连续油管压裂工艺技术现状及应用

合集下载

连续油管带底封分段压裂技术

连续油管带底封分段压裂技术

1、工艺介绍
连续油管带底封分段压裂技术是一种高效的分段压裂工艺,一套工具即完成所 有任务,工具串起出井筒后即具备生产条件,且便于后期修井作业,不需要其 他的桥塞、滑套、沙塞、钻塞等工序,有效节约成本,每层正常作业时间在3小 时左右,具有很大的优势,值得推广。
一趟管柱施工 全通径 高效、节能 无限级 反洗能力 压力监控
3、安东技术服务能力
工具服务能力—喷枪
喷枪孔眼直径:4.7625mm(3/16“),孔眼数:4孔/段、孔眼相位:90°。 喷砂射孔参数(每段):排量0.6m3/min砂浓度100Kg/m3,喷射时间10-
15min,射孔液量4.2m3。20/40目石英砂量。 按照设计喷嘴组合和喷射排量,速度可以达到152m/s,具有短时间内射开
3、安东技术服务能力
--特色辅助设备
针对拖动压裂技术服务,自主设计定制了专用辅助工具,可供 选择使用。
专用回压控制管汇组合,并提供控压指导 实现回压控制精准 提供油嘴、针阀双控制 承压70MPa 具备应急通道
设计制作专用沙漏,实现砂比的精确控制
设计专用高压过滤器,避免喷嘴堵塞
3、安东技术服务能力
4、技术应用情况
➢ B试油队注意事项: 1、放喷管汇:从施工中现场可以看出,在施工压力较高的情况下,回压控制 的难度加大,针阀起着非常重要的作用。现场流程需同时满足连续油管正循 环、反循环的要求。放喷管线出口通过针阀+油嘴控制,至少具备2条控制管 线、1条敞放管线,要求能够精准、迅速控制回压在指定范围。 2、现场井口流程需提前配对、试压,待现场流程接好后将整改十分困难。
3、安东技术服务能力
--连续油管管柱
储备全尺寸连续油管,1 1/4 " -2 3/8 " ,工艺适应范围广 2 3/8 "管柱长达4500m 配备大尺寸油管滚筒撬,满足各施工区域调配需要 保障基地常规储备10套作业管柱,可根据施工需求随时调配

连续油管技术的应用发展与存在的问题 职称论文

连续油管技术的应用发展与存在的问题  职称论文

连续油管技术的应用发展与存在的问题1、连续油管技术应用状况及发展趋势1. 1 国外应用状况及发展趋势自从1962 年世界上第 1 台连续油管作业机问世并开始用于石油工业以来,经过40 多年的发展,现已成为世界油气工业技术研究和应用中的一个热点。

1993~2003 年,全球连续油管装置在这10年期间增加了1倍,截止2003年年底达1050台套。

2001 年,全球连续油管技术服务市场收入为10亿美元,而连续油管装置和管材市场分别为3 亿美元和9 000万美元。

国外连续油管技术已能够对陆地和海上油气井进行20 多种作业。

国外连续油管技术主要是作为传输流体的通道,基本用于洗井、基质酸化和氮气举升,2001 年占连续油管服务收入的77 %。

目前连续油管技术已经扩展到钻井、修井、测井、射孔以及增产措施等领域。

连续油管修井已代表着当今世界修井技术的发展方向,并将作为一种常规、高效的作业技术在世界范围内普及。

目前连续油管最大钻井深度已超过6900 m,其外径由原来的12.17 mm发展到12.17mm~168.12mm。

可以说,世界石油工业正在经历一次连续油管技术革命。

1. 2 国内应用状况及发展趋势我国引进和利用连续油管技术始于70 年代。

1977 年,我国引进了第1 台Bowen Oil Tool s (波恩工具公司) 的产品。

四川油田首先利用引进的连续油管设备进行气井小型酸化、注氮排残酸、气举降液、冲砂、清蜡等一些简单作业。

大庆油田自1985 年引进连续油管设备以来,共在100 多口井中进行了修井等多种井下作业。

吐哈油田自1994 年引进连续油管设备以来,每年的作业量不断增加。

连续油管技术在我国油田已经得到认可。

2、连续油管作业工艺2. 1 修井和井下作业利用连续油管设备进行注液氮和泡沫工艺技术开辟了深井完井、重新完井及修井的新领域,特别是对4600 m 以上的深井,可选择一种或几种液氮装置与连续油管设备并用,进行常规的修井和井下作业。

