山东省济南市2018年最新九年级学业水平数学模拟试卷(一)及答案
(完整版)2018年松江区初三数学二模试卷及参考答案

初三数学 第1页 共4页CBA(第6题图)2018年松江区初三数学二模试卷(满分150分,完卷时间100分钟) 2018.4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1是同类二次根式的为(▲) (A ;(B(C(D 2.下列运算正确的是(▲) (A )532x x x =+;(B )532x x x =⋅; (C )235()x x =;(D )623x x x ÷=.3.下列图形中,既是中心对称又是轴对称图形的为(▲) (A )正三角形;(B )等腰梯形;(C )平行四边形;(D )菱形.4.关于反比例函数2y x=,下列说法中错误的是(▲) (A )它的图像是双曲线; (B )它的图像在第一、三象限; (C )y 的值随x 的值增大而减小;(D )若点(a ,b )在它的图像上,则点(b ,a )也在它的图像上.5.将一组数据中的每一个数都加上1得到一组新的数据,那么下列四个统计量中,值保持不变的是(▲) (A )方差;(B )平均数;(C )中位数;(D )众数.6.如图,在△ABC 中,∠C =90°,AC =3,BC =4,⊙B 的半径为1,已知⊙A 与直线BC 相交,且与⊙B 没有公共点,那么⊙A 的半径可以是(▲) (A )4; (B )5; (C )6;(D )7.二、填空题:(本大题共12题,每题4分,满分48分)初三数学 第2页 共4页【请将结果直接填入答题纸的相应位置上】 7.因式分解:34a a - = ▲ . 8x =的根是 ▲ . 9.函数32x y x-=的定义域是 ▲ . 10.已知方程240x x m -+=有两个不相等的实数根,则m 的取值范围是 ▲ . 11.把抛物线22y x =-向左平移1个单位,则平移后抛物线的表达式为 ▲ . 12.函数y kx b =+的图像如图所示,则当0y <时,x 的取值范围是 ▲ .13.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,随机投掷这枚骰子,那么向上一面的点数为合数的概率是 ▲ .14.某区有4000名学生参加学业水平测试,从中随机抽取500名,对测试成绩进行了统计,统计结果见下表:那么根据上述数据可以估计该区这次参加学业水平测试成绩小于60分的有 ▲ 人. 15. 如图,在△ABC 中,D 是AB 的中点,E 是AC 上一点,且AE =2EC ,如果AB a =,AC b =,那么DE =▲ .(用a 、b 表示).16.一个正n 边形的一个内角等于它的中心角的2倍,则n =▲ .17.平面直角坐标系xoy 中,若抛物线2y ax =上的两点A 、B 满足OA =OB ,且1tan 2OAB ∠=,则称线段AB 为该抛物线的通径.那么抛物线212y x =的通径长为 ▲ . 18.如图,已知平行四边形ABCD 中,AC =BC ,∠ACB =45°,将三角形ABC 沿着AC 翻折,点B 落在点E 处,联结DE ,那么DEAC的值为 ▲ . 三、解答题:(本大题共7题,满分78分)AC DE (第15题图) B (第12题图) (第18题图) A DCB初三数学 第3页 共4页19.(本题满分10分)计算:031--+.20.(本题满分10分)解不等式组:2312136x x x x -<⎧⎪+⎨-≤⎪⎩ 并把解集在数轴上表示出来.21.(本题满分10分, 每小题各5分) 如图,已知△ABC 中,∠B =45°,1tan 2C =, BC =6.(1)求△ABC 面积;(2)AC 的垂直平分线交AC 于点D ,交BC 于 点E. 求DE 的长.22.(本题满分10分)某条高速铁路全长540公里,高铁列车与动车组列车在该高速铁路上运行时,高铁列车的平均速度比动车组列车每小时快90公里,因此全程少用1小时,求高铁列车全程的运行时间.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.24.(本题满分12分,每小题各4分)0 1 2 3 4 5–––––(第23题图)FACD E初三数学 第4页 共4页如图,已知抛物线y=ax 2+bx 的顶点为C (1,1 ),P 是抛物线上位于第一象限内的一点,直线OP 交该抛物线对称轴于点B ,直线CP 交x 轴于点A . (1)求该抛物线的表达式;(2)如果点P 的横坐标为m ,试用m 的代数式表示线段BC 的长; (3)如果△ABP 的面积等于△ABC 的面积,求点P 坐标.25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分)如图,已知Rt △ABC 中,∠ACB =90°,BC =2,AC =3,以点C 为圆心、CB 为半径的圆交AB 于点D ,过点A 作AE ∥CD ,交BC 延长线于点E. (1)求CE 的长;(2)P 是 CE 延长线上一点,直线AP 、CD 交于点Q.① 如果△ACQ ∽△CPQ ,求CP 的长;② 如果以点A 为圆心,AQ 为半径的圆与⊙C 相切,求CP 的长.(第24题图)(第25题图)CBA DE (备用图)CBA DE初三数学 第5页 共4页2018年松江区初三数学二模试卷参考答案2018.4一、选择题:(本大题共6题,每题4分,满分24分) 1.B; 2.B; 3. D; 4. C; 5. A; 6. D;二、填空题:(本大题共12题,每题4分,满分48分)7. (2)(2)a a a +-; 8. 2x =; 9. 0x ≠; 10. 4m <; 11.22(1)y x =-+; 12.1x <-; 13.13; 14. 120; 15. 1223a b -+;16. 6;17. 2; 18. 1- .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:031-+.解:原式=11)-+2分) =22分 20.(本题满分10分)解不等式组:2312136x xx x -<⎧⎪+⎨-≤⎪⎩ 并把解集在数轴上表示出来.解:由① 得 3x <.………………………………………………………………(2分)由② 得 6212x x -≤+…………………………………………………………(2分) 36x -≤…………………………………………………………(1分) 解得 2x ≥-.………………………………………………………………(2分) 所以,原不等式组的解集是23x -≤<.…………………………………………(1分) 在数轴上表示不等式组的解集,正确得2分(端点有一处错误,扣1分). 21.(本题满分10分, 每小题各5分)解:(1)过点A 作AH ⊥BC 于点H …………1分 在Rt ABC ∆中,∠B =45°设AH =x ,则BH =x ………………………………1分0 1 2 3 4 5 –––––(第21题图)DA初三数学 第6页 共4页在Rt AHC ∆中,1tan 2AH C HC == ∴HC=2x ………………………………………………………1分 ∵BC =6∴x+2x =6 得x =2∴AH =2…………………………………………………………1分 ∴162ABC S BC AH ∆=⋅⋅=……………………………………1分(2)由(1)得AH =2,CH =4在Rt AHC ∆中,AC =2分 ∵DE 垂直平分AC∴12CD AC == ED ⊥AC …………………………………………………1分 在Rt EDC ∆中,1tan 2ED C CD ==……………………………1分∴DE =………………………………………………1分 22.(本题满分10分)解:设高铁列车全程的运行时间为x 小时,…(1分) 则动车组列车全程的运行时间为(x +1)小时,…(1分)∴540540901x x -=+,……………………………………………(3分) 6611x x -=+.………………………………………………(1分) 260x x +-=…………………………………………………(1分) 122,3x x ==-………………………………………………(1分)经检验:它们都是原方程的根,但3x =-不符合题意.……(1分) 答:高铁列车全程的运行时间为2小时.…………………(1分) 23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE ∴∠AEB =90° ∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分∴∠FEB =∠FBE…………………………………………………1分∴∠FEB =∠CBE…………………………………………………1分∴EF∥BC…………………………………………………1分∵AB∥CD∴四边形BCEF是平行四边形…………………………1分∵EF BF=∴四边形BCEF是菱形……………………………………1分(2)∵四边形BCEF是菱形,∴BC=BF∵12 BF AB=∴AB=2BC………………………………………………1分∵AB∥CD∴∠DEA=∠EAB∵∠D=∠AEB∴△EDA∽△AEB………………………………………2分∴AD AEBE AB=…………………………………………1分∴BE·AE=AD·AB∴2BE AE AD BC⋅=⋅…………………………………1分24.(本题满分12分,每小题各4分)解:(1)∵抛物线y=ax2+bx的顶点为C(1,1-)∴112a bba+=-⎧⎪⎨-=⎪⎩…………………………………2分解得:12ab=⎧⎨=-⎩…………………………………1分∴抛物线的表达式为:y=x2-2x;…………………………1分(2)∵点P的横坐标为m,∴P的纵坐标为:m2-2m……………………………1分令BC与x轴交点为M,过点P作PN⊥x轴,垂足为点N ∵P是抛物线上位于第一象限内的一点,∴PN= m2-2m,ON=m,O M=1(第24题图)(第23题图)FACD EB初三数学第7页共4页初三数学 第8页 共4页由PN BMON OM=得221m m BM m -=………………………1分 ∴ BM =m -2…………………………………………………1分 ∵ 点C 的坐标为(1,1-),∴ BC= m -2+1=m -1………………………………………1分 (3)令P (t ,t 2-2t ) ………………………………………………1分 △ABP 的面积等于△ABC 的面积 ∴AC =AP过点P 作PQ ⊥BC 交BC 于点Q ∴CM =MQ =1∴t 2-2t =1 …………………………………………………1分 ∴1t =(1t =舍去)………………………………1分 ∴ P 的坐标为(1+)……………………………………1分25.(本题满分14分,第(1)小题4分,第(2)小题每个小题各5分) 解:(1)∵AE ∥CD ∴BC DCBE AE=…………………………………1分 ∵BC=DC∴BE=AE …………………………………1分 设CE =x则AE =BE =x +2 ∵ ∠ACB =90°, ∴222AC CE AE +=即229(2)x x +=+………………………1分∴54x =即54CE =…………………………………1分(2)①∵△ACQ ∽△CPQ ,∠QAC>∠P∴∠ACQ=∠P …………………………………1分 又∵AE ∥CD ∴∠ACQ=∠CAE∴∠CAE=∠P ………………………………1分CBA DEPQ(第25题图)CBADE初三数学 第9页 共4页∴△ACE ∽△PCA ,…………………………1分 ∴2AC CE CP =⋅…………………………1分即2534CP =⋅ ∴365CP = ……………………………1分②设CP =t ,则54PE t =-∵∠ACB =90°,∴AP ∵AE ∥CD∴AQ ECAP EP=……………………………1分5545454t t ==--∴AQ =1分若两圆外切,那么145AQ t ==- 此时方程无实数解……………………………1分若两圆内切切,那么5AQ == ∴21540160t t -+=解之得2015t ±=………………………1分又∵54t >∴2015t +=………………………1分。
2018--2019学年度小升初数学模拟试卷及答案(1)

2018--2019学年度小升初数学模拟试卷及答案(1)班级姓名成绩1.(1分)把两个完全一样的圆柱,拼成一个长30厘米的圆柱,则表面积减少25.12平方厘米,原来每个圆柱的体积是立方厘米.2.(1分)李明买了4000元国库券,定期三年,年利率为2.89%,到期后,他把利息捐给“希望工程”支援贫困儿童.李明可以捐元给“希望工程”.3.(1分)学校合唱队人数在40至60人之间,男生与女生的人数比是7:6,合唱队共有人.4.(2分)一个底面直径和高都是3分米的圆锥,它的体积是立方分米,一个与它等底等高的圆柱的体积比它大立方分米.(3分)一个数由3个亿,6个千万,4个千,8个一组成,这个数写作,5.改写成以“万”作单位的数是万,省略“亿”后面的尾数是亿.6.(3分)=25%= (填小数)= :16.7.(1分))小华身高1.6米,在照片上她的身高是5厘米,这张照片的比例尺是.8.(2分)陈明今年上半年每个月的零花钱如下表:月份一月二月三月四月五月六月钱数(元)10090120100125150他平均每个季度的零花钱是元.三月份比四月份度多用%.9.(1分)小明说:“我表妹是1998年2月29日出生的..(判断对错)10.(1分)圆锥的底面积一定,高和体积成反比例.(判断对错)11.(1分)任何质数加1都成为偶数..(判断对错)12.(1分)一个圆柱的底面半径是8厘米,它的侧面展开正好是一个正方形,这个圆柱的高是16厘米..(判断对错)13.(1分))甲乙两个圆的半径之比是1:3,它们的面积比也是1:3..14.(2分)在同时同地测得的杆高和影长()15.(2分)请你估计一下()最接近你自己现在的年龄.A.600分B.600周C.600时D.600月16.(2分)下列说法正确的是()A.分子一定,分数值和分母成正比例B.互质的两个数没有公因数C.圆锥的体积等于圆柱体积的D.采用24时记时法,凌晨2时就是2时,下午2时28分就是14时28分17.(2分)在某市举行的青年歌手大奖赛中,十一位评委给一位歌手的打分如下:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1这组数据的中位数和众数分别为()A.9.6和9.6B.9.6和9.55C.9.8和9.118.