用复数证明托勒密定理

合集下载

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

(答案)奥赛经典-奥林匹克数学中的几何问题---参考答案(第3-5章)

第三章 托勒密定理及应用习题A1.由CDE BAE △∽△和CBE DAE △∽△,有4BE AB CE =,4DEAD CE=,对四边形ABCD 应用托勒密定理,有()()416BE DEBD AE CE AB AD CE+⋅+=+=⋅.令CE x =,得方程26160x x +-=,求得2x =(舍去了负值).于是12BE DE CE AE ⋅=⋅=.又8BD BC DC <+=,求得3BE =,4DE =或4BE =,3DE =,总之7BD =为所求.2.连EF ,DF ,由FBC FBD FED FAC ∠=∠=∠=∠,ABF EBF EDF ACF ∠=∠=∠=∠,知EDF EDF △∽△,即EF DE DF AF AC CF==.设其比值为k (k 为参数),则EF kAF =,DE kAC DF kCF =⋅=,对四边形BEFD 应用托勒密定理.有()BE EF DF BF DE +=⋅,即()BE k AF k CF BF k AC ⋅+⋅=⋅⋅注意到BE AC =,消去k ,得BF AF CF =+.3.连AC ,在四边形APCD 中应用托勒密定理,有PA PC AC PB AB +=4.连11l l 11,,B D DC B C ,设CAD α∠=,BAD β∠=,O ⊙的半径为R .由AD 为BC 上中线,可令12ABC ACD ABC S S S k ===△△△.由正弦定理有112sin B D R β=⋅,112sin()C D R αβ=⋅+.对四边形111AB D C 应用托勒密定理,有1112sin 2sin 2sin()AB R αAC R βAD R αβ⋅⋅+⋅⋅=⋅⋅+,消去2R ,两边同乘以 12AB AC AD ⋅⋅得111122ACD ABD ABC AB AB S AC AC S AD AD S ⋅⋅+⋅⋅=⋅⋅△△△,亦即 1112AB AB AC AC AD AD ⋅+⋅=⋅,由此即证.5.连1535,A A A A ,则1514A A A A =,3513A A A A =.对四边形1345A A A A 应用托勒密定理,有 3413151435()A A A A A A A A A A ⋅+=⋅,即1213141413()A A A A A A A A A A +=⋅,由此整理即证.6.对四边形AB A B ''应用托勒密定理,有11a b cc AB A B '''=+⋅,即11111a b c cc c AB A B c '''=+⋅⋅,同理,对四边形B CA C ''',AB BC '',AA BC ''分别应用托勒密定理,有1AB A B c AB B C b AB A C a '''''''⋅⋅=⋅⋅+⋅⋅,1AB B C b abc bb b '''⋅⋅=+,1AB A C a a b c aa a '''''''⋅⋅=+.由此四式即证得结论.7.设圆心O 到AB ,BC ,CA 的距离分别为1x ,2x ,3x ,连接BO 并延长与O ⊙交于D ,连AD ,DC ,则12AD x =,22CD x =,对四边形ABCD 应用托勒密定理有12222x a x c Rb +=.同理,23222x b x a Rc +=,13222x b x c Ra +=.加之1232()2()2()2()x a b x b c x c a R a b c +=+++=++,但123()cx ax bx r a b c ++=++,以上两式相加得123x x x R r ++=+.但11x R h =-,22x R h =-, 33x R h =-,由此即证.8.作一直径(11)AB x x =≥的圆,在B 的两侧分别取C ,D 二点,使2BC =,11BD =,于是AC =AD ,对四边形ABCD 应用托勒密定理,有211CD x ⋅=+,将此式与原方程比较得CD =.在BCD △中,由余弦定理,有1cos 2CBD ∠=-,知120CBD ∠=︒,故14sin120CDx AB ===︒为所求.9.