水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究随着石油勘探开发逐渐深入,传统的采油方式已经不能满足对油气资源的需求,于是针对水平井连续油管分段压裂技术进行了深入研究。

水平井连续油管分段压裂技术是一种利用高压流体对水平井管道进行压裂处理的技术,可以提高产能、改善采收率,对于油气资源的开发具有重要意义。

本文将对水平井连续油管分段压裂技术进行深入探讨,并就该技术的发展趋势进行分析,旨在为相关研究和应用提供参考。

一、技术原理及工艺流程1. 技术原理水平井连续油管分段压裂技术是将井筒分成若干段,并在每段管道中进行高压液体的注入,从而使岩石产生裂缝,增加油气流通通道,提高采收率的一种技术。

该技术依靠高压液体对井筒进行水平压裂,从而改善油井的产能和采收率。

2. 工艺流程水平井连续油管分段压裂技术的工艺流程通常包括以下几个步骤:(1)确定井筒划分:根据水平井的地质条件和井下的情况,确定井筒的划分段数。

(2)管道预处理:对将进行压裂的管道进行清洗、除锈等预处理工作,保障压裂效果。

(3)压裂液体配置:根据地质条件和需要进行压裂的管段数,配置适量的高压液体。

(4)压裂操作:将配置好的高压液体通过压裂设备注入到对应的管段中,对井筒进行压裂处理。

(5)监测评估:对压裂效果进行实时监测和评估,确定是否需要进行进一步的处理。

二、技术关键及难点水平井连续油管分段压裂技术的关键在于对压裂液体的配置和注入技术的控制。

压裂液体的配置需要根据地质条件和井下情况进行精确的计算,以保证压裂的效果。

注入技术的控制也是关键,需要确保高压液体能够均匀注入到井筒的各个管段中,使压裂效果达到最佳状态。

2. 技术难点水平井连续油管分段压裂技术的难点主要在于井下条件的不确定性。

由于水平井通常处于地下较深处,地质条件较为复杂,加之井下环境具有一定的危险性,因此对于井下情况的监测和控制是技术的难点所在。

对于井下管道的清洁和预处理工作也是技术的难点之一。

三、技术发展现状目前,水平井连续油管分段压裂技术已经在一些具有先进采油工艺的油田得到应用,并取得了一定的成效。

水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究

水平井连续油管分段压裂技术研究水平井连续油管分段压裂技术是一种有效的增产技术,近年来得到了广泛应用。

本文将就此技术进行研究探讨。

一、技术原理水平井连续油管分段压裂技术,是在水平井开采中分别在油管里加装水平节间压裂器的情况下,采用不同压裂泵与油管连接,通过压裂液在水平井管道内不断向下流动,并在沿途深度可变位置进行压裂作业的技术。

