(I )()3,5-;(II )2m = 【分析】(Ⅰ)判断出()1xx f x a a=-是R 上的单调递增和()f x 为定义域为R 的奇函数,进而转化为()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而可求解(Ⅱ)利用()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222xx x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122xxu f x ==-,则()222g u u mu =-+,进而利用导数求最值即可求出m 的值 【详解】解:(Ⅰ) ()1(0,1)xx f x a a a a =->≠,因为()10f >,所以10a a->,又0a >且1a ≠,所以1a >,所以,()1x xf x a a =-是R 上的单调递增, 又()f x 是定义域为R 的函数,满足()()f x f x -=-,所以,()f x 为定义域为R 的奇函数,所以,()()()()2224044f x bx f x f x bx f x x bx x ++->⇒+>-⇔+>-即240x bx x +-+>在x ∈R 上恒成立, 所以()21160b ∆=--<,即35b -<<, 所以实数b 的取值范围为()3,5-. (Ⅱ)因为()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122xx u f x ==-,则()222g u u mu =-+, 因为()122xx f x =-在R上为增函数,且1≥x ,所以()312u f ≥=, 因为()()221222xx h x mf x =+-在[)1,+∞上的最小值为2-, 所以()222g u u mu =-+在3,2⎡⎫+∞⎪⎢⎣⎭上的最小值为2-,因为()()222222g u u mu u m m =-+=-+-的对称轴为u m = 所以当32m ≥时, ()()2min 22g u g m m ==-=-,解得2m =或2m =-(舍去), 当32m <时, ()min 3173224g u g m ⎛⎫==-=- ⎪⎝⎭,解得253122m =>,综上可知:2m = 【点睛】关键点睛:解题关键:(Ⅰ)利用函数的奇偶性和单调性得到()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而转化求解即可;(Ⅱ)求出a ,构造函数()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后令()122xxu f x ==-,构造出()222g u u mu =-+,进而求解。

(易错题)高中数学选修1-1第四章《导数应用》检测题(含答案解析)(2)

(易错题)高中数学选修1-1第四章《导数应用》检测题(含答案解析)(2)

一、选择题1.已知,a b ∈R ,若函数()e =-x f x a bx 存在两个零点1x ,2x ,且210x x >>,则下列结论可能成立的是( ). A .0ae b >>B .0ae b >>C .0b ae >>D .0ae b >>2.若函数()3221f x x x mx =+++在()-∞+∞,内单调递增,则m 的取值范围是( ) A .43m ≥B .43m >C .43m ≤D .43<m 3.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .4.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤5.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点6.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .27.已知函数()f x 的定义域为[)2-+∞,,部分对应值如下表;()f x '为()f x 的导函数,函数()y f x '=的图象如下图所示.若实数a 满足()211f a +≤,则a 的取值范围是( ) x2-0 4 ()f x11-1A .33,22⎛⎫-⎪⎝⎭ B .13,22⎛⎫-⎪⎝⎭ C .33,22⎡⎤-⎢⎥⎣⎦ D .13,22⎡⎤-⎢⎥⎣⎦ 8.已知函数321()13f x x ax x =+++在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,则实数a 的取值范围为( )A .(,1]-∞-B .55,34⎡⎤--⎢⎥⎣⎦C .5,13⎛⎤-- ⎥⎝⎦D .55,34⎛⎫--⎪⎝⎭9.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( ) A .234f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭> B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C .()214f f π⎛⎫⋅⎪⎝⎭< D .646f f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭< 10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( )A .21,e ⎛⎫-- ⎪⎝⎭B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭ D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.若函数32()f x x x =-在区间(,3)a a +内存在最大值,则实数a 的取值范围是____________.15.已知函数)(f x 的定义域为R ,且)(12f -=.若对任意x ∈R ,)(2f x '>,则)(24f x x >+的解集为______.16.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________.17.如图,现有一个圆锥形的铁质毛坯材料,底面半径为6,高为8.某工厂拟将此材料切割加工成一个圆柱形构件,并要求此材料的底面加工成构件的一个底面,则可加工出该圆柱形构件的最大体积为__________.18.已知函数21()ln 2f x x x =+,函数()f x 在[1,]e 上的最大值为__________. 19.已知a R ∈,设函数232,1()1,1x x a x f x x a nx x ⎧-+=⎨->⎩,若关于x 的不等式()0f x ≥在R上恒成立,则a 的取值范围是_________.20.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________三、解答题21.已知函数2()(41)43(0)xf x ax a x a e a ⎡⎤=-+++≠⎣⎦. (1)若1a =,求曲线()y f x =在(0,(0))f 处的切线方程; (2)若()f x 在2x =处取得极小值,求a 的取值范围.22.已知函数()()()242,f x x x a a R =--∈,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)求函数()f x 在[]22-,上的最大值和最小值. 23.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围. 24.已知()()2122x f x ax ax x e =-++-. (1)当1a =-时,求()f x 的单调区间 (2)若f (x )存在3个零点,求实数a 的取值范围. 25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.设函数33,().()2,x x x af x a R x x a ⎧-=∈⎨->⎩(1)若0a =,则()f x 的最大值为;(2)若()f x 无最大值,则求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意将问题转化为方程xb e a x=在0,上有两个实数根,进而令()(),0,xe g x x x=∈+∞,再研究函数()g x 的单调性得0b e a >>,进而分0a >和0a <讨论即可得答案. 【详解】解:当0a =时,函数()f x 只有一个零点,故0a ≠,因为函数()e =-xf x a bx 存在两个零点1x ,2x ,且210x x >>所以方程xb e a x=在0,上有两个不相等的实数根.令()(),0,x e g x x x =∈+∞,()()21'x x e g x x -=, 所以当()1,∈+∞x 时()'0g x >,()0,1∈x 时()'0g x <,故函数()(),0,xe g x x x=∈+∞在1,上单调递增,在0,1上单调递减;所以()()min 1g x g e ==,所以0be a>>, 当0a >时,0b ae >>,当0a <时,0b ae <<. 故选:D. 【点睛】本题考查利用导数研究函数零点问题,解题的关键在于将问题转化为方程xb e a x=在0,上有两个不相等实数根,进而令()g x 研究函数的单调性即可.考查运算求解能力与化归转化思想,是中档题.2.A解析:A【分析】由于()f x 在R 上递增得()0f x '≥恒成立,利用参数分离求得参数范围. 