作直径1AC =的圆,并作弦AB b =,AD a =的圆内接四边形ABCD ,则DC =,BC =AD BC AB CD AC BD ⋅+⋅=⋅,即1a b BD =⋅,由此得1BD =,即BD 也是圆的直径,故221a b +=.10.当0x =时,1y =,当0x ≠时,作代换222x t x +=,1122x x t x x =+=+≥sin cos t θy t θ+=+,即1sin cos yt θy θ-=-⋅,以1AB =为直径作圆,作弦sin AC θ=,作弦AD =,则BD =cos BC θ=.由托勒密定理及1CD AB ≤=,有sin cos θy θ+,亦有sin cos sin cosyt tθyθθyθ-=-≤+,即11t y⋅--,故22y≤≤11.连AC,CE,AE,对四边形APCE应用托勒密定理,有AC PE AE PC CE PA⋅=⋅+⋅,而AC AE CE==,有PE PA PC=+.同理,PD PB PF=+,由此即证.12.不失一般性,令P点位于OBF△内部(其中O为CAB△中心),作1PP AD⊥于1P,2PP BE⊥于2P,3PP CF⋅于3P.由P,O,1P,2P四点共圆,有23180PP O PPO∠+=︒,知1P,3P,O,2P四点共圆,即P,3P,O,lP,2P共圆,推知l23PP P△是正三角形,在312PP PP中,有123213312PP P P PP PP PP PP⋅=⋅+⋅,即123PP PP PP=+,故PAD PCFS S+△△.13.作ABC△外接圆的直径CF,并设AF x=,BF y=,则60BFC A∠=∠=︒,直径2CF d y==.对四边形BCAF应用托勒密定理,有cd ax by=+.从而tan tan tan tan2221tan tan tan tan2a bA B BFC AFC ax by ax by by cd by by c by xa bA B BFC AFC ax by ax by cd c y cy x--∠-∠-+-=-======-= +∠+∠++⋅+.14.令AB AC a==,对四边形ABPC应用托勒密定理,有a PB a PC BC PA⋅+⋅=⋅,即有PA aPB PC BC=+.对四边形BCAQ应用托勒密定理,有QA BC a QB a QC⋅+⋅=⋅,即QA aQC QB BC=-.15.对四边形ABCD应用托勒密定理,BC AD BD AC AB CD⋅+⋅=⋅,即AD ACBC BD CDAB AB⋅+⋅=.又ABD MCP△∽△及ABC MDQ△∽△,有AD MPAB MC=,AC MQAB MD=,于是MP MQBC BD CDMC MD⋅+⋅=,注意到=22CD MC MD=即证.16.连EG,FG和EF,对四边形BFGE应用托勒密定理,有BE FG BF EG BG EF⋅+⋅=⋅,又FEG FBG ADB∠=∠=∠,EFG EBG∠=∠,则EFG ABD△∽△,有FG EG EFAB AD BD==,令其比值为t,则t BE AB t BF AD t BG BD⋅⋅+⋅⋅=⋅⋅,消去t,注意到AD BC=即证.17.作DG AF∥交1O⊙于G,则AG FD=,GF AD=.对四边形AGDF应用托勒密定理,AD FG AG FD AF GD⋅=⋅+⋅.由AD平分BAF∠,知FD BD=,即AG BD=,由此知GB DA∥,有GD AB=.故222AD FD AF GD FD AF AB=+⋅=+⋅.同理,有22AE FE AF AC=+⋅.此两式相减有2222DA EA DF EF-=-,故DE AF⊥.18.在直径2AB x=>的圆中,在两个半圆上分别取点C和D,使2AC=,1AD=,则BCBD=由托勒密定理,CD x=⋅,与原方程比较得CD.在ACD△中,由余弦定理,有1cos2CAD∠=-,则120CAD∠=︒,故sinCDxCAD=∠.19.由222+=,在直径AB=的圆中,在一半圆上取点C,使AC=,BC=;在另一半圆上取中点D,则AD BD==CD,知CD AB≤,由托勒密定理,2AB CD=⋅≤,即y=≤ABC△中,AC BC AB+≥(当C与A或B重合时,取等号),故y≤20.设222x y a+=,则01a≤≤.当0a=时,命题显然成立,当01a<≤时,在直径AB a=的一半圆上取点C,使AC x=,BC y=,因2222x y a +=+=,则可在另一半圆上取点D ,使BD =,AD =,由托勒密定理,有2x y AB CD a +=⋅≤,即2()()x x y y x y ++-≤≤但222()()()()x xy y x x y y x y x x y y x y +-=++-≤++-≤21.