(2分)某班有学生52人,那么这个班男女生人数的比可能是()A.8:7 B.7:6 C.6:5 D.5:419.(8分)直接写出得数.8.7﹣7= ÷=4﹣﹣= 7×÷7×=44÷= 75÷10%=0.9+99×0.9= 93=20.(9分)解方程.(1)x÷=(2)4x+3×0.9=24.7(3)6÷﹣3.5x=6.21.(15分)怎样算简便就怎样算.1.28+9.8+7.72+10.2 ×+×÷(﹣)××[﹣(+)] (80﹣9.8)×0.6﹣2.1 (﹣)×45.22.(8分)操作题:街心花园的直径是5米,现在在它的周围修一条1米宽的环形路,请按1:10的比例尺画好设计图,并求出路面的实际面积.23.(5分)六年级同学植树98棵,五年级比六年级植树棵数的2倍多6棵.五年级植树多少棵?24.(5分)小高家和学校大约相距4144米.一辆自行车的车轮直径大约66厘米,按车轮每分转100圈计算,小高骑这辆车从家到学校大约需要多少分?25.(5分)某布料加工厂5天缝制衬衣1600件.照这样计算,缝制2400件衬衣需要多少天?26.(5分)六一儿童节学校买回的苹果比桔子多150千克,已知桔子占苹果重量的40%,学校买回苹果多少千克?27.(10分)如图是小明和小东家到学校的路线图.(1)量一量:小东和小明家到学校的图上距离分别是厘米和厘米.(量得的结果取整厘米数)(2)如果小东家到学校的实际距离是1000米,请算出这幅图的比例尺,并填在图中相应的括号里.(3)小明家到学校实际距离是米.(4)某天他们两人同时从家里出发上学,同时到达学校,已知小东每分走50米,那么小明每分走多少米?(列式解答)参考答案1.188.4.【解析】试题分析:由题意可知,两个完全一样的圆柱拼成一个圆柱后,高是原来的2倍,可求出原来每个圆柱的高;表面积减少了2个底面,因表面积减少25.12平方厘米,即可求出圆柱的一个底面积,再根据圆柱的体积=底面积×高,即可列式解决问题.解:25.12÷2×(30÷2)=12.56×15,=188.4(立方厘米);答:原来每个圆柱的体积是188.4立方厘米.故答案为:188.4.点评:此题主要根据圆柱的体积=底面积×高,本题关键是弄清表面积减少了几个面,是什么样的面.2.346.8元【解析】试题分析:此题应根据公式:利息=本金×利率×时间,算出即可.解:4000×2.89%×3,=115.6×3,=346.8(元).答:李明可以捐 346.8元给“希望工程”.点评:此题主要考查利息公式的应用.3.52.【解析】试题分析:由“男生与女生的人数比是7:6”可知,总人数相当于7+6=13份,也就是说总人数是13的倍数,那么在“40﹣60”之间只有52符合题意,由此可知总人数就是52.解:由男女生人数的比是7:6可知:总人数是7+6=13(份),即总人数是13的倍数;又因为合唱队人数在40至60人之间,那么合唱队的人数就应是52;故答案为:52.点评:此题是考查比的应用,要把比理解为几份和几份的比.4.7.065;14.13.【解析】试题分析:(1)利用圆锥的体积=πr2×h,代入数据即可解决问题;(2)等底等高的圆柱的体积是圆锥的体积的3倍,所以与它等底等高的圆柱就比这个圆锥大了它的2倍,由此即可解决问题.解: 3.14××3,=×3.14××3,=7.065(立方分米),7.065×2=14.13(立方分米),答:它的体积是7.065立方分米,一个与它等底等高的圆柱的体积比它大 14.13立方分米.故答案为:7.065;14.13.点评:此题考查了圆锥的体积公式以及等底等高的圆柱与圆锥的体积的3倍关系的灵活应用.5.360004008,36000.4008,4.【解析】试题分析:(1)本题可以用数位顺序表来写出这个数,有几个计数单位,这一位上就是几,没有的就写0;(2)改写成以万为单位的方法:在万位数字的后面点上小数点,前面的数字就是整数部分,后面的就是小数部分,化简后在最后加上单位万.(3)省略亿后面的尾数就是四舍五入到亿位,看它的千万位数,利用四舍五入后把亿位后面的数省略写上单位“亿”.解:(1)3在亿位,6在千万位,4在千位,8在个位,其它数位为0,这个数写作:360004008;(2)360004008=36000.4008万;(3)360004008≈4亿.故答案为:360004008,36000.4008,4.点评:此题考查写数、求近似数:写数要先分级并依次写出各位上的数;求近似数要省略“谁”后面的尾数,就把“谁”下一位上的数字进行四舍五入,还要带上计数单位.6.1,0.25,4.【解析】试题分析:解决此题关键在于25%,25%去掉百分号,小数点向左移动两位可化成0.25;0.25可化成分数,的分子和分母同时除以25可化成最简分数;用分子1做比的前项,分母4做比的后项可化成1:4,1:4的前项和后项同时乘上4可化成4:16;由此进行转化并填空.解:=25%=0.25=4:16.故答案为:1,0.25,4.点评:此题考查比、分数、百分数和小数之间的转化,根据它们之间的关系和性质进行转化即可.7.1:32.【解析】试题分析:根据比例尺=照片上的身高:实际小华身高,可直接求得这张照片的比例尺.解:1.6米=160厘米,5:160=1:32,这张照片的比例尺为1:32.故答案为:1:32.点评:考查了比例尺的概念,表示比例尺的时候,注意统一单位长度.8.342.5,20.【解析】试题分析:上半年有两个季度,先求出上半年的总钱数,即可求出平均每个季度的钱数;要求三月份比四月份多用百分之几,只要用多用的钱数除以四月份的钱数即可.解:(100+90+120+100+125+150)÷2=685÷2=342.5(元),(120﹣100)÷100=20%;故答案为:342.5,20.点评:此题主要考查求一个数比另一个数多百分之几的解答方法以及求平均数的方法.9.错误【解析】试题分析:根据平年的2月有28天,闰年的2月有29天,只要推算出1998年是闰年还是平年即可.解:1998÷4=499…2,1998年是平年2月只有28天,没有2月29日.故答案为:错误.点评:判断闰年和平年可以根据:四年一闰,百年不闰,四百年再闰来判断.10.错误【解析】试题分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:因为圆锥的体积=×底面积×高,则=×底面积(定值),所以圆锥的体积和高成正比例;故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.11.错误【解析】试题分析:根据质数的定义,2为最小的质数,但是2+1=3,3为质数.解:由于2为最小的质数,2+1=3,3为奇数.所以任何质数加1都成为偶数的说法是错误的.故答案为:错误.点评:除了2之外,任何质数加1都成为偶数的说法是正确的.12.错误【解析】试题分析:根据圆柱的侧面展开是一个长方形,其长为底面周长,宽为高来计算后判断即可.解:侧面展开后长方形的长(底面周长)=2πr=2×3.14×8=50.24(厘米);又因为侧面展开后是正方形所以:宽=长=50.24厘米;侧面展开后长方形的宽又是圆柱的高,即高=50.24厘米;故答案为:×.点评:此题重点考查圆柱的侧面展开图.13.错误【解析】试题分析:设甲圆的半径是r,则乙圆的半径为3r,根据“圆的面积=πr2”分别求出甲、乙两个圆的面积,然后根据题意进行比即可.解:设甲圆的半径是r,则乙圆的半径为3r,则:(πr2):[π(3r)2],=(πr2):[9πr2],=1:9;故答案为:错误.点评:解答此题用到的知识点:(1)比的意义;(2)圆的面积的计算公式;注意:圆的半径比,即直径比、周长比;圆的面积比等于半径的平方的比.14.B【解析】试题分析:根据正比例的意义及关系式:,在同时同地测得的杆高和影长的比值一定,由此即可得答案.解:因为在同时同地测得的杆高和影长的比值一定,所以杆高和影长成正比例.故选:B.点评:此题主要考查判断正、反比例的方法,根据它们的关系式判断即可.15.B【解析】试题分析:此题用到时间单位分、时、日、星期、月、年之间的换算,用到的进率有1时=60分、1日=24时、1年=12个月、1年≈52个星期,据此将每个选项分别换算成比较接近人的年龄的单位,即600分=10时,600时=25日,600周≈12年,600月=50年,由此做出选择.解:600月÷12=50(岁);600周÷52≈12(岁);600时÷24时=25(天);600分=10时;所以只有600周符合学生的年龄.故选:B.点评:此题考查对时间单位时、分,日、星期、月、年之间的换算,并根据具体情况进行选择.16.D【解析】试题分析:逐项分析后,再选出正确的选项.解:A、分数值×分母=分子(一定),是乘积一定,分数值和分母成反比例,原句错误;B、互质的两个数的公因数是1,原句错误;C、等底等高的圆锥的体积等于圆柱体积的,原句错误;D、采用24时计时法,凌晨2时就是2时,下午2时28分就是14时28分,原句正确.故选:D.点评:此题考查的知识点较多,解答此题关键是根据相关的知识逐项进行分析,再做出选择.17.A【解析】试题分析:(1)中位数:将数据按照大小顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据个数是偶数,则中间两个数据的平均数是这组数据的中位数;(2)众数:是指在一组数据中出现次数最多的那个数;据此解答.解:(1)将数据按照从大到小的顺序排列为:9.8,9.7,9.7,9.6,9.6,9.6,9.6,9.5,9.4,9.4,9.1因为数据个数是11,是奇数,所以中位数是9.6;(2)这组数据中出现次数最多的数是9.6,所以9.6是这组数据的众数;故选:A.点评:此题考查一组数据的中位数和众数的意义和求解方法,按照各自的方法分别求出即可.18.B【解析】试题分析:学生总数和男女生人数的比已知,看哪个比的前项与后项的和能整除全班人数,那个比就是正确答案.解:选项A,52÷(8+7)=3…7,故不符合要求;选项B,52÷(7+6)=4,故符合要求;选项C,52÷(6+5)=4…8,故不符合要求;选项D,52÷(5+4)=5…7,故不符合要求;故选:B.点评:解答此题的关键是:看比的前项与后项的和能否整除全班人数,从而选出正确答案.19.1.7;;3;;40;750;90;729.【解析】试题分析:根据分数、小数四则运算的计算法则,直接进行口算,其中4,根据减法的运算性质进行简算,0.9+99×0.9,运用乘法分配律进行简算.解:8.7﹣7=1.7;÷=;4﹣﹣=3;7×÷7×=;44÷=40;75÷10%=750;0.9+99×0.9=90; 93=729.点评:此题考查的目的是牢固掌握分数、小数四则运算的计算法则,并且能够灵活整数的运算定律和运算性质进行简便计算.20.2;5.5;.【解析】试题分析:(1)题根据等式的性质,方程两边同时乘来解;(2)题先计算3×0.9的值,再根据等式的性质,方程两边同时减去2.7,然后同时除以4来解;(3)题先计算6÷的值,再根据等式的性质,方程两边同时加上3.5x,再同时减去6,然后同时除以3.5来解.(1)x÷=x÷×=×,x=2;(2)4x+3×0.9=24.74x+2.7=24.7,4x+2.7﹣2.7=24.7﹣2.7,4x=22,4x÷4=22÷4,x=5.5;(3)6÷﹣3.5x=69﹣3.5x=6,9﹣3.5x+3.5x=6+3.5x,3.5x+6=9,3.5x+6﹣6=9﹣6,3.5x=3,3.5x÷3.5=3÷3.5,x=.点评:根据等式的性质“等式两边同时加上、减去、乘上或除以同一个不为零的数,等式仍然成立”进行解答;注意等号对齐.21.29;;;;40.02;6;【解析】试题分析:(1)运用加法结合律简算;(2)运用乘法分配律简算;(3)先算小括号里面的减法,再算括号外除法,最后算乘法;(4)先算小括号里面的加法,再算中括号里面的减法,最后算括号外的乘法;(5)先算小括号里面的减法,再算括号外的乘法,最后算括号外的减法;(6)运用乘法分配律简算.解:(1)1.28+9.8+7.72+10.2,=(1.28+7.72)+(9.8+10.2),=9+20,=29;(2)×+×,=×(+),=×,=;(3)÷(﹣)×,=÷×,=××,=×,=;(4)×[﹣(+)],=×[﹣],=×,=;(5)(80﹣9.8)×0.6﹣2.1,=70.2×0.6﹣2.1,=42.12﹣2.1,=40.02;(6)(﹣)×45,=×45﹣×45,=15﹣9,=6.点评:此题主要考查分数、整数、小数的四则混合运算的运算顺序和应用运算定律进行简便计算.22.路面的实际面积18.84m2.设计图如下:【解析】试题分析:先根据比例尺求出街心花园的直径和1米宽的环形路在图形上的长度,再在设计图上画出图形;根据圆环的面积公式即可求出路面的实际面积.解:5米=500厘米,1米=100厘米,500×=50(厘米)100×=10(厘米)所以内圆半径为:50÷2=25(厘米)外圆半径为:25+10=35(厘米)于是以点O为圆心,分别以25厘米和35厘米为半径画圆如下:路面的实际面积为:3.14×[(5÷2+1)2﹣(5÷2)2]=3.14×(12.25﹣6.25)=3.14×6=18.84(m2).答路面的实际面积18.84m2.点评:考查了应用比例尺画图,圆环的面积.能够根据比例尺正确进行计算,注意单位的统一.23.202棵【解析】试题分析:根据题意,五年级比六年级植树棵数的2倍多6棵,因为六年级同学植树98棵,可知六年级植树棵数的2倍再加上6棵就是五年级植树棵数,列出算式解答即可.解:五年级植树的棵数是:98×2+6=202(棵);答:五年级植树202棵.点评:根据题意,分析两个年级植树棵数之间的关系,列式计算即可.24.20分.【解析】试题分析:根据自行车的车轮直径大约66厘米,按车轮每分转100圈,可先求每圈长度,再求出100圈的路程,然后求出自行车的速度,然后根据关系式:路程÷速度=时间即可列式解答.解:66厘米=0.66米,0.66×100×3.14=207.24(米),4144÷207.24≈20(分);答:小高骑这辆车从家到学校大约需要20分.点评:此题主要考查基本关系式:时间=路程÷速度,列式解答即可.解答时注意单位的换算.25.7.5天.【解析】试题分析:由题意知道工作效率一定,工作时间和工作量成正比例.由此列式解答即可.解:设缝制2400件衬衣需要x天,1600:5=2400:x1600x=5×2400x=7.5;答:缝制2400件衬衣需要7.5天.点评:解答此题的关键是,要先判断题中的两种相关联的量成何比例,并找准对应量.26.250千克.【解析】试题分析:已知桔子占苹果重量的40%,根据分数减法的意义,桔子比苹果重量少1﹣40%,买回的苹果比桔子多150千克,即这150千克占苹果重量的1﹣40%,根据分数除法的意义,苹果有150÷(1﹣40%)千克.解:150÷(1﹣40%)=150÷60%=250(千克)答:苹果有250千克.点评:首先根据分数减法的意义求出150千克占苹果重量的分率是完成本题的关键.27.(1) 5; 6;(2)比例尺为:1:20000;填图如下:(3)1200;(4)60米.【解析】试题分析:(1)用尺子直接测量即可得到小东和小明家到学校的图上距离;(2)根据比例尺=图上距离;实际距离即可求得比例尺;(3)实际距离=图上距离÷比例尺,据此求得小明家到学校实际距离;(4)他俩的时间一样,先用小东家到学校的路程÷小东的速度求出时间,然后用小明家到学校路程÷时间即可.解:(1)小东和小明家到学校的图上距离分别是 5厘米和 6厘米;(2)5厘米:1000米,=5厘米:100000厘米,=1:20000;填图如下:(3)6÷=120000(厘米),120000厘米=1200米,答:小明家到学校实际距离是1200米.(4)1000÷50=20(分钟),1200÷20=60(米),答:小明每分走60米.点评:解答图上距离的测量时,注意测量的方法;解答比例尺的意义及求法时,注意掌握比例尺的公式及应用;解答行程问题时,注意掌握基本的关系式:速度×时间=路程.。