【详解】因为()f x 在R 上递增得()0f x '≥恒成立,则()2340f x x x m '=++≥所以234m x x ≥--在R 上恒成立,令()234g x x x =--,则()max m g x ≥因为()g x 为二次函数且图像的对称轴为23x =-,所以()max 2433g x g ⎛⎫=-= ⎪⎝⎭ 故43m ≥故选:A【点睛】方法点晴:本题利用导数与单调性的关系转化为恒成立问题,结合参数分离法求得参数范围.3.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.4.B解析:B 【分析】 由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,所以22'20a x x a y x x x --=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立, 所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.5.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.6.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.7.A解析:A 【分析】由导函数的图象得到导函数的符号,利用导函数的符号与函数单调性的关系得到()f x 的单调性,结合函数的单调性即可求得a 的取值范围. 【详解】由导函数的图象知:()2,0x ∈-时,()0f x '<,()0,x ∈+∞时,()0f x '>, 所以()f x 在()2,0-上单调递减,在()0,∞+上单调递增, 因为()211f a +≤,()21f -=,()41f =, 所以2214a -<+<,可得:3322a -<<, 故选:A. 【点睛】本题主要考查了利用导函数的符号判断原函数的单调性,以及利用函数的单调性解不等式,属于中档题.8.B解析:B 【分析】求导得到2()21'=++f x x ax ,然后根据()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,由(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩求解.【详解】 已知函数321()13f x x ax x =+++, 则2()21'=++f x x ax ,因为()f x 在(,0)-∞,(3,)+∞上为增函数,在()1,2上为减函数,所以(0)0(1)0(2)0(3)0f f f f ''≥⎧⎪≤⎪⎨''≤⎪⎪≥⎩,即10121044109610a a a ≥⎧⎪++≤⎪⎨++≤⎪⎪++≥⎩,解得 5534a -≤≤-, 所以实数a 的取值范围为55,34⎡⎤--⎢⎥⎣⎦故选:B 【点睛】本题主要考查导数与函数的单调性以及二次函数与根的分布,还考查了逻辑推理和运算求解的能力,属于中档题.9.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项.【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f fππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即64f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.10.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.11.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数, f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e--, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数()f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先利用导数判断函数的单调性再根据函数在开区间内存在最大值可判断极大值点就是最大值点列式求解【详解】由题可知:所以函数在单调递减在单调递增故函数的极大值为所以在开区间内的最大值一定是又所以得 解析:(3,2]--【分析】首先利用导数判断函数的单调性,再根据函数在开区间(),3a a +内存在最大值,可判断极大值点就是最大值点,列式求解. 【详解】由题可知: 2()32(32)f x x x x x '=-=-所以函数()f x 在20,3⎛⎫ ⎪⎝⎭单调递减,在2(,0),,3⎛⎫-∞+∞⎪⎝⎭单调递增,故函数的极大值为 (0)0f =.所以在开区间(,3)a a +内的最大值一定是(0)0,f =又(1)(0)0f f ==, 所以03,31a a a <<+⎧⎨+≤⎩ 得实数a 的取值范围是(3,2].-- 故答案为:(]3,2-- 【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式31a +≤,不要忽略这个不等式.15.【分析】构造函数利用导数研究函数的单调性即可得结论【详解】设则因为对任意所以所以对任意是单调递增函数因为所以由可得则的解集故答案为:【点睛】本题主要考查不等式的求解利用条件构造函数利用导数研究函数的 解析:)(1,-+∞【分析】构造函数)(()24g x f x x =--,利用导数研究函数的单调性即可得结论.【详解】设)(()24g x f x x =--,则)(()2g x f x ='-', 因为对任意x ∈R ,)(2f x '>,所以()0g x '>, 所以对任意x ∈R , ()g x 是单调递增函数,因为)(12f -=,所以)((1)124440g f -=-+-=-=, 由()()10g x g >-=,可得1x >-, 则)(24f x x >+的解集()1,-+∞. 故答案为:()1,-+∞. 【点睛】本题主要考查不等式的求解,利用条件构造函数、利用导数研究函数的单调性是解决本题的关键.16.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最解析:2【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.17.【分析】利用几何体的轴截面进行计算结合导数求得圆柱形构件的最大体积【详解】画出圆锥及圆柱的轴截面如下图所示其中四边形为矩形设圆柱的底面半径为即则即所以圆柱的体积为由于所以在区间上单调递增;区间上单调解析:1283π 【分析】利用几何体的轴截面进行计算,结合导数求得圆柱形构件的最大体积. 【详解】画出圆锥及圆柱的轴截面如下图所示.其中8,6AG GC GB ===,AG BC ⊥,四边形HIDE 为矩形. 设圆柱的底面半径为()06x x <<,即GI GH x ==, 则AG DI CG IC =,即()844686633DI DI x x x =⇒=-=--. 所以圆柱的体积为()()22332444886333V x x x x x x x πππ⎛⎫⎛⎫=⨯⨯-=⨯-=-+ ⎪ ⎪⎝⎭⎝⎭,06x <<.()()()()'22431244443V x x x x x x x πππ=-+=-⨯-=-⨯⨯-, 由于06x <<,所以()V x 在区间()0,4上()'0V x >,()V x 单调递增;区间()4,6上()'0V x <,()V x 单调递减.所以()V x 在4x =处取得极大值也即是最大值为:()()()3244412824646496323333V ππππ=-+⨯=-+=⨯=. 故答案为:1283π【点睛】本小题主要考查圆锥的最大内接圆柱有关计算,考查利用导数求最值,属于中档题.18.【分析】根据求导函数根据在上单调性求解【详解】因为函数所以所以在上单调递增所以函数在上的最大值为故答案为:【点睛】本题主要考查导数法求函数的最值还考查了运算求解的能力属于中档题解析:212e +【分析】 根据21()ln 2f x x x =+,求导函数,根据()f x 在[1,]e 上单调性求解. 【详解】 因为函数21()ln 2f x x x =+, 所以1()0f x x x'=+>, 所以()f x 在[1,]e 上单调递增,所以函数()f x 在[1,]e 上的最大值为2()()12e f x f e ==+.故答案为:212e +【点睛】本题主要考查导数法求函数的最值,还考查了运算求解的能力,属于中档题.19.【分析】根据分段函数当时将恒成立转化为恒成立令利用二次函数的性质求得其最大值当时将转化为恒成立令用导数法求得其最小值然后两种情况取交集【详解】当时等价于恒成立令其中则所以当时等价于恒成立令则当时递增 解析:[]1,e【分析】根据分段函数,当1x ≤时,将()2320f x x x a =-+≥恒成立,转化为232x x a -恒成立,令23()2x x g x -=,利用二次函数的性质求得其最大值,当1x >时,将()ln 0f x x a x =-≥,转化为1xanx 恒成立,令()ln x h x x=,用导数法求得其最小值,然后两种情况取交集. 【详解】当1x ≤时,()2320f x x x a =-+≥等价于232x x a -恒成立,令()22231139()322228x x g x x x x -⎛⎫==--=--+ ⎪⎝⎭,其中1x ≤,则()max 1g x =, 所以1a ≥,当1x >时,()ln 0f x x a x =-≥等价于1xanx恒成立, 令()ln xh x x=,则221ln ln 1()(ln )(ln )x x x x h x x x -⋅-'==, 当x e >时,()()0,h x h x '>递增, 当1x e <<时,()()0,h x h x '<递减, ∴x e =时,()h x 取得最小值()h e e =, ∴()min a h x e ≤=, 综上:a 的取值范围是[]1,e . 