设点T 在劣弧»AB 上,连AT ,BT ,CT ,分别交小圆于点D ,E ,F .连DE ,EF ,FD ,过点T 作公切线RQ .由DFT RTD RTA ACT ∠=∠=∠=∠,有AC DF ∥,有AD ATCF CT=.又 2AM AD AT =⋅,2CP CF CT =⋅,有2222AM AD AT AT CP CF CT CT =⋅=,即AM AT CP CT =.同理,BN BT CP CT=.对圆内接四边形ATBC 应用托勒密定理,有AT BC BT AC TC AB ⋅+⋅=⋅,而AB BC CA ==,则 AT BT CT +=,故AM BN CP ++.22.令BC a =,AC b =,AB c =.由BE 平分ABC ∠,有AE AB EC BC =,亦有AE ABAC BC AB=+,即bc AE a c =+.同理,bcAF a b=+.由AE PQ ∥,有AEF Q ∠=∠,从而AEF PCB ∠=∠,注意到 FAE BPC ∠=∠,有AEF PCB △∽△,即PB AF a cPC AE a b+==+,即()PB b PC a c PB a ⋅=⋅+-⋅.在圆内接四边形PABC 中,应用托勒密定理,有PB b PC c PA a ⋅=⋅+⋅,故()PC a c PB a PC c PA a +-⋅=⋅+⋅,因此,PC PA PB ++.23.由()BE AC AF FC AC ⋅=+⋅,AC ,()()AF BC AB FC AF BD CD FC BE AE AF ⋅+⋅=⋅++-=⋅ ()()AC AF CD FC AC FC AE AF FC AC AF CD FC AE +⋅+⋅-⋅=+⋅+⋅-⋅,又AF CD FC AE ⋅=⋅, 则BF AC AF BC AB FC ⋅=⋅+⋅,由托勒密定理之逆,知ABCF 有外接圆.24.连EA ,ED ,由BAE ECD ∠=∠,且CDE EAD ABE ∠=∠=∠,有ABE CDE △∽△,亦有AE ABEC CD=, 即EC AB EA CD ⋅=⋅.在圆内接四边形AEBC 中,应用托勒密定理,有EA BC EB AC EC AB ⋅+⋅=⋅,于是222111EB AC EA BC EA BC BC BD BD BD EC AB EC AB EA CD CD CD BD CD DA ⋅⋅⋅=-=-=-===⋅⋅⋅⋅.又ABD CAD ∠=∠,ADB ADC ∠=∠,有ABD CAD △∽△,有AB BDAC AD=.于是22EB AC AB EC AB AC ⋅=⋅,故33EB AB EC AC =. 习题B1.在弧¼ADC 上取点H ,使AH CD c ==,连HC ,HB ,令AC m =,BD n =,BH p =,易证AHC CDA △∽△,即HC AD d ==.对四边形ABCD ,ABCH 分别应用托勒密定理,有ac bd mn +=,ad bc pm +=.又在弧¼BCH 上取点K ,使BK CH d ==,由CHB KBH △∽△,有HK BC b ==对四边形ABKH 应用托勒密定理,有ab cd AK p +=⋅.又由¼¼KHA BCD =,有AK BD n ==. 于是2()()ac bd ad bc m ab cd ++=+,2()()ac bd ab cd n ad bc++=+,由此即求得AC ,BD .2.作AGH △的外接圆1O ,分别截AC ,AD AB 于点H ,Q ,G .易证BCD APE △∽△,即DC BCPE AP=,BD BC AE AP =,即PE AK CD BC BC AP AP =⋅=⋅,AEBD BC AP=⋅.对四边形ABDC 应用托勒密定理,有AE AKAD BC BD AC DC AB BC BC AB AP AP⋅=⋅+⋅=⋅+⋅⋅,故AP AD AE AE AK AB ⋅=⋅+⋅.(*) 同理,由托勒密定理,有AP AQ AE AE AK AG ⋅=⋅+⋅.于是2()AP AQ AP AP PQ AP AP PQ AE AH AK AG ⋅=+=+⋅=⋅+⋅, 即22AP PG PH AP AP PQ AE AH AK AG +⋅++⋅=⋅+⋅从而2AP AE AH AK AG PG PH =⋅+⋅-⋅.