2023年山东省泰安市中考数学模拟试卷(三)及答案解析

2023年山东省泰安市中考数学模拟试卷(三)一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.(4分)下列实数中,最大的数是()A.﹣|﹣4|B.0C.1D.﹣(﹣3)2.(4分)2018年国庆小长假,泰安市旅游再次交出漂亮“成绩单”,全市纳入重点监测的21个旅游景区、旅游大项目、乡村旅游点实现旅游收入近132000000元,将132000000用科学记数法表示为()A.1.32×109B.1.32×108C.1.32×107D.1.32×106 3.(4分)下列运算正确的是()A.a3•a4=a12B.a5÷a﹣3=a2C.(3a4)2=6a8D.(﹣a)5•a=﹣a64.(4分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,直线a∥b,直线c分别交a、b于点A、C,∠BAC的平分线交直线b于点D,若∠2=50°,则∠1的度数是()A.50°B.60°C.80°D.100°6.(4分)某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表:年龄1212141516人数12231则这些学生年龄的众数和中位数分别是()A.15,14B.15,13C.14,14D.13,147.(4分)如图,点B、C、D在⊙O上,若∠BCD=140°,则∠BOD的度数是()A.40°B.50°C.80°D.90°8.(4分)已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A.±2B.±C.2或3D.或9.(4分)函数y=和一次函数y=﹣ax+1(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.10.(4分)如图,⊙O中,AB=AC,∠ACB=75°,BC=1,则阴影部分的面积是()A.1+πB.+πC.+πD.1+π11.(4分)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6B.10C.2D.212.(4分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD 于点E、F,连接BD、DP,BD与CF相交于点H.给出下列结论:①BE=2AE;②△DFP∽△BPH;③;④DP2=PH•PC;其中正确的是()A.①②③④B.①③④C.②③D.①②④二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.(4分)不等式组的解集是.14.(4分)关于x的一元二次方程(m﹣1)x2﹣2x﹣1=0有两个实数根,则实数m的取值范围是.15.(4分)如图是某圆锥的主视图和左视图,则该圆锥的表面积是.16.(4分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔400海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时B处与灯塔P的距离为海里.17.(4分)如图,在矩形ABCD中,对角线AC,BD交于点O,过点A作EA⊥CA交DB 的延长线于点E,若AB=3,BC=4,则的值为.18.(4分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)先化简,再求值:,其中a=2+.20.(10分)民俗村的开发和建设带动了旅游业的发展,某市有A、B、C、D、E五个民俗旅游村及“其它”景点,该市旅游部门绘制了2018年“五•一”长假期间民俗村旅游情况统计图如下:根据以上信息解答:(1)2018年“五•一”期间,该市五个旅游村及“其它”景点共接待游客万人,扇形统计图中D民俗村所对应的圆心角的度数是,并补全条形统计图;(2)根据近几年到该市旅游人数增长趋势,预计2019年“五•一”节将有70万游客选择该市旅游,请估计有多少万人会选择去E民俗村旅游?(3)甲、乙两个旅行团在A、C、D三个民俗村中,同时选择去同一个民俗村的概率是多少?请用画树状图或列表法加以说明.21.(11分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.(1)求一次函数与反比例函数的解析式;(2)过点B作BC⊥x轴,垂足为C,连接AC,求△ABC的面积.22.(11分)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.23.(12分)红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?24.(12分)如图1,在平面直角坐标系中,已知抛物线y=ax2+bx﹣5与x轴交于A(﹣1,0),B(5,0)两点,与y轴交于点C.(1)求抛物线的函数表达式;(2)如图2,CE∥x轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BC,CE分别相交于点F,G,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;(3)若点K为抛物线的顶点,点M(4,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQKM的周长最小,求出点P,Q的坐标.25.(14分)如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.2023年山东省泰安市中考数学模拟试卷(三)参考答案与试题解析一.选择题(每题4分,本大题共12小题,共48分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小可得答案.【解答】解:﹣|﹣4|=﹣4,﹣(﹣3)=3,3>1>0>﹣4,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握比较大小的法则.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:132000000=1.32×108;故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据同底数幂的乘法、同底数幂的除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a3•a4=a7,故A错误;B、a5÷a﹣3=a8,故B错误;C、(3a4)2=9a8,故C错误;D、(﹣a)5•a=﹣a6,故D正确;故选:D.【点评】本题考查了同底数幂的乘法,同底数幂的除法,积的乘方和幂的乘方,掌握运算法则是解题的关键.4.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.【分析】利用平行线的性质求出∠BAD,再根据角平分线的定义,求出∠DAC即可解决问题.【解答】解:∵AB∥CD,∴∠BAD=∠2=50°,∵AD平分∠BAC,∴∠DAC=50°,∴∠1=180°﹣∠BDA﹣∠DAC=80°,故选:C.【点评】本题考查平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【分析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【解答】解:15出现的次数最多,15是众数.一共9个学生,按照顺序排列第5个学生年龄是14,所以中位数为14.故选:A.【点评】本题考查了众数及中位数的知识,掌握各部分的概念是解题关键.7.【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD的度数,再根据圆周角的性质,即可求得答案.【解答】解:圆上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=140°,∴∠BAD=40°,∴∠BOD=80°,故选:C.【点评】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.8.【分析】利用判别式的意义得到Δ=(﹣2k)2﹣4×6=0,然后解关于k的方程即可.【解答】解:根据题意得Δ=(﹣2k)2﹣4×6=0,解得k=±.故选:B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.9.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.【解答】解:∵函数y=和一次函数y=﹣ax+1(a≠0),∴当a>0时,函数y=在第一、三象限,一次函数y=﹣ax+1经过一、二、四象限,故选项A、B错误,选项C正确;当a<0时,函数y=在第二、四象限,一次函数y=﹣ax+1经过一、二、三象限,故选项D错误;故选:C.【点评】本题考查反比例函数的图象、一次函数的图象,解答本题的关键是明确题意,利用分类讨论的方法解答.10.【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长1,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OA,OB,OC,∴OD是BC的垂直平分线∴,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∴OA =OB =OC =BC =1,∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴OD =OB =,∴AD =1+,∴S △ABC =BC •AD =,S △BOC =BC •OD =,∴S 阴影=S △ABC +S 扇形BOC ﹣S △BOC =+﹣=,故选:B .【点评】本题主要考查了扇形的面积公式,圆周角定理,垂径定理等,明确S 阴影=S △ABC +S 扇形BOC ﹣S △BOC 是解题的关键.11.【分析】由正方形OABC 的边长是6,得到点M 的横坐标和点N 的纵坐标为6,求得M (6,),N (,6),根据三角形的面积列方程得到M (6,4),N (4,6),作M 关于x 轴的对称点M ′,连接NM ′交x 轴于P ,则NM ′的长=PM +PN 的最小值,根据勾股定理即可得到结论.【解答】解:∵正方形OABC 的边长是6,∴点M 的横坐标和点N 的纵坐标为6,∴M (6,),N (,6),∴BN =6﹣,BM =6﹣,∵△OMN 的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k =24或﹣24(舍去),∴M (6,4),N (4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.【点评】本题考查了反比例函数的系数k的几何意义,轴对称﹣最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.12.【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠DCF=90°﹣60°=30°,∴tan∠DCF==,∵△DFP∽△BPH,∴==,∵BP=CP=CD,∴==;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴=,∴DP2=PH•PC,故④正确;故选:D.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(每题4分,本大题共6小题,满分24分只要求填写最后结果,每小题填对得4分)13.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,由①得,x<3,由②得,x≥1,所以不等式组的解集为1≤x<3,故答案为:1≤x<3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14.【分析】利用一元二次方程的定义和判别式的意义得到m﹣1≠0且Δ=(﹣2)2﹣4(m ﹣1)×(﹣1)≥0,然后解不等式求出它们的公共部分即可.【解答】解:根据题意得m﹣1≠0且Δ=(﹣2)2﹣4(m﹣1)×(﹣1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac 有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.15.【分析】求得圆锥的底面周长以及母线长,即可得到圆锥的侧面积和底面积,从而求得表面积.【解答】解:由题可得,圆锥的底面直径为8,高为3,∴圆锥的底面周长为8π,圆锥的母线长为=5,∴圆锥的侧面积=×8π×5=20π,底面积为42π=16π,∴表面积为20π+16π=36π故答案为:36π.