故答案为:[]1,e . 【点睛】本题主要考查二次函数的最值,函数的最值与导数以及导数与不等式恒成立问题,还考查了运算求解的能力,属于中档题.20.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单解析:12x x ⎧⎫≥⎨⎬⎩⎭【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()xg x f x e =,则()()xg x f x e --=-,因为2()()0xf x ef x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()xxxg x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增; 又不等式21()(1)x f x ef x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-,所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.三、解答题21.(1)27y x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【分析】(1)求出导函数()'f x ,得切线斜率(0)f ',从而可得切线方程; (2)求出()'f x ,求出()0f x '=的两根1a和2,根据两根的大小讨论()f x 的极值,由2是极小值点得出a 的范围. 【详解】本题考查利用导数研究函数性质.解析(1)若1a =,()2()57xf x x x e =-+, 所以()2()32xf x x x e '=-+, 所以(0)2 f '=,又(0)7f =,因此曲线()y f x =在(0,(0))f 处的切线方程为27y x =+. (2)2()(21)2(1)(2)xxf x ax a x e ax x e '⎡⎤=-++=--⎣⎦, 令()0 f x '=,得1x a=或2x =, 若102a <<,即12a > 则当1,2x a ⎛⎫∈⎪⎝⎭时,()0f x '<,当(2,)x ∈+∞时,()0f x '>, 所以()f x 在2x =处取得极小值..若12a ≤,且0a ≠,则当(0,2)x ∈时,112ax x ≤<, 所以10ax ,同时20x -<,所以()0f x '>,从而2x =不是()f x 的极小值点..综上可知,a 的取值范围是1,2⎛⎫+∞⎪⎝⎭.【点睛】本题考查导数的几何意义,考查由极值点求参数范围.掌握极值的定义是解题关键.方法是:求出导函数()'f x ,确定()0f x '=的根,然后由根分实数为若干个区间,讨论各区间中()'f x 和正负,得单调区间,若在0x 左侧递减,右侧递增,则0x 是极小值点,若在0x 左侧递增,右侧递减,则0x 是极大值点. 22.(1)单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦; (2)最大值为9,最小值为10027-. 【分析】(1)先求出()'f x ,由()'10f -=求出a 的值,再由()'0f x >得增区间,()'0f x <得减区间;(2)根据(1)的结论求出函数的极值,与端点处函数值进行比较即可结果. 【详解】(1) 函数()()()242(f x x x a a =--∈ R ),()()()22'2242628f x x x a x x ax ∴=-+-⨯=--.()'10,6280f a -=∴+-=,解得1a =.则()()()232421284,f x x x x x x x =--=--+∈ R .()()()2'6282341f x x x x x =--=-+,令()'0f x =,解得1241,3x x =-=. 由()'0f x >得43x >或1x <-,此时函数单调递增, 由()'0f x <得413x -<<,此时函数单调递减, 即函数的单调递增区间为][4,1,,3⎛⎫-∞-+∞ ⎪⎝⎭,单调递减区间为41,3⎡⎤-⎢⎥⎣⎦. (2)当22x -≤≤时,函数()f x 与()'f x 的变化如下表:由表格可知:当1x =-时,函数f x 取得极大值,19f -=,当43x =时,函数()f x 取得极小值,4100327f ⎛⎫=- ⎪⎝⎭, 又()()20,20f f -==,可知函数()f x 的最大值为9,最小值为10027-. 【方法点睛】本题主要考查利用导数判断函数的单调性以及函数在闭区间上的最值,属于难题. 求函数()f x 最值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值得函数值与极值的大小 23.(1)220x y --=;(2)2(2,1]e -. 【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论. 【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -.【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.24.(1)在(),1-∞单调递减,在()1+∞,上单调递增;(2)22(2,)(,)e e e +∞.【分析】(1)当1a =-时,()()2122x f x x x x e =-+-,求出导数,令()0f x '>,()0f x '<得出答案.(2)由2x =为()f x 的一个零点,所以方程10(2)2x ax e x -+=≠有2个实数根,即2(2,0)x e a x x =≠有两个实数根,设2()(2,0)x e h x x x =≠,分析出其导数,得出单调性,画出函数图象,由数形结合可得答案. 【详解】(1)当1a =-时,()()2122x f x x x x e =-+- ()()()()1111x x f x x x e x e '=-+-=-+由()0f x '>,得1x >,由()0f x '<,得1x <,所以()f x 在(),1-∞单调递减,在()1+∞,上单调递增 (2)由函数211()(2)(2)22()x x f x ax ax x e x ax e =-++-=--+, 可得()f x 有一个零点2x =, 要使得()f x 有3个零点,即方程10(2)2x ax e x -+=≠有2个实数根, 又由方程10(2)2xax e x -+=≠,可化为2(2,0)x e a x x=≠,令2()(2,0)xe h x x x =≠,即函数y a =与()y h x =图象 有两个交点,令22222(1)()0x x x xe e e x h x x x--'===,得1x =, ()h x 的单调性如表:所以函数f x 在1x =处取得极小值2e ,当0x <时,()0h x <,又2(2)h e =,()h x 的大致图象如图,由函数y a =与()()2y h x x =≠图象有两个交点,根据图象可得22(2,)(,)a e e e ∈+∞所以要使得()f x 有3个零点,则实数a 的取值范围为22(2,)(,)e e e +∞【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x -+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:x()0,22()2,+∞()f x '-+()f x单减极小值单增所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 26.(1)2;(2)(,1)-∞-. 【分析】(1)将0a =代入,求出函数的导数,分析函数的单调性可得当1x =-时,()f x 有最大值2;(2)若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩或312322a a a a a >-⎧⎪->-⎨⎪->⎩,解得可得答案. 【详解】(1)若0a =,33,0()2,0x x x f x x x ⎧-=⎨->⎩,所以233,0()2,0x x f x x ⎧-=⎨->⎩',当1x <-时,()0f x '>,此时函数为单调递增函数,当1x >-时,()0f x '<,此时函数为单调递减函数, 故当1x =-时()f x 有最大值为2 .(2)233,()2,x x af x x a ⎧-=⎨->'⎩,令()0f x '=,则1x =±,若()f x 无最大值,则3123a a a a ≤-⎧⎨->-⎩ ① 或312322a a a a a >-⎧⎪->-⎨⎪->⎩②, 由①得(,1)a ∈-∞-,由②得无解,a∈-∞-.所以(,1)-∞-.故答案为:2;(,1)【点睛】分段函数在高考中的常见题型有:已知分段函数求值、已知分段函数求值域、已知分段函数求不等式解集、已知分段函数求参数取值范围等,分段函数问题要注意分类讨论,涉及分段函数的单调性、奇偶性、周期性等问题,要善于利用数形结合的思想解决问题.。

(易错题)高中数学选修1-1第四章《导数应用》测试(答案解析)(1)

(易错题)高中数学选修1-1第四章《导数应用》测试(答案解析)(1)