由(*)式减去上式,有()()() AP AD AP AE AC AH AK AB AG PG PH -=-+-+⋅,即PA PD PK PI PE PF PG PH ⋅=⋅+⋅+⋅.又22221()24PK PI EF KI KI ++≤≤,214PE PF EF ⋅≤,214PG PH GH ⋅≤,故224EF KI GH PA PD ++≥⋅,其中等号当且仅当P 为ABCV △的中心时取得. 3.设四边形1234A A A A 内接于以O 为圆心,半径为R 的圆,设点O 在弦13A A ,12A A ,23A A ,34A A ,41A A ,上的射影分别为点0H ,1H ,2H ,3H ,4H .记(0,1,,4)i i h OH i ==…,1S ,2S 与1p ,2p 为123A A A △与34l A A A △的面积与半周长,1r ,2r 为它们的内切圆半径.考虑含点O 的三角形,不妨设O 在123A A A △内,分别对四边形302A H OH ,110A H OH ,221A H OH ,应用托勒密定理,并注意02H H ,01H H ,12H H 是123A A A △的中位线,有1102()R r p R H H +=⋅.01121023203011102121()()(R H H R H H S h H A h H A h H A h H A h H A h +⋅+⋅+=⋅+⋅+⋅+⋅+⋅+⋅2211222003112011)()()2H A h A A h A A h A A h h h p +⋅+⋅+⋅=++⋅,故1120R r h h h +=++.考虑O 在三角形外部的情形,考虑341A A A △,对四边形140A H H O ,330A H H O ,413A H OH 应用托勒密定理,有220404033434010413()()(R r p R H H R H H R H H R H H S h H A h H A h +=⋅+⋅+⋅+⋅+=⋅-⋅+⋅0303343434433444101334021)()()()2H A h H A h H A h H A h A A h A A h A A h h h p -⋅+⋅-⋅+⋅+⋅-⋅=+-⋅,故2340R r h h h +=+-.在上述情形下,1212342r r h h h h R +=+++-.对一般情形,所求内切圆半径之和等于1h ,2h ,3h ,4h ,2R 并赋以一定的符号之和,这些符号只与点O 相对四边形1234A A A A 的位置有关.因此,这个和与对角线的选取无关.4.设圆1C 的圆心为O ,半径为r ,连i OA ,(1,2,,)i OB i n =…,在四边形112OA B B 中应用托勒密不等式,有112211112OA B B CO A B OB A B ⋅+⋅≥⋅,即1211222()r B B λr A B λr A A A B →⋅+⋅≥+),故 12111222()B B λA B λA A A B +≥+.同理,迭用托勒密不等式,有23222333()B B λA B λA A A B '+≥+;34333444()B B λA B λA A A B +⋅≥+;…; 1111()n n n n n n n B λA B λA A A B ----+⋅≥+,1111()n n n n B B λA B λA A A B +≥+.将上述几个同向不等式相加,得1223111223-11()n n n n n B B B B B B B B λA A A A A An A A -+++≥+++……+, 故21p λp ≥.由托勒密不等式中等号成立的条件是当且仅当四边形112OA B B ,223OA B B ,…,1n n OA B B ,都是圆内接四边形,由圆内接四边形性质,知2323OA A OB B ∠=∠,2132OA A OB B ∠=∠,但 2332OB B OB O ∠=∠,则2123OA A OA A ∠=∠,从而1223OA A OA A △∽△,因此1223A A A A =.同理, 23341n A A A A A A ===…,即n 边形12n A A A …为正n 边形.反之,若12n A A A …为正n 边形,将其绕点O 逆时针方向旋转2πn,知12A A →,23A A →,…,1n A A →,从而12B B →,23B B →,…,1n B B →.