【点评】本题主要考查了由三视图判断几何体以及圆锥的计算,圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=400海里,∴PE=AE=×400=200海里,在Rt△PBE中,∵∠B=30°,∴PB=2PE=400海里,故答案为:400.【点评】本题考查的是解直角三角形﹣方向角问题,掌握锐角三角函数的定义、方向角的概念是解题的关键.17.【分析】分析题目,作BH⊥OA于H,如图,利用矩形的性质得OA=OC=OB,∠ABC =90°,则根据勾股定理可计算出AC=5,AO=OB=;接下来利用三角形的等面积法,可计算出BH的值,进而利用勾股定理可计算出OH的值;接下来根据相似三角形的判定定理可证明△OBH∽△OEA,最后利用相似三角形的性质可求出的值.【解答】解:作BH⊥OA于H,如图,∵四边形ABCD为矩形,∴∠ABC=90°,OA=OC=OB,在Rt△ABC中,AC===5,∴OB=AO=.∵AB•BC=BH•AC,∴BH==,在Rt△OBH中,OH===.∵EA⊥CA,∴BH∥AE,∴△OBH∽△OEA,∴=,∴===.故答案为:.【点评】此题考查的是相似三角形的判定与性质、矩形的性质、线段垂直平分线的性质,正确作出辅助线是解决此题的关键.18.【分析】先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2016B2016=()2016,即可.【解答】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2016B2016=()2016,==[()2016]2=5×()4032,∴S第2016个正方形的面积故答案为5×()4032【点评】此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.三、解答题(本大题共7小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19.【分析】先化简分式,然后将a的值代入即可.【解答】解:原式=[]•=•==,当a=2+时,原式===.【点评】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.【分析】(1)根据A景点的人数以及百分比进行计算即可得到该市景点共接待游客数,用360°乘以D对应的百分比可得其圆心角度数,总人数乘以B对应百分比求得其人数即可补全条形图;(2)根据样本估计总体的思想解决问题即可;(3)根据甲、乙两个旅行团在A、C、D三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【解答】解:(1)该市五个旅游村及“其它”景点共接待游客15÷30%=50(万人),扇形统计图中D民俗村所对应的圆心角的度数是18%×360°=64.8°,B景点接待游客数为:50×24%=12(万人),补全条形统计图如下:故答案为:50,64.8°;(2)估计选择去E民俗村旅游的人数约为70×=8.4(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个民俗村的概率是.【点评】本题考查的是条形统计图、扇形统计图、用样本估计总体以及概率的计算的综合应用,读懂统计图、从中获取正确的信息是解题的关键.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.21.【分析】(1)把A的坐标代入反比例函数的解析式,求出其解析式,把B的坐标代入反比例函数的解析式,求出B的坐标,把A、B的坐标代入一次函数的解析式,得出方程组,求出方程组的解即可;(2)求出BC=|﹣2|=2,BC边上的高是|﹣3|+2,代入三角形的面积公式求出即可.【解答】解:(1)∵点A(2,3)在y=的图象上,∴m=6,∴反比例函数的解析式为y=,∴n==﹣2,∵点A(2,3),B(﹣3,﹣2)在y=kx+b的图象上,∴∴∴一次函数的解析式为y=x+1.(2)以BC为底,则BC边上的高为3+2=5,S△ABC=×2×5=5,答:△ABC的面积是5.【点评】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数、反比例函数的解析式,三角形的面积的应用,主要培养学生分析问题和解决问题的能力,题型较好,难度适中.22.【分析】(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.【解答】(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,∠EBN=∠ABN.∵AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.【点评】本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.23.【分析】(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,根据用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,列分式方程可解;(2)①利用总利润等于每对灯笼的利润乘以卖出的灯笼的实际数量,可以列出函数的解析式;②由函数为开口向下的二次函数,可知有最大值,结合问题的实际意义,可得答案.【解答】解:(1)设甲种灯笼单价为x元/对,则乙种灯笼的单价为(x+9)元/对,由题意得:=,解得x=26,经检验,x=26是原方程的解,且符合题意,∴x+9=26+9=35,答:甲种灯笼单价为26元/对,乙种灯笼的单价为35元/对.(2)①y=(50+x﹣35)(98﹣2x)=﹣2x2+68x+1470,答:y与x之间的函数解析式为:y=﹣2x2+68x+1470.②∵a=﹣2<0,∴函数y有最大值,该二次函数的对称轴为:x=﹣=17,物价部门规定其销售单价不高于每对65元,∴x+50≤65,∴x≤15,∵x<17时,y随x的增大而增大,=2040.∴当x=15时,y最大15+50=65.答:乙种灯笼的销售单价为每对65元时,一天获得利润最大,最大利润是2040元.【点评】本题属于分式方程和二次函数的应用题综合.由于前后步骤有联系,第一问解对,后面才能做对.本题还需要根据问题的实际意义来确定销售单价的取值,本题中等难度.24.【分析】(1)根据待定系数法直接确定出抛物线解析式;(2)先求出直线BC的解析式,进而求出四边形CHEF的面积的函数关系式,即可求出;(3)利用对称性找出点P,Q的位置,进而求出P,Q的坐标.【解答】解:(1)∵点A(﹣1,0),B(5,0)在抛物线y=ax2+bx﹣5上,∴,解得,∴抛物线的表达式为y=x2﹣4x﹣5,(2)设H(t,t2﹣4t﹣5),∵CE∥x轴,∴点E的纵坐标为﹣5,∵E在抛物线上,∴x2﹣4x﹣5=﹣5,∴x=0(舍)或x=4,∴E(4,﹣5),∴CE=4,∵B(5,0),C(0,﹣5),∴直线BC的解析式为y=x﹣5,∴F(t,t﹣5),∴HF=t﹣5﹣(t2﹣4t﹣5)=﹣(t﹣)2+,∵CE∥x轴,HF∥y轴,∴CE⊥HF,=CE•HF=﹣2(t﹣)2+,∴S四边形CHEF∴H(,﹣);(3)如图2,∵K为抛物线的顶点,∴K(2,﹣9),∴K关于y轴的对称点K'(﹣2,﹣9),∵M(4,m)在抛物线上,∴M(4,﹣5),∴点M关于x轴的对称点M'(4,5),∴直线K'M'的解析式为y=x﹣,∴P(,0),Q(0,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,四边形的面积的计算方法,对称性,解的关键是利用对称性找出点P,Q的位置,是一道中等难度的题目.25.【分析】(1)如图①中,结论:AF=AE,只要证明△AEF是等腰直角三角形即可.(2)如图②中,结论:AF=AE,连接EF,DF交BC于K,先证明△EKF≌△EDA 再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,AF=AE,连接EF,延长FD交AC于K,先证明△EDF ≌△ECA,再证明△AEF是等腰直角三角形即可.【解答】解:(1)如图①中,结论:AF=AE.理由:∵四边形ABFD是平行四边形,∴AB=DF,∵AB=AC,∴AC=DF,∵DE=EC,∴AE=EF,∵∠DEC=∠AEF=90°,∴△AEF是等腰直角三角形,∴AF=AE.故答案为AF=AE.(2)如图②中,结论:AF=AE.理由:连接EF,DF交BC于K.∵四边形ABFD是平行四边形,∴AB∥DF,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE,∵∠DKC=∠C,∴DK=DC,∵DF=AB=AC,∴KF=AD,在△EKF和△EDA中,,∴△EKF≌△EDA,∴EF=EA,∠KEF=∠AED,∴∠FEA=∠BED=90°,∴△AEF是等腰直角三角形,∴AF=AE.(3)如图③中,结论不变,AF=AE.理由:连接EF,延长FD交AC于K.∵∠EDF=180°﹣∠KDC﹣∠EDC=135°﹣∠KDC,∠ACE=(90°﹣∠KDC)+∠DCE=135°﹣∠KDC,∴∠EDF=∠ACE,∵DF=AB,AB=AC,∴DF=AC在△EDF和△ECA中,,∴△EDF≌△ECA,∴EF=EA,∠FED=∠AEC,∴∠FEA=∠DEC=90°,∴△AEF是等腰直角三角形,∴AF=AE.【点评】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点,属于中考常考题型。
2018-2019学年九年级数学上册 第一章 特殊平行四边形 1.2 矩形的性质与判定作业设计 (新版)北师大版

1.2矩形的性质与判定一、选择题(本题包括11个小题.每小题只有1个选项符合题意)1. 如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是()A. 四边形ABCD由矩形变为平行四边形B. BD的长度增大C. 四边形ABCD的面积不变D. 四边形ABCD的周长不变2. 如图,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是()A. ∠ABC=90°B. AC=BDC. OA=OBD. OA=AD3. 如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A. 17B. 18C. 19D. 204. 如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A. 10cmB. 8cmC. 6cmD. 5cm5. 如图,在矩形ABCD中,对角线AC、BD相交于点O,若∠ACB=30°,AB=2,则BD的长为()A. 4B. 3C. 2D. 16. 一个矩形被分成不同的4个三角形,其中绿色三角形的面积占矩形面积的15%,黄色的三角形的面积是212,则该矩形的面积为()A. 602B. 702C. 1202D. 14027. 如图,矩形ABCD中,AC交BD于点O,∠AOD=60°,OE⊥AC.若AD=,则OE=()A. 1B. 2C. 3D. 48. 矩形具有而菱形不具有的性质是()A. 对角线相等B. 两组对边分别平行C. 对角线互相平分D. 两组对角分别相等9. 矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为()A. 16cmB. 22cmC. 26cmD. 22cm或26cm10. 矩形的对角线所成的角之一是65°,则对角线与各边所成的角度是()A. 57.5°B. 32.5°C. 57.5°,23.5°D. 57.5°,32.5°11. 过四边形的各个顶点分别作对角线的平行线,若这四条平行线围成一个矩形,则原四边形一定是()A. 对角线相等的四边形B. 对角线垂直的四边形C. 对角线互相平分且相等的四边形D. 对角线互相垂直平分的四边形二、填空题(本题包括3个小题)12. 如图,平行四边形ABCD的对角线相交于点O,请你添加一个条件__________(只添一个即可),使平行四边形ABCD是矩形.13. 平行四边形ABCD的对角线相交于点O,分别添加下列条件:①∠ABC=90°;②AC⊥BD;③AB=BC;④AC 平分∠BAD;⑤AO=DO.使得四边形ABCD是矩形的条件有________14. 木工做一个长方形桌面,量得桌面的长为15cm,宽为8cm,对角线为17cm,这个桌面_________(填”合格”或”不合格”)三、解答题(本题包括5个小题)15. 如图,平行四边形ABCD中,点E、F、G、H分别在AB、BC、CD、AD边上且AE=CG,AH=CF.(1)求证:四边形EFGH是平行四边形;(2)如果AB=AD,且AH=AE,求证:四边形EFGH是矩形16. 如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.求四边形AEBD的面积17. 如图,在平行四边形ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.求证:四边形ABCD是矩形18. 有一块形状如图所示的玻璃,不小心把DEF部分打碎,现在只测得AB=60cm,BC=80cm,∠A=120°,∠B=60°,∠C=150°,你能设计一个方案,根据测得的数据求出AD的长吗?19. 如图,△ABC中,AB=AC,AD、AE分别是∠BAC与∠BAC的外角的平分线,BE⊥AE.求证:AB=DE答案一、选择题1. 【答案】C【解析】由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD 的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.2. 【答案】D【解析】本题考查了矩形的性质;熟练掌握矩形的性质是解决问题的关键.矩形的性质:四个角都是直角,对角线互相平分且相等;由矩形的性质容易得出结论.∵四边形ABCD是矩形,∴∠ABC=∠BCD=∠CDA=∠BAD=90°,AC=BD,OA=AC,OB=BD,∴OA=OB,∴A、B、C正确,D错误考点:矩形的性质3. 【答案】D【解析】∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴∠ABC=∠D=90°,CD=AB=5,BC=AD=12,OA=OB,OM为△ACD的中位线,∴OM=CD=2.5,AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故选D.