一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数2()sin f x x x x =+,,22x ππ⎛⎫∈- ⎪⎝⎭,则下列式子成立的是( ) A .13(1)22f f f ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭B .13(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭ C .13(1)22f f f ⎛⎫⎛⎫<<-⎪ ⎪⎝⎭⎝⎭D .31(1)22f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭3.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <4.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞5.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π6.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>7.下列不可能是函数()()()xx f x xee Z αα-=-∈的图象的是( )A .B .C .D .8.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞ 9.函数()212x f x x -=+的值域是( ) A .30,3⎡⎢⎣⎦B .33⎛⎫∞ ⎪ ⎪⎝⎭C .(3D .)3,⎡+∞⎣10.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞11.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭ B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭12.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有2()()0f x xf x '+>,且(1)0f -=,则使得()0f x >成立的x 的取值范围是( )A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-二、填空题13.已知函数1()ln (0)ax f x x a x x a e=++-<,若()0f x ≥在[)2,x ∈+∞上恒成立,则实数a 的取值范围为___________.14.若0x ∀>,不等式ln 2(0)a x b a x ++≥>恒成立,则ba的最大值为________. 15.若不等式224x x ax b lnx -++对任意的[]1,x e ∈恒成立,则实数b 的最大值为______.16.已知奇函数()f x 是定义在R 上的可导函数,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为________.17.函数2()ln f x x ax x =-在2(,2)e上不单调,则实数a 的取值范围是_____. 18.设函数f (x )在R 上存在导数f '(x ),当x ∈(0,+∞)时,f '(x )<x .且对任意x ∈R ,有f (x )=x 2﹣f (﹣x ),若f (1﹣t )﹣f (t )12≥-t ,则实数t 的取值范围是_____. 19.定义在(0,)+∞上的函数()f x 满足()1xf x '<,且(1)1f =,则不等式(31)ln(31)1f x x ->-+的解集是________.20.使“函数()xe f x x=在区间(0,m ]上单调递减”成立的一个m 值是_____.三、解答题21.已知函数()()()2220xf x ax x ea =++>,其中e 是自然对数的底数.(1)若()f x 在[]22-,上是单调增函数,求a 的取值范围; (2)证明:当1a =时,方程()5f x x =+有且只有两个零点.22.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 23.函数()cos x f x e x =. (1)求()f x 的单调区间;(2)当0x ≥时,不等式22()(2)x x f x e e ax ≤'-恒成立,求实数a 的取值范围. 24.已知函数()xf x e ax a =--.(1)当1a =时,求过点()0,1-且与曲线()y f x =相切的直线方程; (2)若()0f x ≥,求实数a 的取值范围. 25.已知函数3()f x x x =-.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间和极值; (Ⅲ)设函数()()2sin f x t x x x=-,(0,)x ∈π,试判断()t x 的零点个数,并证明你的结论. 26.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.B解析:B 【分析】由奇偶性的定义得到函数()f x 为偶函数,求导数得到函数()f x 在(0,)2π上为增函数,则函数在(,0)2π-上为减函数.结合单调性和奇偶性即可判断出答案.【详解】函数2()sin f x x x x =+, 22x ππ⎛⎫∈- ⎪⎝⎭,,定义域关于原点对称,且()()()()()22sin sin f x x x x x x x f x -=-+--=+=.所以函数()f x 为偶函数,所以()()11f f -= 又当0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>. ()f x ∴在0,2π⎛⎫ ⎪⎝⎭上为增函数,则()f x 在,02π⎛⎫- ⎪⎝⎭上为减函数.13π1222<<<,所以()13122f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 则()13122f f f ⎛⎫⎛⎫<-<⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】关键点睛:本题考查利用函数的奇偶性和单调性比较函数值大小,解答本题的关键是先得出函数为偶函数,再由0,2x π⎛⎫∈ ⎪⎝⎭时,()2sin cos 0f x x x x x '=++>利用单数判断出单调性,属于中档题.3.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围; 【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax aa xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫<⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a ab -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.4.D解析:D 【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减,所以min()(0)1g x g ≥=-,()2215()124xxxxx g x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.5.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.6.C解析:C 【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可.【详解】构造函数'()(2)()(1)xxf x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增.因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>.故选:C 【点睛】关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键.7.B解析:B 【分析】 由函数()()xx f x xee α-=-,分0a =, a 为正整数,a 为正偶数,a 为正奇数,a 为负整数分析其定义域,奇偶性和单调性判断. 