技术原理总结为三点:1、水平井连续油管分段压裂是利用高压水力力学原理,在工作饱和井段的各级破裂压力下,对地层进行破裂作业,以达到增产改造的目的。

2、连续油管分段压裂技术可以在不改变水平井原有场地设备、不改变井筒完井方式的前提下,实现油藏有效压裂增产。

3、连续油管压裂技术,还可规避了传统压裂技术中,多次压裂可能引起井筒等管理、环保问题。

二、技术优势1、可在水平井井筒设备不变的情况下实现压裂作业,不需要在地面或井口进行复杂的增产改造。

可以最大限度保护现有的设施,降低改造的成本。

2、输入压裂泵的压力随着深度不同而调整,使得压力在地层各处平衡,从而达到高效压裂的效果,同时避免了传统压裂低效率的问题。

3、每个节段是独立压裂的,由于其相互独立性,假如其中一个节段出现失效,不会影响到其他段的生产作业。

4、可以实现对水平井井筒深层目标油藏的有效压裂,使得原先难以开采的油气资源可以被充分利用。

三、技术难点及解决方案水平井连续油管分段压裂技术的应用仍存在着一些难点,需要进一步研究和攻克。

主要表现为以下三个方面:1、整个油管道的压裂过程及油气井筒破裂的原理机理,都需要进一步明确。

具体而言,需要深入研究油气井地层力学特性、井段控制方法以及压裂对油藏的长期效应等问题。

2、分段压裂实时监测技术。

目前水平井连续油管分段压裂技术还存在对于油气井破裂效果的实时监控技术难度,需要进一步研究其监控方法和设备。

3、压裂流体的安全性。

该技术需要大量使用压裂流体,其中包含部分有害化学物质,可能对环境造成一定风险。

因此,在技术推广中要注意压裂流体的安全性管理问题。

连续油管底封拖动压裂技术研究与应用

连续油管底封拖动压裂技术研究与应用

连续油管底封拖动压裂技术研究与应用摘要:连续油管底封拖动压裂技术包括三项核心功能:精确定位、水力喷砂射孔以及套管环空压裂。

利用所配的套圈定位装置,可以实现对管柱的精确定位,使得水力喷枪的打孔位置尽可能地与设计打孔深度保持一致,并且偏差可以控制在0.1米之内;水力喷枪在一定的压力及排水量下,可将所携带的钻井液以极快的速度喷射出去,击穿钻井液及钻井液,并将钻井液抛向岩层深处,实现钻井液的目的。

水力喷砂射孔可以有效地克服射孔荷载的挤压效应,从而改善了孔眼的穿透性,对于薄差岩层也具有良好的穿透性。

同时由于其简单的拖拉操作和高的工作效率,使得其适合于多层储层的改造,能够在最优的层位上形成最优的裂隙组合,大大提升了储层的改造效果。

本文从连续油管底封拖动压裂技术的应用出发,详细论述了现场施工存在问题及分析及其解决策略。

关键词:连续油管;带底封拖动;压裂技术引言由于采用了以短套管为基准的定位技术,连续油管底封拖动压裂技术相对于传统的管压裂更加精确,可以在理论上进行无限制的层状/分段式压裂,从而有效解决了直井多层、薄互层和多组压裂组之间不能一致地进行改造的问题。

在此项技术的实施过程中,利用成井的基础资料,可以对井壁的构造及储层的物理性质进行有效评价;从射孔方案设计、压裂施工参数设计、设备选型、支撑剂和液体的制备、管柱强度论证、流程安装设计、井下工具设计、放喷试验等方面,为实际工程的实施奠定了坚实的基础。

单组连续油管钻具在7-10个层位的情况下,通过“一趟钻”,实现了无压力、无喷射、无压力、安全、可靠的操作,有效减少了起、下钻次数,提高了压裂井(尤其是压裂水平井)的工作效率。

但是当前,在设备、工具、液体以及工艺执行等方面,仍然存在着一定的困难,因此,必须对这些困难展开有针对性的优化和改进,并提出对应的优化和改进措施,从而让这项工艺降本、增效、安全和环保的技术优势得到进一步的提高。