考点:矩形的性质.4. 【答案】D【解析】∵四边形ABCD是矩形,∴OA=OC=AC,OD=OB=BD,AC=BD,∴OA=OB,∵AC+BD=20,∴AC=BD=10cm,∴OA=O B=5cm,∵OA=OB,∠AOB=60°,∴△OAB是等边三角形,∴AB=OA=5cm,故选D.考点:1.矩形的性质;2.等边三角形的判定与性质.5. 【答案】A【解析】在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴BD=AC=4.故选A.6. 【答案】A【解析】黄色三角形与绿色三角形面积之和是矩形面积的50%,而绿色三角形面积占矩形面积的15%,所以黄色三角形面积占矩形面积的(50%-15%)=35%,已知黄色三角形面积是21平方厘米,故矩形的面积=21÷(50%-15%)=21÷35%=60(cm2).故选A.考点:矩形的性质.7.【答案】A【解析】∵四边形ABCD是矩形,∠AOD=60°,∴△ADO是等边三角形,∴OA=,∠OAD=60°,∴∠OAE= 30°,∵OE⊥AC,∴△OAE是一个含30°的直角三角形,∴OE=1,故选A.8.【答案】A【解析】∵矩形具有的性质是:对角线相等且互相平分,两组对边分别平行,两组对角分别相等;菱形具有的性质是:两组对边分别平行,对角线互相平分,两组对角分别相等;∴矩形具有而菱形不具有的性质是:对角线相等.故选A.9. 【答案】D【解析】∵四边形ABCD是矩形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠AEB=∠ABE,∴AB=AE,当AE=3cm时,AB=AE=3=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=3cm+8cm+3cm+8cm=22cm;当AE=5cm时,AB=AE=5cm=CD,AD=3cm+5cm=8cm=BC,∴此时矩形ABCD的周长是AB+BC+CD+AD=5cm+8cm+5cm+8cm=26cm;故选D.考点:矩形的性质.10. 【答案】D【解析】∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,AB∥CD,AC=BD,AO=OC,OB=OD,∴OB=OA=OC=OD,∠OAB=∠OCD,∠DAO=∠OCB,∴∠OAD=∠ODA,∠OCB=∠OBC,∠ODC=∠OCD,∠OAB=∠OBA=×(180°﹣∠AOB)=×(180°﹣65°)=57.5°,∵∠ABC=90°,∴∠ACB=90°﹣57.5°=32.5°,即∠OAD=∠ODA=∠OBC=∠OCB=32.5°,∠OAB=∠OBA=∠ODC=∠OCD=57.5°,对角线与各边所成的角度是57.5°和32.5°,故选D.点睛:本题考查了矩形的性质,三角形的内角和定理,等腰三角形的性质的应用,能正确运用矩形的性质进行推理是解此题的关键,注意:矩形的对角线相等且互相平分.11. 【答案】B【解析】∵四边形EFGH是矩形,∴∠E=90°,∵EF∥AC,EH∥BD,∴∠E+∠EAG=180°,∠E+∠EBO=180°,∴∠EAO=∠EBO=90°,∴四边形AEBO是矩形,∴∠AOB=90°,∴AC⊥BD,故选B.二、填空题12. 【答案】AC=BD.答案不唯一【解析】添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.答案不唯一.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形,此题是一道开放型的题目,答案不唯一.13.【答案】①⑤【解析】要使得平行四边形ABCD为矩形添加:①∠ABC=90°;⑤AO=DO2个即可;故答案为:①⑤.14. 【答案】合格【解析】勾股定理的逆定理:若一个三角形的两边长的平方和等于第三边的平方,则这个三角形的直角三角形.∵∴这个桌面合格.考点:勾股定理的逆定理点评:本题属于基础应用题,只需学生熟练掌握勾股定理的逆定理,即可完成.三、解答题15. 【答案】(1)证明见解析;(2)证明见解析.【解析】(1)易证得△AEH≌△CGF,从而证得BE=DG,DH=BF.故有,△BEF≌△DGH,根据两组对边分别相等的四边形是平行四边形而得证.(2)由题意知,平行四边形ABCD是菱形,连接AC,BD,则有AC⊥B D,由AB=AD,且AH=AE可证得HE∥BD,同理可得到HG∥AC,故HG⊥HE,又由(1)知四边形HGFE是平行四边形,故四边形HGFE是矩形.证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF.∴EH=GF.在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-CF,即BE=DG,DH=BF.又∵在平行四边形ABCD中,∠B=∠D,∴△BEF≌△DGH.∴GH=EF.∴四边形EFGH是平行四边形.(2)在平行四边形ABCD中,AB∥CD,AB=CD.设∠A=α,则∠D=180°-α.∵AE=AH,∴∠AHE=∠AEH=.∵AD=AB=CD,AH=AE=CG,∴AD-AH=CD-CG,即DH=DG.∴∠DHG=∠DGH=.∴∠EHG=180°-∠DHG-∠AHE=90°.又∵四边形EFGH是平行四边形,∴四边形EFGH是矩形.考点:1.矩形的判定与性质;2.全等三角形的判定与性质;3.平行四边形的判定与性质.16. 【答案】12.【解析】利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得CD(或BD)的长度,则矩形的面积=长×宽=AD•BD=AD•CD.解:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形,∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD,∴BD=AE,∴平行四边形AEBD是矩形.在Rt△ADC中,∠ADB=90°,AC=5,CD=BC=3,∴AD==4,∴四边形AEBD的面积为:BD•AD=CD•AD=3×4=12.点睛:本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.17. 【答案】证明见解析.【解析】欲证明四边形ABCD是矩形,只需推知∠DAB是直角.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°,∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.18. 【答案】AD=140cm.【解析】过C作CM∥AB,交AD于M,推出平行四边形ABCM,推出AM=BC=80cm,AB=CM=60cm,∠B=∠AMC,求出∠D=∠MCD,求出CM=DM=60cm,代入AD=AM+DM求出即可.解:过C作CM∥AB,交AD于M,∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AM∥BC,∵AB∥CM,∴四边形ABCM是平行四边形,∴AB=CM=60cm,BC=AM=80cm,∠B=∠AMC=60°,∵AD∥BC,∠C=150°,∴∠D=180°﹣150°=30°,∴∠MCD=60°﹣30°=30°=∠D,∴CM=DM=60cm,∴AD=60cm+80cm=140cm.19. 【答案】证明见解析.【解析】先由角平分线和等腰三角形的性质证明AE∥BD,再由AD、AE分别是∠BAC与∠BAC的外角的平分线可证得DA⊥AE,可得AD∥BE,可证得四边形ADBE为矩形,可得结论.证明:∵AD、AE分别是∠BAC与∠BAC的外角的平分线,∴∠BAD+∠EAB=(∠BAC+∠FAB)=90°,∵BE⊥AE,∴DA∥BE,∵AB=AC,∴∠ABC=∠ACB,∵∠FAB=∠ABC+∠ACB=2∠ABC,且∠FAB=2∠EAB,∴∠ABC=∠EAB,∴AE∥BD,∴四边形AEBD为平行四边形,且∠BEA=90°,∴四边形AEBD为矩形,∴AB=DE.点睛:本题主要考查矩形的判定和性质,由角平分线及等腰三角形的性质证明AE∥BD是解题的关键.。
2018-2019学年山东省菏泽市牡丹区九年级(上)期末数学试卷-普通用卷

2018-2019学年山东省菏泽市牡丹区九年级(上)期末数学试卷副标题一、选择题(本大题共8小题,共24.0分)1.方程x2-x=0的解是()A. B.C. ,D. ,2.如图所示的物体组合,它的左视图是()A.B.C.D.3.一个不透明的口袋中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于6的概率为()A. B. C. D.4.在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B.C. D.5.在4×4的正方形网格中,△ABC和△DEF的顶点都在边长为1的正方形的顶点上,则图中∠ACB的正切值为()A.B.C.D. 36.如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则()A.B.C.D. S与BE长度有关7.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=-、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A. 逐渐变小B. 逐渐变大C. 时大时小D. 保持不变8.如图,一条抛物线与x轴相交于M、N两点(点M在点N的左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(-2,3)、(1,3),点N的横坐标的最大值为4,则点M的横坐标的最小值为()A. B. C. D.二、填空题(本大题共6小题,共18.0分)9.已知关于x的一元二次方程(m+1)x2+4x+m2+m=0的一个根为0,则m的值是______.10.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为______尺.11.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,其中m=1,n=,则AB的长为______.12.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为______.13.如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是______.14.如图抛物线y=x2+2x-3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为______.三、解答题(本大题共10小题,共78.0分)15.计算:cos45°-sin60°+tan230°16.已知x2-x-5=0,求代数式(x+1)2-x(2x+1)的值.17.解方程:3x2-2x-1=0.18.如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度.19.如图,在▱ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB=4,AF=2DF,求CF的长.20.如图,在平面直角坐标系中,正比例函数y=kx的图象与反比例函数y=的图象经过点A(2,2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于B,与反比例函数图象在第一象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积;21.在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.(1)“从中任意抽取1个球不是红球就是白球”是______事件,“从中任意抽取1个球是黑球”是______事件;(2)从中任意抽取1个球恰好是红球的概率是______;(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.22.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?23.已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转.(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE=1::3,求∠AED的度数;(3)若BC=4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF=,求DF和DN的长.24.抛物线y=ax2+bx+c的对称轴为直线x=1,该抛物线与x轴的两个交点分别为A和B,与y轴的交点为C,其中A(-1,0),C(0,-3).(1)写出B点的坐标______;(2)若抛物线上存在一点P,使得△POC的面积是△BOC的面积的2倍,求点P的坐标;(3)点M是线段BC上一点,过点M作x轴的垂线交抛物线于点D,求线段MD长度的最大值.答案和解析1.【答案】C【解析】解:x2-x=0,x(x-1)=0,x=0,x-1=0,x1=0,x2=1,故选:C.先分解因式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.2.【答案】D【解析】解:从左边看是两个正方形,两正方形的邻边是虚线,故选:D.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.【答案】A【解析】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,∴两次摸出的小球标号之和等于6的概率==.故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于6的情况,再利用概率公式求解即可求得答案.此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.4.