【详解】当0α=时,()xxf x e e -=-其定义域为{}|0x x ≠,关于原点对称,又()()()xx x x f x ee e ef x ---=-=--=-,所以()f x 是奇函数,且单调递增,没有选项符合题意;当α为正整数时,()()xx f x x ee α-=-的定义域为R ,图象经过原点,当0x >时, ()()11()())(x x x x x xf x x e e e e x e e x x x ααααα-----'⎡⎤⎡⎤==-+++⎣⎦+⎣-⎦,因为0,0xxx x e ee e --->+>,所以()0f x '>,则()f x 递增,又存在0M >,当x M >时,随着x 的增大,()'f x 的变化率越来越大, 若α为正偶数,则()f x 是奇函数,此时C 选项符合题意; 若α为正奇数,则()f x 是偶函数,此时A 选项符合题意; 当α为负整数时,()()xx f x xee α-=-的定义域为{}|0x x ≠,当α为负奇数,()()()()xx f x x e e f x α--=--=,()f x 为{}|0x x ≠上的偶函数,无选项符合;当α为负偶数时且4α≤-时,()()()()xx f x x ee f x α--=--=-,()f x 为{}|0x x ≠上的奇函数, 当0x >时,()()211(())x x x x f x xe e x x x x x e e x ααααααα----+⎛⎫+--+ ⎪-⎝'⎡⎤=+=⎦⎭⎣,令()2,0x x S x e x x αα-+=+>-, 则()()()()()2222222xxxxx x S x ex x e ααααα---+-'=-=-⨯--,令(),0x x x x αϕ->=,则()01xx ϕ'<=,故(),0xx x x αϕ->=为减函数,而()00ϕα=->,()()()23ln ln 2ln t t t αααϕ---+=+=-,其中2t =≥,令()232ln ,2u t t t t t =+-≥,则()()2223,2t t u t t t+-'=≥,则()()22232+440tt +-≤⨯-<,故()232ln ,2u t t t t t =+-≥为减函数,所以()2ln 240u t ≤-<,()()ln 0ϕα-<,所以存在()00x ∈+∞,,使得当()00,x x ∈时,()0x ϕ>即()0S x '<, 当()0,x x ∈+∞时,()0x ϕ<即()0S x '>,故()S x 在()00,x 为减函数,在()0,x +∞为增函数,因为()00S =,故()00S x <,而当x a >-时,()0S x >,故存在()10,x ∈+∞,使得当()10,x x ∈时,()0S x <即()0f x '<, 当()1,x x ∈+∞时,()0S x >即()0f x '>,所以()f x 在()10,x 上为减函数,在()1,x +∞为增函数, 又当0x >时,()0f x >恒成立,故D 选项符合题意.对任意的整数α,当α为非负整数时,()f x 在0x =处有定义,且()f x '在0x =不间断,故B 不符合题意,当α为负整数时,()f x 在0x =处没有定义,故B 不符合题意, 故选:B. 【点睛】方法点睛:对于知式选图问题的解法:1、从函数的定义域,判断函数图象的左右位置,从函数的值域判断图象的上下位置;2、从函数的单调性,判断函数图象的变换趋势;3、从函数的奇偶性,判断函数图象的对称性;4、从函数的周期性,判断函数图象图的循环往复;5、从函数的特殊点,排除不和要求的图象;8.A解析:A 【解析】 设()()22xf x F x e+=,则()()()224xf x f x F x e'--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f (x )+2>e 2x 等价为不等式()221e xf x +>等价为F (x )>F (0),解得x >0,故不等式的解集为(0,+∞), 本题选择A 选项.9.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域. 【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.10.B解析:B 【分析】构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x-'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-, ∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.11.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞,∴10a --=或20a e --, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题12.B解析:B 【分析】根据条件构造函数2()()g x x f x =,求函数的导数,判断函数的单调性,将不等式进行转化求解. 【详解】由题意,设2()()g x x f x =,则2'()2()()[2()'()]g x xf x x f x x f x xf x =+=+, 因为当0x >时,有2()'()0f x xf x +>, 所以当0x >时,'()0g x >,所以函数2()()g x x f x =在(0,)+∞上为增函数,因为(1)0f -=,又函数()f x 是偶函数,所以(1)(1)0f f =-=,所以(1)0g =,而当()0>g x 时,可得1x >,而()0>g x 时,有()0f x >, 根据偶函数图象的对称性,可知()0f x >的解集为()(),11,-∞-⋃+∞, 故选B. 【点睛】该题考查的是与导数相关的构造新函数的问题,涉及到的知识点有函数的求导公式,应用导数研究函数的单调性,解相应的不等式,属于中档题目.二、填空题13.【分析】根据不等式恒成立得到在上恒成立令函数对其求导判定其在区间上的单调性得到在上恒成立再令利用导数的方法求出其最大值即可得出结果【详解】由在上恒成立得:在上恒成立易知当时令函数则在上恒成立则单调递 解析:[,0)e -【分析】根据不等式恒成立,得到ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,令函数()ln (01)g t t t t =-<<,对其求导,判定其在区间[2,)+∞上的单调性,得到ln x a x≥-在[2,)x ∈+∞上恒成立,再令()(2)ln xF x x x=-≥,利用导数的方法求出其最大值,即可得出结果. 【详解】由()0f x ≥在[2,)x ∈+∞上恒成立,得:ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,易知当[2,)x ∈+∞,0a <时,01a x <<,01x e -<<,令函数()ln (01)g t t t t =-<<,则1()10g t t'=->在()0,1t ∈上恒成立,则()g t 单调递增,故有a x x e -≥,则log ln xx xa e x-≥=-在[2,)x ∈+∞上恒成立, 令()(2)ln x F x x x=-≥,则21ln ()(ln )x F x x '-=,由()0F x '=得x e =, 所以()2x e ∈,时,()0F x '>,则()F x 单调递增;,)[x e ∈+∞时,()0F x '<,则()F x 单调递减;故max ()()F x F e e ==-,则a e ≥-,所以0e a -≤<. 故答案为:[,0)e -. 【点睛】 方法点睛:由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.14.【分析】先设对其求导求出其最小值为得到再令对其求导导数的方法研究其单调性得出最大值即可得出结果【详解】设则因为所以当时则函数单调递减;当时则函数单调递增;所以则令则;由可得;所以当时则函数单调递增; 解析:2e【分析】先设()ln 2af x x x=++,对其求导,求出其最小值为()min ln 3f x a =+,得到ln 3b a a a +≤,再令()ln 3a g a a +=,对其求导,导数的方法研究其单调性,得出最大值,即可得出结果. 【详解】设()ln 2a f x x x =++,则()221a x a f x x x x'-=-=,因为0a >, 所以当()0,x a ∈时,()20x af x x-'=<,则函数()f x 单调递减; 当(),x a ∈+∞时,()20x afx x'-=>,则函数()f x 单调递增;所以()()min ln 3f x f a a b ==+≥, 则ln 3b a a a +≤,令()ln 3a g a a +=,则()221ln 32ln a a g a a a --+'==-; 由()0g a '=可得,2a e -=; 所以当()20,a e-∈时,()22ln 0a g a a +'=->,则函数()g a 单调递增;当()2,a e -∈+∞时,()22ln 0ag a a +'=-<,则函数()g a 单调递减; 所以()()2222maxln 3e g a g ee e---+===,即b a 的最大值为2e . 故答案为:2e 【点睛】 思路点睛:导数的方法研究函数最值时,通常需要先对函数求导,解对应的不等式,求出单调区间,得出函数单调性,得出极值,进而可得出最值.15.2【分析】由对任意的恒成立得对任意的恒成立令利用导数研究函数的单调性在同一坐标平面内作出两个函数的图象求出过且与函数相切的直线在轴上的截距数形结合得答案【详解】解:由对任意的恒成立得对任意的恒成立令解析:2 【分析】由224x x ax b lnx -++对任意的[1x ∈,]e 恒成立,得2224x x ax b lnx x -+-+-对任意的[1x ∈,]e 恒成立,令2()2f x x x =-+-,2()4g x lnx x =-.利用导数研究函数()g x 的单调性,在同一坐标平面内作出两个函数的图象,求出过(1,1)-且与函数2()2f x x x =-+-相切的直线在y 轴上的截距,数形结合得答案.【详解】解:由224x x ax b lnx -++对任意的[1x ∈,]e 恒成立, 得2224x x ax b lnx x -+-+-对任意的[1x ∈,]e 恒成立, 令2()2f x x x =-+-,2()4g x lnx x =-.由2()4g x lnx x =-,得2442()2(1)x g x x x e x x-'=-=.当x ∈时,()0g x '>,()g x 单调递增,当)x e ∈时,()0g x '<,()g x 单调递减.