于是知12n B B B …也是正n 边形,因此有122312n A A A A A A r ===⋅…πsin n,12231π2sin n B B B B B B λr n ====⋅….此时有21p λp =.5.作1O ⊙,O ⊙的公共直径GMK ,其中GM 是1O ⊙的直径,GK 是O ⊙的直径,连CG 交1O ⊙于点N .显然MN KC ∥,于是CN KM CG KG =,222CN KMf CN CG CG CG CG KG=⋅=⋅=⋅,即f CG =理,d AG =e BG =ABGC 中应用托勒密定理,有b BG c CG a AG ⋅+⋅=⋅.此时两bd ce af +=. 6.首先证EF GH =,MN PQ =.由切线长定理,有()()()()AC BC BD DA AF BF BE AE -+-=-+-= ()()2AF AE BE BF EF -+-=,()()()()()AC DA BD BC CH DH DG CG CH CG -+-=-+-=-+()2DG DH GH -=,而()()()()AC B BD DA AC DA BD BC -+-=-+-,故EF GH =.同理MN PQ =. 连1O A ,1O E ,3O C ,3O G ,由BAD ∠与BCD ∠互补,知1O AE ∠与3O CG ∠互余,有13390O AE O CG CO G ∠=︒-∠=∠,即13AE CO G △∽△.于是1313AE CG O E O G R R ⋅=⋅=⋅.同理,24BM DP R R ⋅=⋅.令AE AQ a ==,BM BF b ==,CG CN c == DP DH d == EF GH m ==,MN PQ n ==.于是,AB a b m =++,CD c d m =++,BC b c n =++,DA d a n =++,()()AC AF CM a m c n =+=+++,()()BD BE DQ b m d n =+=+++.对ABCD 应用托勒密定理,有AC BD AB CD BC DA ⋅=⋅+⋅,即()()()()()()a c m n b d m n a b m c d m b c n d a n +++⋅+++=+++++++++,亦即mn ac bd =+.即证. 7.设BAN NAC a ∠=∠=,对AB ,AN ,AC 应用三弦定理,则有2cos AN αAB AC ⋅=+,因1sin ()2ABC ABL ACL S S S AL αAB AC ++=⋅⋅+△△△,则cos sin ABC AN AL αα=⋅⋅⋅△S .又在Rt ALK △中,cos AL αAK ⋅=,则sin 2ANK S ABC AN AK αS =⋅⋅=△△.又易知AK AM =,即知ANK ANM △∽△,于是12ANK ANM AKNM S S S ==△△四边形,即证.8.必要性:连OB ,OC ,知EAB △,FAC △均为等腰三角形,且2()2BPC AEP CFD BAD CAD BAC BOC ∠=∠+∠=∠+∠=∠=∠,知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB OP BC ⋅=⋅+⋅,由PB PC PO =+得OC BC =,即OBC △为正三角形,推得1302BAC BOC ∠=∠=︒.充分性:由30BAC ∠=︒,知OBC △为正三角形,且由BPC BOC ∠=∠知B ,C ,P ,O 共圆,由托勒密定理,有PB OC PC OB PO BC ⋅=⋅+⋅,及OC OB BC ==,即得PB PC PO =+. 9.对四边形1ACA B 应用托勒密定理,有111AA BC AB AC AC A B ⋅=⋅+⋅,令11A B AC x ==,注意112x A B ACK BC =+>,有11222()ABx AC x AA AB AC AB AC BC BC +==+⋅>+,即11()2AA AB AC >+.同理,11()2BB BA BC >+,11()2CC CA CB >+,此三式相加即证.10.令AC a =,CE b =,AE c =.对四边形ACEF 应用托勒密不等式,有AC EF CE AF AE CF ⋅+⋅≥⋅,注意EF AF =,有FA c FC a b ≥+.同理。