一、井下工具冲蚀严重(一)问题及原因1.刚性扶正器的冲蚀损伤一方面,在压裂完成起钻时,钢结构支承件的下部支承件受到了较大的冲刷破坏。

提高连续油管技术应用水平的措施探讨

提高连续油管技术应用水平的措施探讨

提高连续油管技术应用水平的措施探讨1. 引言1.1 当前连续油管技术应用现状当前连续油管技术在油田开发中的应用已经成为一种常见的生产方式。

这种技术通过在井口和油田地面设备之间利用一根连续的油管来输送原油、天然气和水。

目前,我国油田生产中广泛使用连续油管技术,特别是在复杂地质条件下的油田开发中,其应用更为突出。

连续油管技术的应用不仅提高了生产效率,还减少了作业环节和人力物力投入,降低了生产成本。

随着油气资源勘探程度的不断提高,对连续油管技术的需求也日益增加。

目前我国仍存在一些连续油管技术应用不够成熟和标准不够统一的问题,需要进一步提高技术水平,以适应不断变化的油气市场需求。

1.2 连续油管技术的重要性连续油管技术是一种钻井和生产作业中的重要技术手段,其作用重大,具有不可替代的作用。

连续油管技术可以帮助提高油田的产能和产量,通过实现油井的连续作业,可以有效降低采油周期和成本,提高采油效率,从而实现对油田资源的最大化开发和利用。

连续油管技术还能够提高油田的安全生产水平,通过自动化监控和控制,可以减少人为操作错误的风险,确保油田作业的安全可靠性。

连续油管技术还可以实现油井的在线监测和故障诊断,及时发现和解决问题,提高油田生产的稳定性和连续性。

连续油管技术在油田开发中的重要性不可忽视,其应用水平的提高将对油田开发产生积极的影响。

1.3 研究目的连续油管技术在油田开发中起着至关重要的作用,但目前应用水平还有待提高。

本文旨在探讨提高连续油管技术应用水平的相关措施,以期为油田开发提供更有效的支持。

具体研究目的包括以下几点:1. 分析当前连续油管技术应用现状,找出存在的问题和不足之处,为提升技术水平奠定基础。

2. 探讨技术创新对连续油管技术应用水平提升的关键作用,为技术改进提供方向。

3. 探讨加强人才培养和技术交流对提高连续油管技术应用水平的重要性,为人才队伍建设提供参考。

4. 探讨建立完善的技术标准和规范体系对连续油管技术应用水平提升的作用,为技术规范化提供支持。

塔里木油田连续油管技术应用现状及前景分析

塔里木油田连续油管技术应用现状及前景分析

塔里木油田连续油管技术应用现状及前景分析塔里木油田位于中国新疆维吾尔自治区塔里木盆地,是中国重要的油气田之一、随着国内石油需求的日益增长,该油田的开发建设和技术创新日趋重要。

在塔里木油田的开发过程中,连续油管技术被广泛应用,并取得了一定的成果。

本文将对塔里木油田连续油管技术的应用现状及前景进行分析。

目前,塔里木油田连续油管技术主要应用于油井采收、输送和监测等环节。

在油井采收方面,连续油管技术能够提高采收效率和降低成本。

相比传统的单道井,使用连续油管技术可以减少油井施工时间和工程成本,提高油井的生产能力。

在输送方面,连续油管技术能够保证油气的安全输送,减少泄漏和损耗。

在监测方面,连续油管技术能够实现对井下情况的实时监测,及时掌握油田的运行状态,提高生产效率和资源利用率。

虽然塔里木油田连续油管技术已经取得了一些成果,但仍存在一些问题和挑战。

首先,连续油管技术的应用还不够广泛,部分油田仍然采用传统的单道井施工方式,导致资源浪费和生产效率低下。

其次,连续油管技术在应用过程中仍然存在一定的技术难题,如油管强度、耐酸碱等方面的要求较高,需要进一步完善和提升技术水平。

此外,连续油管技术在环境保护和安全管理方面也面临一些挑战,需要解决相关的问题和难题。

从前景来看,塔里木油田连续油管技术有望继续发展和创新。

随着石油资源的逐渐枯竭和国内能源需求的增长,连续油管技术在油井建设和生产中的应用将越来越重要。

其采用环保材料,可降低环境污染。

此外,随着技术的进步和发展,连续油管技术的成本也将得到进一步降低,提高了其应用的经济效益。

另外,连续油管技术还具有扩展性,可应用于其他油气田以及海洋油田等领域,在全国范围内推广应用,具有较大的市场前景。

总之,塔里木油田连续油管技术在油井采收、输送和监测等环节的应用已取得一定的成果。

然而,该技术在应用过程中仍然面临一些挑战和问题,需要进一步加强研究和创新。

从前景来看,随着石油资源的日益枯竭和国内能源需求的不断增长,连续油管技术有望在塔里木油田和其他领域得到广泛应用,具有较大的市场潜力。

连续油管压裂技术现状

连续油管压裂技术现状

连续油管压裂技术现状概况连续油管起源于二次世界大战期间,自六十年代开始用于石油工业。

全世界的连续油油管作业设备,1962年第1台,七十年代中期有约200多台, 1993年有约561台;2001年2月有约850台;2004年1月有约1050台,主要分布在北美、南美和欧洲等地。