在同一平面直角坐标系内,作出函数()y f x =与()y g x =的图象如图:设过(1,1)-与2()2f x x x =-+-相切的直线方程为1(1)y k x +=-,联立2(1)12y k x y x x =--⎧⎨=-+-⎩,消去y 得2(1)10x k x k +-+-=. 由2(1)4(1)0k k ∆=---=,解得3k =-或1k =. 当3k =-时,直线方程为32y x =-+.由图可知,满足不等式224x x ax b lnx -++对任意的[1x ∈,]e 恒成立的实数b 的最大值为2. 故答案为:2. 【点睛】本题考查利用导数研究函数的单调性,考查数学转化思想方法与数形结合的解题思想方法,属于中档题.16.【分析】构造函数判断函数的单调性和奇偶性得到解得答案【详解】设函数当时函数单调递增为奇函数故为奇函数故函数在上单调递增即即解得故答案为:【点睛】本题考查了利用函数的单调性和奇偶性解不等式构造函数判断 解析:(),2019-∞-【分析】构造函数()()2g x x f x =,判断函数的单调性和奇偶性,得到()()20212g x g +<,解得答案. 【详解】设函数()()2g x x f x =,当0x >时,()()()()()23220g x xf x x f x x f x xf x x '''=+=+>>⎡⎤⎣⎦,函数单调递增,()f x 为奇函数,故()g x 为奇函数,故函数()g x 在R 上单调递增,22(2021)(2021)4(2)(2021)(2021)4(2)0x f x f x f x f +++-=++-<,即()()20212g x g +<,即20212x +<,解得2019x <-. 故答案为:(),2019-∞-. 【点睛】本题考查了利用函数的单调性和奇偶性解不等式,构造函数判断单调性和奇偶性是解题的关键.17.【分析】求得函数的导函数根据在区间上有极值求得的取值范围【详解】令得由于分离常数得构造函数所以在上递减在上递增下证:构造函数当时①而即所以所以由①可得所以当时单调递增由于所以当时故也即由于所以所以的 解析:4(2,)ln 21+ 【分析】求得函数()f x 的导函数()'f x ,根据()f x 在区间2(,2)e上有极值,求得a 的取值范围. 【详解】()()'21ln 2ln f x x a x x a x a =-+=--,令'0f x得2ln 0x a x a --=,由于222,ln ln ln 2,ln 2ln 1ln 2x x x e e e<<<<<+<, 分离常数a 得21ln xa x=+.构造函数()21ln x h x x =+,()()'22ln 1ln x h x x =+,所以()h x 在2,1e ⎛⎫ ⎪⎝⎭上递减,在()1,2上递增,()()()424444,12,22ln 2ln 2ln 21ln 21ln eeh h h e e e e⎛⎫======⎪+⎝⎭+. 下证22e e >:构造函数()22xg x x =-,()'2ln 22xg x =-,当2x ≥时,22ln 222ln 22x -≥-①,而1ln 2ln 2e =<=<,即1ln 212<<,所以222ln 24<<,所以由①可得22ln 222ln 220x -≥->.所以当2x ≥时,()g x 单调递增.由于()20g =,所以当2x >时,()()20g x g >=,故()0g e >,也即22022e e e e ->⇒>.由于()22ln 2ln 2eee e >⇒>,所以()22h h e ⎛⎫<⎪⎝⎭.所以a 的取值范围是4(2,)ln 21+ 故答案为:4(2,)ln 21+ 【点睛】本小题主要考查利用导数研究函数的单调性,属于中档题.18.+∞)【分析】构造函数可得即是奇函数由时可得进而根据奇函数及可知在R 上是减函数再根据可得则即可求解【详解】令因为则所以所以是奇函数易知所以因为当时所以所以在上单调递减所以在R 上是减函数所以因为所以即解析:[12,+∞) 【分析】构造函数()()212g x f x x =-,可得()()0g x g x -+=,即()g x 是奇函数,由()0,x ∈+∞时,()f x x '<可得()()0g x f x x ''=-<,进而根据奇函数及()00g =可知()g x 在R 上是减函数,再根据()()112f t f t t --≥-可得()()1g t g t -≥,则1t t -≤,即可求解. 【详解】 令()()212g x f x x =-, 因为()()2f x x f x =--,则()()2f x f x x +-=, 所以()()()()()()22211022g x g x f x x f x x f x f x x -+=--+-=-+-=, 所以()g x 是奇函数,易知()00f =,所以()00g =,因为当()0,x ∈+∞时,()f x x '<,所以()()0g x f x x ''=-<, 所以()g x 在()0,∞+上单调递减,所以()g x 在R 上是减函数, 所以()()()()()()()221111111222g t g t f t t f t t f t f t t --=----+=--+-, 因为()()112f t f t t --≥-,所以()()10g t g t --≥,即()()1g t g t -≥, 所以1t t -≤,即12t ≥, 所以1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 故答案为:1,2⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查构造函数法利用导函数判断函数单调性,考查利用函数单调性比较大小,考查函数的奇偶性的应用.19.【分析】构造函数利用导数判断单调性再利用单调性解不等式即可【详解】构造函数则依题意知即在上是减函数又因为所以所以的解为即即的解为所以的解为即即解集是故答案为:【点睛】本题考查了利用函数单调性解不等式解析:12,33⎛⎫⎪⎝⎭【分析】构造函数()()ln 1(0)g x f x x x =-->,利用导数判断单调性,再利用单调性解不等式即可. 【详解】构造函数()()ln 1(0)g x f x x x =-->,则1()1()()xf x g x f x x x'-''=-=,依题意知()0g x '<,即()()ln 1g x f x x =--在0,上是减函数.又因为(1)1f =,所以(1)(1)ln110g f =--=,所以()(1)g x g >的解为01x <<,即()ln 10f x x -->即()ln 1f x x >+的解为01x <<,所以(31)ln(31)1f x x ->-+的解为0311x <-<,即1233x <<,即解集是12,33⎛⎫⎪⎝⎭.故答案为:12,33⎛⎫⎪⎝⎭. 【点睛】本题考查了利用函数单调性解不等式,属于中档题.20.;【分析】首先有且根据导函数得到的单调区间及对应的单调性使函数在区间(0m 上单调递减成立即(0m 包含于的单调递减区间即可得到一个m 值【详解】由题意知:且∴当且时即单调递减当时即单调递增故要使在区间(解析:12; 【分析】首先有2(1)()xx e f x x-'=且0x ≠,根据导函数得到()f x 的单调区间及对应的单调性,使“函数()xe f x x=在区间(0,m ]上单调递减”成立,即(0,m ]包含于()f x 的单调递减区间,即可得到一个m 值 【详解】由题意,知:2(1)()xx e f x x-'=且0x ≠ ∴当0x ≠且1x <时,()0f x '<,即()f x 单调递减当1x >时,()0f x '> ,即()f x 单调递增故,要使()f x 在区间(0,m ]上单调递减,则01m <<即可 ∴12m =符合要求 故答案为:12【点睛】本题考查了根据命题的真假求参数范围,结合导函数研究函数的单调区间,由命题中函数单调的成立条件确定区间的包含关系,进而求参数范围三、解答题21.(1)(]0,1;(2)证明见解析. 【分析】(1)转化为()22140ax a x +++≥在[]22-,上恒成立,利用二次函数知识可求得结果; (2)构造函数()()2225xh x x x e x =++--,利用导数可得()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,其中()01,0x ∈-,再根据零点存在性定理可证结论成立. 【详解】(1)因为()f x 在[]22-,上是单调增函数, 所以()()()()2222222140xxxf x ax e ax x e ax a x e '⎡⎤=++++=+++⎦≥⎣在[]22-,上恒成立,又0x e >,所以()22140ax a x +++≥在[]22-,上恒成立. 令()()2214g x ax a x =+++,又0a >,故对称轴为110x a=--<. ①当112a--≤-,即01a <≤时,()g x 在[]22-,上单调递增, 则()()min 244(1)40g x g a a =-=-++=,所以此时()()20g x g ≥-=恒成立. ②当1210a -<--<,即1a >时,()g x 在12,1a ⎡⎤---⎢⎥⎣⎦上单调递减,在11,2a ⎛⎤-- ⎥⎝⎦上单调递增,所以min 1()1g x g a ⎛⎫=-- ⎪⎝⎭()21112114a a a a ⎛⎫⎛⎫=--++--+ ⎪ ⎪⎝⎭⎝⎭1()2a a =-++()21a a-=-0<,所以()0g x ≥在[]22-,上不恒成立,故1a >不合题意, 综上所述,a 的取值范围是(]0,1.(2)因为1a =,设()()2225xh x x x e x =++--,则()()()()2222221441xxxh x x e x x e x x e =++'++-=++-.