托勒密定理及圆的其它定理

托勒密定理及圆的其它定理

托勒密定理及圆的其它定理托勒密定理定理图定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理提出定理的内容。

摘出并完善后的托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

定理表述:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理内容指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。

证明一、(以下是推论的证明,托勒密定理可视作特殊情况。

)在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.则△ABE∽△ACD所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD,所以△ABC∽△AED.BC/ED=AC/AD,即ED·AC=BC·AD (2)(1)+(2),得AC(BE+ED)=AB·CD+AD·BC又因为BE+ED≥BD(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)复数证明用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。

首先注意到复数恒等式: (a−b)(c−d) + (a−d)(b−c) = (a−c)(b −d) ,两边取模,运用三角不等式得。

证明托勒密(ptolemy)定理

证明托勒密(ptolemy)定理

证明托勒密(ptolemy)定理
【提纲】
1.介绍托勒密定理
托勒密定理,又称托勒密-费马定理,是一个关于三角形内角和与边长之间关系的数学定理。

该定理的表述为:在同一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

2.证明托勒密定理的步骤
证明托勒密定理的方法有多种,这里我们以几何证明法为例:
(1)假设三角形ABC的三边长分别为a、b、c,其中a+b>c、
a+c>b、b+c>a;
(2)作边BC的平行线,交边AC于点D,构造三角形ABD和DBC;
(3)根据平行线性质,可知∠ADB=∠C,∠BDA=∠BC;
(4)在三角形ABD和DBC中,根据三角形内角和为180°,可得
∠ABD+∠ADB+∠BDA=180°;
(5)将∠ADB和∠BDA替换为∠C和∠ABC,得到
∠ABC+∠ABD+∠C=180°;
(6)同理,可得∠ABC+∠ADB+∠BC=180°;
(7)将(4)和(6)两式相减,得到∠AB D-∠C=∠C-∠ABC;
(8)根据步骤1中的条件,可知a+b>c,故∠ABD>∠C,同理
∠C>∠ABC;
(9)结合(7)式,得到∠ABD>∠C>∠ABC,即证明了托勒密定理。

3.托勒密定理的应用
托勒密定理在几何学中具有广泛的应用,如在解决三角形的判定、性质、最值等问题时,都可以利用托勒密定理进行求解。

此外,托勒密定理还可以与其他定理相结合,如与勾股定理、相似三角形等定理相互验证。

4.结论
托勒密定理是一个重要的几何定理,通过几何证明法可以简洁明了地证明其正确性。

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理定理图定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理的提出一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。

证明一、(以下是推论的证明,托勒密定理可视作特殊情况。

)在任意四边形ABCD 中,作△ ABE 使∠ BAE=∠ CAD ∠ ABE=∠ ACD 因为△ ABE∽△ACD所以BE/CD=AB/AC, 即BE·AC=AB·CD (1)而∠ BAC=∠ DAE,,∠ ACB=∠ ADE所以△ ABC∽△AED 相似.BC/ED=AC/AD 即ED·AC=BC·AD (2)(1)+(2), 得AC(BE+ED)=AB·CD+AD·BC又因为BE+ED≥BD(仅在四边形ABCD 是某圆的内接四边形时,等号成立,即“托勒密定理”)所以命题得证复数证明用a、b、c、d 分别表示四边形顶点A、B、C、D 的复数,则AB、CD、AD、 B C、AC、BD 的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。

首先注意到复数恒等式:(a - b)(c - d) + (a - d)(b - c) = (a - c)(b - d) ,两边取模,运用三角不等式得。

等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D 四点共圆等价。

四点不限于同一平面。

平面上,托勒密不等式是三角不等式的反演形式。

二、设ABCD 是圆内接四边形。

在弦BC 上,圆周角∠BAC = ∠ BDC,而在 A B 上,∠ ADB = ∠ ACB。

著名圆定理、公式

著名圆定理、公式

著名圆定理、公式(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--托勒密定理定理图定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。

原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.定理的提出一般几何教科书中的“托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的书中摘出。