目前,在国际市场上的连续管服务队伍拥有450多台连续油管设备,加拿大有239台,美国有253台。

我国已经引进了大约16套连续油管作业设备,主要用于修井作业,还未用于钻井。

连续油管起初作为经济有效的井筒清理工具而在市场上赢得了立足之地。

传统的修井和完井作业的经济收入占连续油管作业总收入的四分之三以上。

连续油管设备在油气田上的应用范围持续扩大,连续管钻井技术和连续管压裂技术成为近年来发展最快的两项技术。

连续油管压裂是一种新的安全、经济、高效的油田服务技术,从九十年代后期开始在油、气田上得到应用,截止2001年,连续油管压裂井数估计超过5000口。

连续油管压裂作业已经在加拿大应用多年。

实际上,前面所述的连续油管压裂井的大多数属于加拿大的气井。

现在,美国的几个地区,主要是科罗拉多(Colorado)、德克萨斯(Texas)、亚拉巴马(Alabama)和弗吉尼亚(Virginia),也已进行连续油管压裂作业。

在英国的英格兰(England)和爱尔兰(Ireland)也已经实施了连续油管压裂作业。

连续油管压裂作业是在陆上的油、气井中实施的。

压裂层位的深度为3000英尺左右,最大深度约10000英尺。

实践表明,连续油管压裂技术特别适合于具有多个薄油、气层的井进行逐层压裂作业。

同传统压裂相比,连续油管压裂具有下列优点:●起下压裂管柱快,移动封隔器总成位置快,从而大大缩短作业时间。

●能在欠平衡条件下作业,不需要压死井,从而减轻或避免油气层伤害。

●能使每个小层都得到合理的压裂改造,从而使整口井的压裂增产效果更好。

●一次下管柱逐层压裂的层数多,可以多达十几个小层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、连续油管带底封拖动压裂优化和改进方案
(一)51/2套管不能及时带压下钻,导致排液效果不佳
主要对比苏里格气田三个大丛式姊妹井场有常规压裂、套管滑套、连续油管拖动压裂。主要从施工工艺、关井压力、返排率、日产气量、无阻流量等多个因素对比带压下钻和排液对后期产量的影响。
对比苏54-24-80井组发现,就关井压力数据分析机械分层最高、其次是41/2套管滑套、最后是51/2套管的连续油管拖动压裂,桃2-25-7井组也存在类似情况,连续油管压裂因带压下钻时间间隔较长,关井压力相差较大,这也刚好印证了气层套管管径大小对后期排液的影响,加之套管滑套和连续油管拖动后期需要等待带压下钻,该井组等待带压下钻时间为7-36天不等,由此造成的井筒沉砂和基液无法及时返排而影响改造效果和后期产量。
连续油管压裂工艺技术现状及应用
摘要:低渗透薄互层油气田是长庆油田稳定发展的重要资源。针对长庆油田这样的储层,连续油管水力喷射底封压裂是解决纵向多层压裂难题的有效手段。通过连续油管连续上提、下放、有效解决了传统压裂方法中压裂级数受限、作业时间长的弊端,同时能够准确压裂地层、准确进行支撑剂充填。本文主要针对连续油管压裂现场应用、连续油管作业设备、作业工艺和作业工具分别进行了阐述,对压裂施工中存在的问题进行探讨和分析、制定出相应的现场措施、降低现场连续油管底封压裂施工风险。
关键词:气田;连续油管拖动压裂;评估;实例
一、连续油管带底封拖动压裂技术特点
(一)连续油管带底封拖动压裂原理
连续油管带底封拖动压裂管柱从上至下为:〞连续油管+外卡式连续油管接头+机械安全接头+喷射器+封隔器+机械接箍定位器+导向扶正器连接组成。
工作原理:通过连续油管与工具连接后下入井底,在拖动工具的过程中通过机械定位器实现精确定位,定位后将封隔器坐封,通过连续油管以一定排量将具有一定砂浓度的射孔液通过喷咀进行喷砂射孔。射孔完毕后通过环空进行压裂,压裂结束后上提管柱解封封隔器,再次定位进入下一层后再次坐封封隔器,开始第二层压裂,以此循环方式完成所有层段的压裂后,上提连续油管出井口保持井筒的全通径,后期排液结束后下小管径投产管柱。