【答案】D【解析】解:三角形纸片ABC中,AB=8,BC=4,AC=6.A、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;B、=,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C、==,对应边==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D、==,对应边===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选:D.根据相似三角形的判定分别进行判断即可得出答案.此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.5.【答案】B【解析】解:由勾股定理可求出:BC=2,AC=2,DF=,DE=,∴==,=,∴==,∴△FDE∽△CAB,∴∠DFE=∠ACB,∴tan∠DFE=tan∠ACB=,故选:B.根据勾股定理即可求出AC、BC、DE、DF的长度,然后证明△FDE∽△ABC,推出∠ACB=∠DFE,由此即可解决问题.本题考查解直角三角形,涉及勾股定理,相似三角形的判定与性质,解题的关键是灵活运用相似三角形的性质解决问题.6.【答案】A【解析】解:连接FB∵四边形EFGB为正方形∴∠FBA=∠BAC=45°,∴FB∥AC∴△ABC与△AFC是同底等高的三角形∵2S△ABC=S正ABCD ,S正ABCD=2×2=4∴S=2故选:A.连接FB,根据已知可得到⇒△ABC与△AFC是同底等高的三角形,由已知可求得△ABC的面积为大正方形面积的一半,从而不难求得S的值.本题利用了正方形的性质,内错角相等,两直线平行的判定方法,及同底等高的三角形的面积相等的性质求解.7.【答案】D【解析】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴;设B(-m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.如图,作辅助线;首先证明△BOM∽△OAN,得到;设B(-m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.8.【答案】C【解析】解:根据题意知,点N的横坐标的最大值为4,此时对称轴过B点,点N的横坐标最大,此时的M点坐标为(-2,0),当对称轴过A点时,点M的横坐标最小,此时的N点坐标为(1,0),M点的坐标为(-5,0),故点M的横坐标的最小值为-5,故选:C.根据顶点P在线段AB上移动,又知点A、B的坐标分别为(-2,3)、(1,3),分别求出对称轴过点A和B时的情况,即可判断出M点横坐标的最小值.本题考查了抛物线与x轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x轴的直线上移动时,两交点之间的距离不变.9.【答案】0【解析】解:把x=0代入方程(m+1)x2+4x+m2+m=0得m2+m=0,解得m1=0,m2=-1,而m+1≠0,所以m=0.故答案为0.先把x=0代入方程得到m2+m=0,然后解关于m的方程,再利用一元二次方程的定义确定满足条件的m的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.【答案】57.5【解析】解:如图,依题意有△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得AD=62.5,∴BD=AD-AB=62.5-5=57.5(尺).故答案为57.5.根据题意可知△ABF∽△ADE,根据相似三角形的性质可求AD,进一步得到井深.本题考查了相似三角形的判定与性质,解题的关键是得到△ABF∽△ADE.11.【答案】2-【解析】解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.在Rt△BDF中,BF=n,∠DBF=30°,∴DF=BF•tan∠DBF=n.在Rt△ACE中,∠AEC=90°,∠ACE=45°,∴AE=CE=BF=n,∴AB=BE-AE=CD+DF-AE=m+n-n,∵m=1,n=,故答案为:2-.延长BA交CE于点E,设CF⊥BF于点F,通过解直角三角形可求出DF、AE 的长度,再利用AB=CD+DF-AE即可求出结论.本题考查了解直角三角形的应用,通过解直角三角形求出DF、AE的长度是解题的关键.12.【答案】4.8【解析】解:∵Rt△ABC中,∠C=90°,AC=8,BC=6,∴AB=10,连接CP,∵PD⊥AC于点D,PE⊥CB于点E,∴四边形DPEC是矩形,∴DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,∴DE=CP==4.8,故答案为:4.8.连接CP,根据矩形的性质可知:DE=CP,当DE最小时,则CP最小,根据垂线段最短可知当CP⊥AB时,则CP最小,再根据三角形的面积为定值即可求出CP的长.本题考查了勾股定理的运用、矩形的判定和性质以及直角三角形的面积的不同求法,题目难度不大,设计很新颖,解题的关键是求DE的最小值转化为其相等线段CP的最小值.13.【答案】3【解析】解:∵A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∴当x=2时,y=2,即A(2,2),如图,过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,则S△AOC=S△BOD=×4=2.∵S四边形AODB =S△AOB+S△BOD=S△AOC+S梯形ABDC,∴S△AOB=S梯形ABDC,∵S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,∴S△AOB=3.故答案是:3.先根据反比例函数图象上点的坐标特征及A,B两点的横坐标,求出A(2,2),B(4,1).再过A,B两点分别作AC⊥x轴于C,BD⊥x轴于D,根据反比例函数系数k的几何意义得出S△AOC=S△BOD=×4=2.根据S四边形AODB =S△AOB+S△BOD=S△AOC+S梯形ABDC,得出S△AOB=S梯形ABDC,利用梯形面积公式求出S梯形ABDC=(BD+AC)•CD=(1+2)×2=3,从而得出S△AOB=3.主要考查了反比例函数中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.也考查了反比例函数图象上点的坐标特征,梯形的面积.14.【答案】【解析】解:连接AC,交对称轴于点P,则此时PC+PB最小,∵点D、E、F分别是BC、BP、PC的中点,∴DE=PC,DF=PB,∵抛物线y=x2+2x-3与x轴交于A,B两点,与y轴交于点C,∴0=x2+2x-3x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3,故DE+DF的最小值为:.故答案为:.直接利用轴对称求最短路线的方法得出P点位置,再求出AO,CO的长,进而利用勾股定理得出答案.此题主要考查了抛物线与x轴的交点以及利用轴对称求最短路线,正确得出P点位置是解题关键.15.【答案】解:原式=×-×+()2,=1-+,=-.【解析】首先代入特殊角的三角函数,然后再进行有理数的加减即可.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.16.【答案】解:原式=x2+2x+1-2x2-x=-x2+x+1.∵x2-x-5=0,∴x2-x=5.∴原式=-x2+x+1=-(x2-x)+1=-5+1=-4.【解析】首先对所求的式子进行化简,把所求的式子化成x2-x=5的形式,然后代入求解即可.本题考查了整式的化简求值,正确理解完全平方公式的结构,对所求的式子进行变形是关键.17.【答案】解:由原方程得:(3x+1)(x-1)=0,可得3x+1=0或x-1=0,解得:x1=-,x2=1.【解析】方程左边利用十字相乘法分解因式后,利用两数相乘积为0两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程-因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.18.【答案】解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC===20(米)答:坡底C点到大楼距离AC的值是20米.(2)设CD=2x,则DE=x,CE=x,在Rt△BDF中,∵∠BDF=45°,∴BF=DF,∴60-x=20+x,∴x=40-60,∴CD=2x=80-120,∴CD的长为(80-120)米.【解析】(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;(2)设CD=2x,则DE=x,CE=x,构建方程即可解决问题;此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.19.【答案】(1)证明:∵BF平分∠ABC,∴∠ABF=∠CBF.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠AFB=∠CBF.∴∠ABF=∠AFB.∴AB=AF.∵AE⊥BF,∴∠BAO=∠FAE∵∠FAE=∠BEO∴∠BAO=∠BEO.∴AF=BE.∴四边形ABEF是平行四边形.∴□ABEF是菱形.(2)解:∵AD=BC,AF=BE,∴DF=CE.∵AF=2DF∴BE=2CE.∵AB=BE=4,∴CE=2.过点A作AG⊥BC于点G.∵∠ABC=60°,AB=BE,∴△ABE是等边三角形.∴BG=GE=2.∴AF=CG=4.∴四边形AGCF是平行四边形.∴□AGCF是矩形.∴AG=CF.在△ABG中,∠ABC=60°,AB=4,∴AG=.∴CF=.【解析】(1)由四边形ABCD是平行四边形,得到AD∥BC,证明AF与BE平行且相等,可得四边形ABEF是平行四边形,再说明AB=AF,于是得出结论;(2)过点A作AG⊥BC于点G,由菱形的性质和等边三角形的性质解答即可.本题主要考查了菱形的判定和性质、勾股定理、平行四边形和矩形的性质和判定,熟练掌握菱形的判定是关键.20.【答案】解:(1)把A(2,2)代入y=kx得2k=2,解得k=1;把A(2,2)代入y=得m=2×2=4,∴正比例函数的解析式为y=x;反比例函数的解析式为y=;(2)直线y=x向上平移3的单位得到直线BC的解析式为y=x+3,当x=0时,y=x+3=3,则B(0,3),解方程组得或,∴点C的坐标为(1,4);连接OC,S△ABC=S△OBC=×3×1=.(1)把A点坐标分别代入y=kx和y=中分别求出k、m即可;(2)利用直线平移的规律得到直线BC的解析式为y=x+3,则B(0,3)再解方程组得点C的坐标为(1,4);连接OC,根据三角形面积公式,利用S△ABC=S△OBC进行计算.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.21.【答案】必然不可能【解析】解:(1)“从中任意抽取1个球不是红球就是白球”是必然事件,“从中任意抽取1个球是黑球”是不可能事件;故答案为:必然,不可能;(2)从中任意抽取1个球恰好是红球的概率是:;故答案为:;(3)如图所示:,由树状图可得:一共有20种可能,两球同色的有8种情况,故选择甲的概率为:=;则选择乙的概率为:,故此游戏不公平.(1)直接利用必然事件以及怒不可能事件的定义分别分析得出答案;(2)直接利用概率公式求出答案;(3)首先画出树状图,进而利用概率公式求出答案.此题主要考查了游戏公平性,正确列出树状图是解题关键.22.【答案】解:(1)y=300-10(x-44),即y=-10x+740(44≤x≤52);(2)根据题意得(x-40)(-10x+740)=2400,解得x1=50,x2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(x-40)(-10x+740)=-10x2+1140x-29600=-10(x-57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,所以当x=52时,w有最大值,最大值为-10(52-57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【解析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;(2)利用每本的利润乘以销售量得到总利润得到(x-40)(-10x+740)=2400,然后解方程后利用x的范围确定销售单价;(3)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量x的取值范围.也考查了一元二次方程的应用.23.【答案】解:(1)CE=AF,在正方形ABCD和等腰直角三角形CEF中,FD=DE,CD=CA,∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∴△ADF≌△CDE(SAS),(2)设DE=k,∵DE:AE:CE=1::3∴AE=k,CE=AF=3k,∴EF=k,∵AE2+EF2=7k2+2k2=9k2,AF2=9k2,即AE2+EF2=AF2∴△AEF为直角三角形,∴∠BEF=90°∴∠AED=∠AEF+DEF=90°+45°=135°;(3)∵M是AB的中点,∴MA=AB=AD,∵AB∥CD,∴△MAO∽△DCO,∴===,在Rt△DAM中,AD=4,AM=2,∴DM=2,∴DO=,∵OF=,∴DF=,∵∠DFN=∠DCO=45°,∠FDN=∠CDO,∴△DFN∽△DCO,∴=,即=,∴DN=.【解析】(1)由正方形额等腰直角三角形的性质判断出△ADF≌△CDE即可;(2)设DE=k,表示出AE,CE,EF,判断出△AEF为直角三角形,即可求出∠AED;(3)证△MAO∽△DCO得===,由勾股定理得DM=2,据此求得DO=,结合OF=知DF=,再证△DFN∽△DCO得=,据此计算可得.此题是四边形的综合问题,主要考查了正方形,等腰直角三角形的性质,全等三角形的性质和判定,相似三角形的性质和判定,勾股定理及其勾股定理24.【答案】(3,0)【解析】解:(1)抛物线的对称轴为x=1,点A坐标为(-1,0),则点B(3,0),故:答案为(3,0);(2)二次函数表达式为:y=a(x+1)(x-3)=a(x2-2x-3),即:-3a=-3,解得:a=1,故抛物线的表达式为:y=x2-2x-3,由题意得:S△POC=2S△BOC,则x=±2OB=6,故点P的坐标为(6,21)或(-6,45);(3)如图所示,将点B、C坐标代入一次函数y=kx+b得表达式得:,解得:,故直线BC的表达式为:y=x-3,设:点M坐标为(x,x-3),则点D坐标为(x,x2-2x-3),则MD=x-3-x2+2x+3=-(x-)2+,故MD长度的最大值为.(1)抛物线的对称轴为x=1,点A坐标为(-1,0),则点B(3,0),即可求解;(2)由S△POC=2S△BOC,则x=±2OB=6,即可求解;(3)设:点M坐标为(x,x-3),则点D坐标为(x,x2-2x-3),则MD=x-3-x2+2x+3,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2018年高考全国一卷理科数学答案及解析