证明一、(以下是推论的证明,托勒密定理可视作特殊情况。

)在任意四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD因为△ABE∽△ACD所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)而∠BAC=∠DAE,,∠ACB=∠ADE所以△ABC∽△AED相似.BC/ED=AC/AD即ED·AC=BC·AD (2)(1)+(2),得AC(BE+ED)=AB·CD+AD·BC又因为BE+ED≥BD(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)所以命题得证复数证明用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、C D、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。

首先注意到复数恒等式: (ab)(cd) + (ad)(bc) = (ac)(bd) ,两边取模,运用三角不等式得。

等号成立的条件是(a-b)(c-d)与(a-d)(b -c)的辐角相等,这与A、B、C、D四点共圆等价。

四点不限于同一平面。

平面上,托勒密不等式是三角不等式的反演形式。

二、设ABCD是圆内接四边形。

在弦BC上,圆周角∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。

初二秋.第09讲.Ptolemy定理.联赛班

初二秋.第09讲.Ptolemy定理.联赛班
1 3 2 又 S四边形ABCD S△ ABD S△BCD (2 3 2) (4 3) . 2 2 1 3 3 15 6 3 从而, (10 3 12) sin AOB ,故 sin AOB . 2 2 26
4
初二秋·第 09 讲·联赛班·教师版
BAD BCD 90 ,AB 2 , CD 1 ,对角线 AC 、 BD 【例7】 凸四边形 ABCD 中, ABC 60 , 交于点 O ,如图,求 sin AOB .
C D O A B P A D O B C
【解析】 因 BAD BCD 90° ,则 A 、 B 、 C 、 D 四点共圆,延长 BA , CD 交于 P , 则 ADP ABC 60°. 设 AD x ,有 AP 3x , DP 2 x . BP 4 3 . 由割线定理,有 (2 3x) 3x 2x(1 2x) ,求得 AD x 2 3 2 , BC 2 对四边形 ABCD 应用托勒密定理,有 BD AC (4 3)(2 3 2) 2 1 10 3 12 .
MH NH 3. OH
2 2 2 2 【拓2】 若 a 、 b 、 x 、 y 是正实数,且 a b 1,x y 1 . 求证: ax by ≤1 .
C a A y x D b B
【解析】 如图构造直径 AB 1 的圆,在 AB 两边任作 Rt△ACB 和 Rt△ADB , BC b , BD x ,AD y . 使 AC a , a 由勾股定理知 、 b 、 x 、 y 是满足题设条件的. 据托勒密定理,有 AC BD BC AD AB CD . ∵ CD ≤ AB 1 ,∴ ax by ≤1 .

初中托勒密定理

初中托勒密定理

初中托勒密定理初中托勒密定理托勒密定理是初中数学中的一个重要定理,它是由古希腊数学家托勒密发现的,因此得名。

该定理是关于四边形的一个定理,它表明,如果一个四边形的两条对角线相交于一点,那么这个四边形的两组对边乘积之和相等。

具体来说,设四边形ABCD的对角线AC和BD相交于点O,那么有以下公式:AB × CD + BC × AD = AC × BD其中,AB、BC、CD、AD分别表示四边形ABCD的四条边的长度,AC和BD分别表示四边形ABCD的两条对角线的长度。

托勒密定理的证明可以通过几何方法和代数方法来完成。

其中,几何方法是通过构造一些辅助线来证明该定理的,而代数方法则是通过将四边形的顶点坐标表示成复数来证明该定理的。

托勒密定理在初中数学中的应用非常广泛,它可以用来解决各种几何问题,例如求解四边形的面积、判断四边形是否为正方形等。

此外,托勒密定理还可以用来证明勾股定理和正弦定理等其他重要定理。

总之,托勒密定理是初中数学中的一个重要定理,它不仅具有理论意义,而且在实际应用中也有着广泛的应用。

因此,学生们应该认真学习和掌握该定理,以便在以后的学习和工作中能够灵活运用。

排版格式:初中托勒密定理托勒密定理是初中数学中的一个重要定理,它是由古希腊数学家托勒密发现的,因此得名。

该定理是关于四边形的一个定理,它表明,如果一个四边形的两条对角线相交于一点,那么这个四边形的两组对边乘积之和相等。

具体来说,设四边形ABCD的对角线AC和BD相交于点O,那么有以下公式:AB × CD + BC × AD = AC × BD其中,AB、BC、CD、AD分别表示四边形ABCD的四条边的长度,AC和BD分别表示四边形ABCD的两条对角线的长度。