令()()2441xx x x e ϕ=++-,则()()()()()()2224446842xxxxx x e x x e x x e x x e ϕ=+++'+=++=++,由()()()420xx x x e ϕ'=++=,得4x =-或2x =-.所以4410x e =-=-<极大值,210x =-=-<极小值 因为()1110eϕ-=-<,()030ϕ=>,所以存在()01,0x ∈-,使()00x ϕ=, 当()0,x x ∈-∞时,()0x ϕ<,()0h x '<;当()0,x x ∈+∞时,()0x ϕ>,()0h x '>, 所以()h x 在()0,x -∞上单调递减,在()0,x +∞上单调递增. 又因为()51750h e -=>,()410410h e -=-<,()030h =-<,()1560h e =->, 故根据零点存在定理,可知()0h x =的根()15,4x ∈--,()20,1x ∈, 所以方程()5f x x =+有且只有两个零点. 【点睛】关键点点睛:第(1)问转化为()22140ax a x +++≥在[]22-,上恒成立是解题关键,第(2)问构造函数()()2225xh x x x e x =++--,利用导数研究函数的零点是解题关键.22.(1)单调递增区间是10,2⎛⎫⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==,由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.23.(1)()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;(2)(,2]-∞. 【分析】(1)求导函数,计算()0f x '≥和()0f x '≤即可得单调区间; (2)将()()cos sin x f x e x x '=-代入不等式化简得2sin cos ()20xxx x h x e ax e -=+-≥恒成立,通过求导数讨论单调性并求得最值,从而求的实数a 的取值范围. 【详解】(1)由题可得()cos sin (cos sin )cos 4xxxx f x e x e x e x x x π⎛⎫'=-=-=+ ⎪⎝⎭令()cos 04x f x x π⎛⎫=+ ⎪⎝⎭',得22()242k x k k πππππ-++∈Z ,∴322()44k x k k Z ππππ-+∈,∴()f x 的单调递增区间为32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z . 同理,令()0f x '≤,得()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 综上所述:()f x 的单调递增区间为:32,2()44k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z , ()f x 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(2)由()()cos sin x f x e x x '=-,得2cos sin 2x xx xe ax e --≥, 即2sin cos 20xxx x e ax e -+-.设2sin cos ()2x x x x h x e ax e -=+-,则()22cos 22x xxh x e a e'=+-. 设()()x h x ϕ=',则344()x xe x x e πϕ⎛⎫-+ ⎪⎝⎭='. 当[0,)x ∈+∞时,344x e ≥,4x π⎛⎫+≤ ⎪⎝⎭()0x ϕ'≥. 所以()x ϕ即()h x '在[0,)+∞上单调递增, 则()()042h x h a ''≥=-.若2a ≤,则()()0420h x h a ''≥=-≥, 所以()h x 在[0,)+∞上单调递增. 所以()()00h x h ≥=恒成立,符合题意.若2a >,则()0420h a '=-<,必存在正实数0x , 满足:当()00,x x ∈时,()0h x '<,()h x 单调递减,此时()()00h x h <=,不符合题意. 综上所述,a 的取值范围是(,2]-∞. 【点晴】方法点晴:将不等式恒成立问题转化为最值问题来求解,通过求导讨论单调性求得最值,从而解决相关问题.24.(1)()110e x y ---=;(2)01a ≤≤. 【分析】(1)设切点坐标,求出导数及切线方程,把()0,1-代入切线方程可得0x ,然后再求出切线方程;(2)求出导函数,对a 进行讨论并判断函数的单调性,利用函数的最小值可得答案. 【详解】(1)当1a =时,点()0,1-不在函数图象上,()1xf x e '=-,设切点为()000, xx e ax a --,则切线方程为()()()0000xy e ax a f x x x '---=-,因为过点()0,1-,所以0000()111x xe x e x --++=--,解得01x =,因此所求的直线方程为()110e x y ---=. (2)()xf x e a '=-,当0a ≤时,()'0f x >, 所以在R 上单调递增,其中0a =,()0xf x e =>,符合题意,当0a <时,取110ax a-=<,()1110x f x e =-<,不符合题意; 当0a >时,()()n 0,,l x a f x '∈-∞<, 所以()f x 在(),ln a -∞上单调递减,()()ln ,,0x a f x '∈+∞>,所以()f x 在()ln ,a +∞上单调递增, 所以()()ln f x f a ≥,要使()0f x ≥,只需()ln 0f a ≥,()ln ln ln 0af a e a a a =--≥,解得01a <≤; 综上所述,01a ≤≤. 【点睛】本题考查求函数过一点的切线方程和求参数问题,对于求切线的问题时需要讨论此点是否是切点;对于求参数问题,有时可采用对原函数进行求导讨论其单调性和最值方法求解,也可以采用对参数实行分离的方法,构造新函数并求新函数的值域可得解.25.(Ⅰ)22y x =-;(Ⅱ)()f x 的单调递减区间是(,单调递增区间是(,-∞,)+∞9-;(Ⅲ)一个,证明见解析. 【分析】(Ⅰ)利用导数的几何意义求切线方程;(Ⅱ)根据()0f x '>和()0f x '<,求函数的单调递增和递减区间,根据极值的定义求极值;(Ⅲ)首先方程等价于212sin 0x x --=,设函数2()12sin ,(0,)g x x x x π=--∈,求函数的导数()22cos g x x x '=-,分0,2x π⎛⎫∈ ⎪⎝⎭和,2x ππ⎡⎫∈⎪⎢⎣⎭两个区间讨论函数的单调性,并结合零点存在性定理说明函数的零点个数. 【详解】(Ⅰ)由3()f x x x =-,得 2()31x f x '=-.因为(1)0f =,(1)2f '=,所以曲线()y f x =在点(1,(1))f 处的切线方程为22y x =-.(Ⅱ)令()0f x '=,得2310x -=,解得3x =-或3x =. 当x 变化时,()f x 和()'f x 变化情况如下表:)+∞;()f x 在3x =-3x =处取得极小值9-.(Ⅲ)(0,)x π∈,()0t x =,即2120sin x x--=, 等价于212sin 0x x --=. 设2()12sin ,(0,)g x x x x π=--∈,则()22cos g x x x '=-.①当,2x ππ⎡⎫∈⎪⎢⎣⎭时,()0r g x >,()g x 在区间,2上单调递增.又2()3024g ππ=-<,2()10g π=π->, 所以()g x 在区间,2上有一个零点.②当(0,)2x π∈时,设()()22cos h x g x x x '==-.()22sin 0h x x '=+>,所以()'g x 在区间(0,)2π上单调递增.又(0)20g '=-<,()02g π'=π>,所以存在0(0,)2x π∈,使得00()g x '=.所以,当0(0,)x x ∈时,()0g x '<,()g x 单调递减; 当0(,)2x x π∈时,()0g x '>,()g x 单调递增.又(0)10g =-<,2()3024g ππ=-<, 所以()g x 在区间(0,)2π上无零点.综上所述,函数()t x 在定义域内只有一个零点. 【点睛】关键点点睛:本题第三问判断零点个数,首先要构造函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,利用二次导数判断()g x '单调递增,存在0(0,)2x π∈,使得00()g x '=,再判断零点个数时,需结合函数的单调性和端点值共同判断. 26.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围. 【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-,所以(2)1k f '==,因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-.(Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x af x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =. (1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以当时,取得极小值所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立. (4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:a>不成立.