2018年普通高等学招生全国统一考试(全国一卷)理科数学参考答案与解析一、选择题:本题有12小题,每小题5分,共60分。
1、设z=,则|z|=A 、0B 、C 、1D 、【答案】C【解析】由题可得i z =+=2i )i -(,所以|z|=1【考点定位】复数2、已知集合A={x|x 2-x-2>0},则A =A 、{x|-1<x<2}B 、{x|-1x 2}C 、{x|x<-1}∪{x|x>2}D 、{x|x -1}∪{x|x 2} 【答案】B【解析】由题可得C R A={x|x 2-x-2≤0},所以{x|-1x 2}【考点定位】集合3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是:A 、新农村建设后,种植收入减少。
B 、新农村建设后,其他收入增加了一倍以上。
C 、新农村建设后,养殖收入增加了一倍。
D 、新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半。
【答案】A【解析】由题可得新农村建设后,种植收入37%*200%=74%>60%,【考点定位】简单统计4、记S n为等差数列{a n}的前n项和,若3S3=S2+S4,a1=2,则a5=A、-12B、-10C、10D、12【答案】B【解析】3*(a1+a1+d+a1+2d)=(a1+a1+d) (a1+a1+d+a1+2d+a1+3d),整理得:2d+3a1=0; d=-3 ∴a5=2+(5-1)*(-3)=-10【考点定位】等差数列求和5、设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为:A、y=-2xB、y=-xC、y=2xD、y=x【答案】D【解析】f(x)为奇函数,有f(x)+f(-x)=0整理得:f(x)+f(-x)=2*(a-1)x2=0 ∴a=1f(x)=x3+x求导f‘(x)=3x2+1f‘(0)=1 所以选D【考点定位】函数性质:奇偶性;函数的导数6、在ABC中,AD为BC边上的中线,E为AD的中点,则=A、--B、--C、-+D、-【答案】A【解析】AD 为BC 边∴上的中线 AD=AC 21AB 21+ E 为AD 的中点∴AE=AC 41AB 41AD 21+= EB=AB-AE=AC 41AB 43)AC 41AB 41(-AB -=+= 【考点定位】向量的加减法、线段的中点7、某圆柱的高为2,底面周长为16,其三视图如右图,圆柱表面上的点M 在正视图上的对应点为11A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A 、B 、C 、3D 、2 【答案】B【解析】将圆柱体的侧面从A 点展开:注意到B 点在41圆周处。
山东省临清市启明中学2018-2019年上学期10月份月考九年级数学试题 (解析版)
2018-2019学年上学期10月份月考九年级数学试题一、选择题(12×3分=36分)1.点M(﹣sin60°,cos60°)关于x轴对称的点的坐标是()A.()B.(﹣)C.(﹣)D.(﹣)2.如图所示,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为()A.9 B.12 C.16 D.183.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα4.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.85.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于()A.B.C.D.6.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m7.如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC 边上,点A落在点E处,折痕为BD,则sin∠DBE的值为()A.B.C.D.8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.9.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③10.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()A.B.3 C.D.411.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③12.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm二、填空题(8×3分=24分}13.已知α是锐角,且tan(90°﹣α)=,则α=.14.在△ABC中,若∠A、∠B满足|cos A﹣|+(sin B﹣)2=0,则∠C=.15.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60°500m处,那么水塔所在的位置到公路的距离AB是.16.将一副三角尺如图所示叠放在一起,则的值是.17.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.18.如图,点D在△ABC内,连接BD并延长到点E,连接AD,AE,若∠BAD=20°,,则∠EAC=.=.19.如图,以▱ABCD中,如果点M是CD中点,AM与BD相交于点N,那么S△DMN:S▱ABCD20.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为m.三、解答题(共60分)21.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)sin∠ADC的值.23.一条船在松花江某水段自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100m,到达B处,又测得航标C在北偏东45°方向上,已知在以C为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,有没有搁浅的危险?( 1.73)24.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.25.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF:EH=4:3,求EF、EH的长.26.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q 作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.参考答案与试题解析一.选择题(共12小题)1.点M(﹣sin60°,cos60°)关于x轴对称的点的坐标是()A.()B.(﹣)C.(﹣)D.(﹣)【分析】先根据特殊三角函数值求出M点坐标,再根据对称性解答.【解答】解:∵sin60°=,cos60°=,∴点M(﹣).∵点P(m,n)关于x轴对称点的坐标P′(m,﹣n),∴M关于x轴的对称点的坐标是(﹣).故选:B.2.如图所示,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADB+∠EDC=120°,BD=3,CE=2,则△ABC的边长为()A.9 B.12 C.16 D.18【分析】根据等边三角形性质求出∠B=∠C=60°,根据等式性质求出∠BAD=∠EDC,即可证明△ABD∽△DCE,对应边成比例得出=,列方程解答即可.【解答】解:∵△ABC为正三角形,∴∠B=∠C=60°,∴∠ADB+∠BAD=120°,∵∠ADB+∠EDC=120°,∴∠BAD=∠EDC,∴△ABD∽△DCE,∴=,设正三角形边长为x,则=,解得x=9,即△ABC的边长为9,故选:A.3.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h•cosα【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=知BC==.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.4.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.8【分析】根据点D,E,F分别是OA,OB,OC的中点知=,由位似图形性质得=()2,即=,据此可得答案.【解答】解:∵点D,E,F分别是OA,OB,OC的中点,∴=,∴△DEF与△ABC的相似比是1:2,∴=()2,即=,解得:S△ABC=8,故选:D.5.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于()A.B.C.D.【分析】首先运用勾股定理求出斜边的长度,再利用锐角三角函数的定义求解.【解答】解:∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB=.∴cos A=,故选:D.6.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选:B.7.如图,在Rt△ABC中,∠A=90°,AC=6cm,AB=8cm,把AB边翻折,使AB边落在BC 边上,点A落在点E处,折痕为BD,则sin∠DBE的值为()A.B.C.D.【分析】解:根据折叠的性质,利用三角形的面积求出AD的长,再利用勾股定理即可求出BD的长,问题也就解决了.【解答】解:根据折叠的含义可以知道:△ABD≌△EBD,则AD=DE=x,在直角△ABC中利用勾股定理解得:BC=10,S△ABC=S ABD+S△BCD,即:AB•AD+BC•DE=AB•AC则8x+10x=48,解得:x=.在直角△ABD中,BD===,因而:sin∠DBE=sin∠ABD=.故选:D.8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A.B.C.D.【分析】根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.【解答】解:∵∠C=∠E,∠ADC=∠BDE,∴△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故选:A.9.如图,△ABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.10.如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量得杆底与坝脚的距离AB=3m,则石坝的坡度为()A.B.3 C.D.4【分析】先过C作CF⊥AB于F,根据DE∥CF,可得=,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴=,即=,解得CF=3,∴Rt△ACF中,AF==4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为==3,故选:B.11.如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是()A.①②③④B.①④C.②③④D.①②③【分析】根据平行四边形的性质得到AE=CE,根据相似三角形的性质得到==,等量代换得到AF=AD,于是得到=;故①正确;根据相似三角形的性质得到S△BCE=36;故②正确;根据三角形的面积公式得到S△ABE=12,故③正确;由于△AEF与△ADC只有一个角相等,于是得到△AEF与△ACD不一定相似,故④错误.【解答】解:∵在▱ABCD中,AO=AC,∵点E是OA的中点,∴AE=CE,∵AD∥BC,∴△AFE∽△CBE,∴==,∵AD=BC,∴AF=AD,∴=;故①正确;∵S△AEF=4,=()2=,∴S△BCE=36;故②正确;∵==,∴=,∴S△ABE=12,故③正确;∵BF不平行于CD,∴△AEF与△ADC只有一个角相等,∴△AEF与△ACD不一定相似,故④错误,故选:D.12.如图①是一个直角三角形纸片,∠A=30°,BC=4cm,将其折叠,使点C落在斜边上的点C′处,折痕为BD,如图②,再将②沿DE折叠,使点A落在DC′的延长线上的点A′处,如图③,则折痕DE的长为()A.cm B.2cm C.2cm D.3cm【分析】根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.【解答】解:∵△ABC是直角三角形,∠A=30°,∴∠ABC=90°﹣30°=60°,∵沿折痕BD折叠点C落在斜边上的点C′处,∴∠BDC=∠BDC′,∠CBD=∠ABD=∠ABC=30°,∵沿DE折叠点A落在DC′的延长线上的点A′处,∴∠ADE=∠A′DE,∴∠BDE=∠A′BD+∠A′DE=×180°=90°,在Rt△BCD中,BD=BC÷cos30°=4÷=cm,在Rt△BDE中,DE=BD•tan30°=×=cm.故选:A.二.填空题(共6小题)13.已知α是锐角,且tan(90°﹣α)=,则α=30°.【分析】先求出90°﹣α的度数,然后求出α的度数.【解答】解:∵tan(90°﹣α)=,∴90°﹣α=60°,∴α=30°.故答案为:30°.14.在△ABC中,若∠A、∠B满足|cos A﹣|+(sin B﹣)2=0,则∠C=75°.