托勒密定理的证明可以通过几何方法和代数方法来完成。

其中,几何方法是通过构造一些辅助线来证明该定理的,而代数方法则是通过将四边形的顶点坐标表示成复数来证明该定理的。

托勒密定理就是极化恒等式-概述说明以及解释

托勒密定理就是极化恒等式-概述说明以及解释

托勒密定理就是极化恒等式-概述说明以及解释1.引言文章1.1 概述部分的内容可以是:托勒密定理,又称为极化恒等式,是几何学中的一个重要定理,它描述了一个四边形内切于一个圆的情况下,对角线之间的关系。

这个定理在数学和工程领域中有着广泛的应用,特别是在三角函数和复数的研究中起到了关键作用。

本文将对托勒密定理的历史、内容及应用进行全面的介绍,并探讨其在未来研究中的意义和展望。

通过本文的阐述,读者将对托勒密定理有更加深入的理解和认识。

json"1.2 文章结构": {"本文将分为三个部分来讨论托勒密定理:历史、内容和应用。

在历史部分,我们将探讨托勒密定理的起源以及其在数学发展中的重要性;内容部分将详细解释托勒密定理的具体内容和含义;应用部分将介绍托勒密定理在实际问题中的应用和意义。

通过这些内容的讨论,读者将能够全面了解和认识托勒密定理的概念、历史和实践应用,也能够对其意义和未来研究有更深入的了解。

"}1.3 目的本文的目的是通过深入探讨托勒密定理,揭示它与极化恒等式之间的内在联系。

通过对托勒密定理的历史、内容和应用进行分析,来阐明托勒密定理在数学领域中的重要性和普适性。

同时,也旨在展现托勒密定理在未来研究中的潜在应用价值,推动更多学者对该定理进行深入的研究和探索。

最终,本文旨在为读者传递对托勒密定理的全面理解,使其能够领略到这一数学定理的深远意义和潜在应用前景。

2.正文2.1 托勒密定理的历史托勒密定理的历史可以追溯到古希腊时期。

托勒密定理最早出现在托勒密的著作《阿尔玛格斯》中,这部著作是数学和天文学领域的经典之作。

托勒密定理也被称为托勒密定律或托勒密定律。

托勒密定理是对一个四边形的对角线关于其中线的关系进行研究得到的结论。

托勒密定理的发现和发展离不开古希腊数学家们的努力。

在古希腊时期,数学和几何学的发展达到了巅峰,在这样的背景下,托勒密定理得以诞生和完善。

托勒密定理的发展也受到了欧几里德《几何原本》的影响,欧几里德在其著作中对托勒密定理进行了详细的阐述和证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用复数证明托勒密定理
托勒密定理是一个数学定理,它描述了正方形的周长与对
角线长度之比为 $\sqrt{2}$ 的关系。即:
对于正方形 $ABCD$,有 $AB=BC=CD=DA$,$AC=BD$,则有
$AC=\sqrt{2} AB$。
下面是用复数证明托勒密定理的方法:
设正方形的一边长为 $a$,则对角线长为 $\sqrt{2}a$。
将正方形的一条对角线延长成直线 $AC$,将正方形的另
一条对角线平移到 $AC$ 上的点 $E$,由于 $AE=a$,$EC=a$,
则有:$$AC=AE+EC=a+a=2a$$。
此时,直线 $AC$ 的长度就是两条对角线之和。
将复数 $a+a$ 写成较为简洁的形式,即
$2a=2(\cos{0}+i\sin{0})=2$。
所以,$AC=2=\sqrt{2}AB$。
因此,得证。
这就是用复数证明托勒密定理的方法。

相关文档
最新文档