所以1a<.综上所述,1【点睛】关键点点睛:本题考查根据极值点求a的取值范围,本题容易求出导函数的零点1和a,但需讨论a的范围,这是易错的地方,容易讨论不全面,需注意.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞ B .()(),11,-∞-+∞C .()(),10,1-∞-⋃ D .()()1,01,-⋃+∞5.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( )A .34B .16C .24D .176.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞ B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞8.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .49.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e10.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( )A .()()()1322f f f +<B .()()()1322f f f +≤C .()()()1322f f f +≥D .()()()1322f f f +>11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.18.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________. 19.函数()31443f x x x =-+的极大值为______. 20.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.三、解答题21.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围.22.在①()14f -=-,()10f '=;②()10f =,()01f '=;③()f x 在()()1,1f --处的切线方程为84y x =+,这三个条件中任选一个,补充在下面问题中求解. 已知函数()32f x x ax bx =++,且______.(1)求a 、b 的值; (2)求函数()f x 的极小值. 23.已知函数()3213 1.3f x x x x =+-- (1)求函数()f x 的极值;(2)求函数()f x 在区间[]5,4-上的最大值与最小值.24.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间;(2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=-则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数,由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.6.D解析:D【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.8.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.9.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.10.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()xx f x ax ee -=+-在R 上单调递减,可得:导函数()0xx f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值.【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x '---=+-=∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率,因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立,设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.18.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最解析:2【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.19.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.20.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.三、解答题21.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x-+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.22.选①或②或③,(1)2a =-,1b =;(2)0. 【分析】(1)求出()232f x x ax b '=++,根据所选条件可得出关于a 、b 的方程组,即可解得a 、b 的值;(2)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极小值. 【详解】(1)方案一:选择①,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()1141320f a b f a b ⎧-=-+-=-⎪⎨=++='⎪⎩,解得21a b =-⎧⎨=⎩;方案二:选择②,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()11001f a b f b ⎧=++=⎪⎨=='⎪⎩,解得21a b =-⎧⎨=⎩;方案三:选择③,()32f x x ax bx =++,则()232f x x ax b '=++,因为函数()f x 在()()1,1f --处的切线方程为84y x =+,所以,()()1328114f a b f a b ⎧-=-+=⎪⎨-=-+-=-'⎪⎩,解得21a b =-⎧⎨=⎩;(2)由(1)得()322f x x x x =-+,()2341f x x x '∴=-+,由()0f x '=得:113x =,21x =,列表如下:所以,函数f x 的极小值为10f =. 【点睛】思路点睛:求函数()f x 的极值的步骤: (1)求函数()f x 的定义域; (2)求导()f x ';(3)解方程()00f x '=,当()00f x '=; (4)利用导数分析函数()f x 的单调性; (5)将极值点代入函数解析式计算即可. 23.(1)答案见解析;(2)最大值是733,最小值是83-.【分析】(1)求得导函数,并计算()0f x '=的根,列表判断极值即可得结果; (2)根据(1)的极值再比较()853f -=-,()7343f =的大小即可得最值.【详解】解:(1)函数()321313f x x x x =+--的定义域为R . ()()()22331f x x x x x '=+-=+-.令()0f x '=,解得3x =-,或1x =.当x 变化时,()f x ',()f x 的变化情况如下表所示.因此,当3x =-时,函数f x 有极大值,并且极大值为38f -=, 当1x =时,函数()f x 有极小值,并且极小值为()318f =-. (2)由(1)知,函数()f x 在区间[]5,4-上, 极大值为()38f -=,极小值为()318f =-. 又由于()853f -=-,()7343f =, 所以函数()f x 在区间[]5,4-上的最大值是733,最小值是83-.【点晴】方法点晴:求极值的方法步骤:1、求函数定义域;2、求导函数并解方程()0f x '=的根;3、列表判断极值.24.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x-, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴[g (x )]max =g (e)=112e <, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3, 则11()ax f x a x x'-=-=. ①当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a,e ]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e ]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去), 所以,此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e ]时f (x )有最小值3. 【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值. (2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。

相关文档
最新文档