(二)压裂期间,刚性扶正器反溅冲蚀损伤严重,增加了喷射器落井风险
目的层第一次喷射效果不佳导致地层破压不明显、压不开地层。下调喷点二次喷射期间,刚性扶正器下扶正块正好位于上一次喷射喷点位置,压裂加砂期间,携砂液在下扶正块上部与原喷点的环空间隙形成扰流,刺伤冲蚀下扶正块。其次41/2″小井眼底封压裂施工环空注入排量从5.0m3/min降至3.5m3/min,扶正器最大外径也从116mm减小到92mm,携砂液经过刚性扶正器的增速明显大于51/2″低封压裂携砂液的增速,携砂液对扶正块下游的变扣冲击力更大,冲蚀也更加严重。
可重复多次的坐封工具:近些年连续油管带底封拖动压裂在气井实现了最多六层的连续施工,在油井连续干过八层的连续施工,这足以说明坐封工具对于现在多层段改造已比较成熟。
可控制回压的节流管汇:现场压裂过程通过调节和更换地面节流管汇中不同尺寸的节流油咀,起到控制和平衡施工压力,防止封隔器上顶解封,现场应用效果良好。
(五)油嘴尺寸选择不合理、导致喷砂射孔压力高,油套压差过大
在射孔过程中,正常油套压差一般在30-35MPa,但部分井施工期间,油套压差已超过40MPa,虽然节流管汇油嘴尺寸过小能有效防止了封隔器解封,但造成回压过大,进而导致喷射压力过高,油套压差大。其次施工液体采用传统的胍胶压裂液体系,降摩阻效果不佳。第三采用长度5000m以上的2″连续管作为施工管柱、内径小、管柱长、施工摩阻过大。
(三)连续油管压裂回压控制不住,导致封隔器解封
在现场连续油管底封压裂施工过程中发现,回压控制现场更多依赖邻近施工参数作为参考,主要依托连续油管加钻压的方式实现。但是在套放打开的阶段,在没有很好回压控制的基础下,管柱波动极易导致封隔器解封。喷射过程中管柱的波动也容易导致封隔油管带底封拖动压裂现状
(一)因喷咀堵塞导致现场喷射失败或工具丢手落井
由于现场返排液回用,压裂过程中油注往往混掺返排液或者直接回用未处理的返排液,返排液中杂质堵塞喷嘴导致连续油管安全接头憋压丢手,工具落井。其次破压成功后个别施工井切换压裂流程较慢,连续油管泵车未能及时起泵,导致环空沉砂阻塞喷咀起泵憋压,工具串丢手落井。
(二)连续油管带底封拖动压裂后续改进措施
(1)近年来41/2″小井眼的压裂施工增多,针对小井眼底封压裂刚性扶正器反溅冲蚀损伤严重的情况,采取去掉刚性扶正器的做法,避免扶正器冲蚀严重而造成工具落井。其次针对喷咀加装陶瓷盖板,防止喷砂射孔过程中反溅伤害。
(2)现场压裂建议主要通过采用油嘴尺寸选择控制回压,辅助依靠连续油管加钻压的方式。防止过度依赖连续油管加钻压的做法去平衡地层压力。
射孔完毕顶替结束后,关套放进行破压试验,个别地层破裂压力较高,经过一次或两次破压试验任无法顺利压开,需开套放进行泄压,进行三次破压或挤酸作业,在此过程中在破压失败停泵后,环空的射孔砂沉很快沉降至喷点与封隔器之间堵塞缝口、喷嘴。其次在地层顺利破开后,连续油管泵车起泵衔接不连续,出现环空沉砂堵塞缝口、喷嘴,导致后期油注、环空提排量后施工压力超压停泵。
(二)连续油管带底封拖动压裂的关键因素
实现连续油管带底封拖动压裂的关键因素:高强度水力喷射工具、可重复多次的坐封工具、可控制回压的节流管汇。
高强度水力喷射工具:水力喷砂射孔主要的问题之一是喷嘴的使用寿命,特别是针对无限极压裂重复使用的喷射工具及其连接工具的强度。在多层压裂或压裂规模较大的情况下,喷嘴寿命仍然是一个限制因素,因此喷砂射孔选择的是40-70目石英砂。首先石英砂密度较低易于泵送更能有效射开地层、喷射过程中可减少颗粒因相互碰撞而降低的射流速度、也可将喷射过程的反溅伤害降到最低。其次使用环空压裂时,仅最初的120 kg/m3的射孔液是通过喷射器泵入的,且只在处理过程的喷射起裂阶段,所以喷嘴被腐蚀的情形大大被减轻。并且利用环空加砂能有效的延长工具寿命。
相关文档
最新文档