【分析】首先根据绝对值与偶次幂具有非负性可知cos A﹣=0,sin B﹣=0,然后根据特殊角的三角函数值得到∠A、∠B的度数,再根据三角形内角和为180°算出∠C 的度数即可.【解答】解:∵|cos A﹣|+(sin B﹣)2=0,∴cos A﹣=0,sin B﹣=0,∴cos A=,sin B=,∴∠A=60°,∠B=45°,则∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°,故答案为:75°.15.如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60°500m处,那么水塔所在的位置到公路的距离AB是250m.【分析】求出∠AOB,根据含30度角的直角三角形性质求出即可.【解答】解:∠AOB=90°﹣60°=30°,∵∠ABO=90°,OA=500m,∴AB=OA=250m,故答案为:250m.16.将一副三角尺如图所示叠放在一起,则的值是.【分析】由∠BAC=∠ACD=90°,可得AB∥CD,即可证得△ABE∽△DCE,然后由相似三角形的对应边成比例,可得:,然后利用三角函数,用AC表示出AB与CD,即可求得答案.【解答】解:∵∠BAC=∠ACD=90°,∴AB∥CD,∴△ABE∽△DCE,∴,∵在Rt△ACB中∠B=45°,∴AB=AC,∵在Rt△ACD中,∠D=30°,∴CD==AC,∴==.故答案为:.17.将边长分别为2、3、5的三个正方形按图所示的方式排列,则图中阴影部分的面积为.【分析】因为阴影部分的面积=S正方形BCQW﹣S梯形VBCF,根据已知求得梯形的面积即不难求得阴影部分的面积了.【解答】解:∵VB∥ED,三个正方形的边长分别为2、3、5,∴VB:DE=AB:AD,即VB:5=2:(2+3+5)=1:5,∴VB=1,∵CF∥ED,∴CF:DE=AC:AD,即CF:5=5:10∴CF=2.5,∵S梯形VBFC=(BV+CF)•BC=,∴阴影部分的面积=S正方形BCQW﹣S梯形VBCF=.故答案为:18.如图,点D在△ABC内,连接BD并延长到点E,连接AD,AE,若∠BAD=20°,,则∠EAC=20°.【分析】由条件可证得△ADE∽△ABC,可得∠DAE=∠BAC,即∠BAD+∠DAC=∠DAC+∠CAE,可得∠BAD=∠CAE,可得出答案.【解答】解:∵,∴△ADE∽△ABC,∴∠DAE=∠BAC,∴∠BAD+∠DAC=∠DAC+∠CAE,∴∠EAC=∠BAD=20°,故答案为:20°.=1:19.如图,以▱ABCD中,如果点M是CD中点,AM与BD相交于点N,那么S△DMN:S▱ABCD12 .【分析】由平行四边形可证三角形的相似性,然后根据相似比求出面积比.【解答】解:∵AB∥CD∴△ABN∽△MDN∴AN:MN=AB:DM=2:1∴S△DMN:S△ADN=1:2,即S△DMN=S△ADM又S△ADM=S▱ABCD=1:12.故S△DMN:S▱ABCD20.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB离地面的距离为 1.8 m.【分析】直接利用相似三角形的判定与性质得出两三角形的相似比,再利用对应高的比也等于相似比进而得出答案.【解答】解:∵AB∥CD,∴△PAB∽△PCD,∵AB=2m,CD=6m,∴=,∵点P到CD的距离是2.7m,设AB离地面的距离为:xm,∴=,解得:x=1.8,故答案为:1.8.三.解答题(共6小题)21.为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠PAB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠PAB=30°,∠ABP=120°,∴∠APB=180°﹣∠PAB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BPA=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.22.如图,AD是△ABC的中线,tan B=,cos C=,AC=.求:(1)BC的长;(2)sin∠ADC的值.【分析】(1)过点A作AE⊥BC于点E,根据cos C=,求出∠C=45°,求出AE=CE =1,根据tan B=,求出BE的长即可;(2)根据AD是△ABC的中线,求出BD的长,得到DE的长,得到答案.【解答】解:(1)过点A作AE⊥BC于点E,∵cos C=,∴∠C=45°,在Rt△ACE中,CE=AC•cos C=1,∴AE=CE=1,在Rt△ABE中,tan B=,即=,∴BE=3AE=3,∴BC=BE+CE=4;(2)∵AD是△ABC的中线,∴CD=BC=2,∴DE=CD﹣CE=1,∵AE⊥BC,DE=AE,∴∠ADC=45°,∴sin∠ADC=.23.一条船在松花江某水段自西向东沿直线航行,在A处测得航标C在北偏东60°方向上,前进100m,到达B处,又测得航标C在北偏东45°方向上,已知在以C为圆心,120m 长为半径的圆形区域内有浅滩,如果这条船继续前进,有没有搁浅的危险?( 1.73)【分析】过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.【解答】解:过C作CD⊥AB于D,设BD=x,∵CD⊥AB且∠CBD=45°,∴BD=CD=x在Rt△ACD中,tan30°=∴=,解得x=50(+1)≈137∵137>120,故如果这条船继续前进,有没有搁浅的危险.24.如图,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.(1)求AD的长;(2)求矩形DMNC与矩形ABCD的相似比.【分析】(1)矩形DMNC与矩形ABCD相似,对应边的比相等,就可以得到AD的长;(2)相似比即为是对应边的比.【解答】解:(1)由已知得MN=AB,MD=AD=BC,∵矩形DMNC与矩形ABCD相似,,∵MN=AB,DM=AD,BC=AD,∴AD2=AB2,∴由AB=4得,AD=4;(2)矩形DMNC与矩形ABCD的相似比为=.25.如图,△ABC中,BC=24cm,高AD=12cm,矩形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,且EF:EH=4:3,求EF、EH的长.【分析】如图,证明△AGH∽△ACB,运用相似三角形的性质列出比例式,问题即可解决.【解答】解:∵EF:EH=4:3,∴设EF=4λ,则EH=3λ;由题意得:HG∥BC,KD=EH=3λ,HG=EF=4λ;∴△AGH∽△ACB,而AD⊥BC,AK⊥HG,∴,解得:λ=,∴EF=4λ=,EH=3λ=.26.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q 作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【分析】(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△AQP∽△ABC;(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.①当点P在线段AB上时,如题图1所示.由三角形相似(△AQP∽△ABC)关系计算AP的长;②当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP的中点,从而可以求出AP.【解答】(1)证明:∵PQ⊥AQ,∴∠AQP=90°=∠ABC,在△APQ与△ABC中,∵∠AQP=90°=∠ABC,∠A=∠A,∴△AQP∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠QPB为钝角,∴当△PQB为等腰三角形时,①当点P在线段AB上时,如题图1所示.∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴=,即=,解得:PB=,∴AP=AB﹣PB=3﹣=;(II)当点P在线段AB的延长线上时,如题图2所示.∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为或6。
2018年徐汇区初三数学二模卷及答案
徐汇区初三数学 本卷共4页 第1页2018年徐汇区初三数学二模卷(满分150分,考试时间100分钟) 2018。
4考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列算式的运算结果正确的是 A 。
326m m m ⋅=; B. 532m m m ÷=(0m ≠);C. 235()m m --=;D. 422m m m -=.2.直线31y x =+不经过的象限是A .第一象限;B .第二象限;C .第三象限;D .第四象限.3 .如果关于x的方程210x +=有实数根,那么k 的取值范围是A .0k >;B .0k ≥;C .4k >;D .4k ≥. 4.某射击选手10次射击的成绩统计结果如下表,这10次成绩的众数、中位数分别是5.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于A .45°;B .60°;C .120°;D .135°.6.下列说法中,正确的个数共有(1)一个三角形只有一个外接圆;徐汇区初三数学 本卷共4页 第2页(2)圆既是轴对称图形,又是中心对称图形; (3)在同圆中,相等的圆心角所对的弧相等; (4)三角形的内心到该三角形三个顶点距离相等.A .1个;B .2个;C .3个;D .4个. 二、填空题:(本大题共12题,每题4分,满分48分) [请将结果直接填入答题纸的相应位置] 7.函数12y x =-的定义域是 ▲ . 8.在实数范围内分解因式:22x y y - = ▲ 。
【最新精编】2018-2019年小升初数学毕业升学考试试卷(共10套试卷)
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
2018年全国高考理科数学(全国一卷)试题及参考答案(2021年整理)
(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2018年全国高考理科数学(全国一卷)试题及参考答案(word版可编辑修改)的全部内容。
2018年全国普通高等学校招生全国统一考试(全国一卷)理科数学一、选择题:(本题有12小题,每小题5分,共60分。
) 1、设z=,则∣z ∣=()A 。
0B.C.1D.2、已知集合A={x|x 2-x —2>0},则A =()A 、{x |-1〈x 〈2}B 、{x |—1≤x ≤2}C 、{x |x<-1}∪{x |x>2}D 、{x|x ≤-1}∪{x |x ≥2}3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()建设前经济收入构成比例 建设后经济收入构成比例A、—12B、—10C、10D、125、设函数f(x)=x3+(a—1)x2+ax。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年济南市九年级学业水平模拟考试
数学试题
考试时间:120分钟满分150分
第I卷(选择题共48分)
一、选择题(本大题共12小题,每小题4分,共48分。在每小题列出的四个选项中,只有一项
是符合题目要求的。)
1.-2的绝对值是()
A.2B.-2C.21D.-
2
1
2.2017年济南市GDP总量实现历史性突破,生产总值达386000000000元,首次跃居全市第二。将
386000000000用科学计数法表示为()
A.3.86×1010B.3.86×1011C.3.86×1012D.3.86×10
9
3.下图是由4个相同的正方体搭成的几何体,则其俯视图是
A.B.C.
D.
4
.下列运算正确的是()
A.x2+x3=x5B.(x﹣2)2=x2﹣4C.(x3)4=x7D.2x2⋅x3=2x
5
5.如图,AB∥DE,FG⊥BC于F,∠CDE=40°,则∠FGB=
()
A.40°B.50°C.60°D.70°
6.关于x的一元二次方程mx
2
﹣(m+1)x+1=0有两个不等的整数根,第5题图
m为整数,那么m
的值是()
A.﹣1B.1C.0D.±1
7.在△ABC中,∠C=90°,BC=2,sinA=,则边AC的长是()
A.B.3C.D.第8题图
8.二次函数y=ax2+bx+c(a≠0
)的图象如图所示,则下列结论中正确的是()
A.a>0B.c<0C.当﹣1<x<3时,y>0D.当x≥1时,y随x
的增大而增大
9
.下列说法正确的是()
A.“明天降雨的概率是60%”表示明天有60%
的时间都在降雨
B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上
C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”
这一
事件发生的概率稳定在附近
10.如图,数学实践活动小组要测量学校附近楼房CD的高度,在水平地面A处安置
测倾器测得楼房CD顶部点D的仰角为45°,向前走20米到达A′处,测得点D的仰
角为67.5°,已知测倾器AB的高度为1.6米,则楼房CD的高度约为(结果精确到0.1
米,≈1.414)()
A.34.14米B.34.1米C.35.7米D.35.74米第10题图
11.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径
画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的
长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法
中正确的个数是()
①AD是∠BAC的平分线;②∠ADC=60°;第11题图
③点D在AB的中垂线上;④S
△DAC:S△
ABC
=1:3.
A.1B.2C.3D.4
12.如图,在菱形ABCD中,BD=8,tan∠ABD=,点P从点B出发,沿着菱形的对角线出发运动到点D
,
过点P作BD的垂线,分别与AB、BC或AD、CD交于点E、F,过点E、F作BD的平行线,构造矩形EFGH,
设矩形EFGH的面积为y,点P运动的路程为x,则y与x的函数图象大致是()
A.B
.
C.D.