4金属薄膜电阻率的测量要点

4金属薄膜电阻率的测量要点
4金属薄膜电阻率的测量要点

5金属薄膜电阻率的测量

一.实验目的

1.熟悉四探针法测量电阻率和薄层电阻的原理及测量方法。

2.了解影响电阻率的测量的各种因素及改进措施。

二.实验仪器

RTS-5型双电测四探针测试仪

三.实验原理

双电测组合四探针法采用了以下二种组合的测量模式(见图1)

将直线四探针垂直压在被测样品表面上分别进行I14V23和I13V24组合测量,测量过程如下:

1. 进行I14V23组合测量:

电流I从1针→4针,从2、3针测得电压V23+;

电流换向,I从4针→1针,从2、3针测得电压V23-;

计算正反向测量平均值:V23=(V23++V23-)/2;

2.进行I13V24组合测量:

电流I从1针→3针,从2、4针测得电压V24+;

电流换向,I从3针→1针,从2、4针测得电压V24-;

计算正反向测量平均值:V24=(V24++V24-)/2;

3. 计算(V23/V24)值;

(以上V23、V24均以mV 为单位)

4. 按以下两公式计算几何修正因子K:

若1.18<(V23/V24)≤1.38 时;

K=-14.696+25.173(V23/V24)-7.872(V23/V24)2; (1)

若1.10≤(V23/V24)≤1.18 时;

K=-15.85+26.15(V23/V24)-7.872(V23/V24)2; (2)

5. 计算方块电阻R□:

R□=K.(V23/I) (单位:Ω/□); (3)

其中:I为测试电流,单位:mA;

V23为从2、3针测得电压V23+和V23-的平均值,单位:mV;

6. 若已知样品厚度W,可按下式计算样品体电阻率ρ:

ρ=R□.W.F(W/S)/10 (单位:Ω.cm); (4)

其中:R□为方块电阻值,单位:Ω/□;

W为样片厚度,单位:mm(W ≤3mm);

S为探针平均间距,单位:mm;

F(W/S) 为厚度修正系数;

7. 计算百分变化率(以测试样品电阻率ρ为例):

ρM -ρm

最大百分变化(%)=─────×100% (5)

ρm

│ρa -ρc │

平均百分变化(%)=─────────×100% (6)

ρc

2(ρM -ρm )

径向不均匀度E(%)=──────────×100% (7)

ρM +ρm

以上式中:ρM 、ρm 分别为测量的电阻率最大值与最小值,单位:Ω.cm;

ρc 为第1、2 点(即圆片中心测量点)测量平均值,单位:Ω.cm;ρa 为除第1、2 点外其余各点的测量平均值,单位:Ω.cm;

(若测量样品的方块电阻值,则将(5)、(6)、(7)式中的ρM 、ρm 、ρa 、ρc 分别改成RM 、Rm 、Ra 、和Rc 。其公式意义与ρM 、ρm 、ρa 、ρc 相似)。

四.实验步骤

1.将主机、探针测试台、四探针探头、计算机连接,开启主机,启动RTS-5双电测四探针软件测试系统

2. 放置样品于测试台,操作探针台压下探针,使样品接通电流

3.选择对样品要进行的测试类别,及输入相关测试基本参数

4. 执行【测量】功能→按弹出提示窗口调节主机电位器使主机电流显示为此值→按【确定】按钮继续测量

执行【自动测量】功能→按弹出提示窗口调节主机电位器使主机电流显示为45.32μA→按【确定】按钮继续测量

5. 【实时采集两次组合模式下的电压值】窗口实时显示两次组合模式下电压的正反向、平均值;【统计测试数据】窗口显示样品测试点的测量数据

6. 对测量数据进行打印、保存、生成EXCEL文件

3、测试时间

用一定的直流电压对被测材料加压时,被测材料上的电流不是瞬时达到稳定值的,而是有一衰减过程。在加压的同时,流过较大的充电电流,接着是比较长时间缓慢减小的吸收电流,最后达到比较平稳的电导电流。被测电阻值越高,达到平衡的时间则越长。因此,测量时为了正确读取被测电阻值,应在稳定后读取数值或取加压1分钟后的读数值。

另外,高绝缘材料的电阻值还与其带电的历史有关。为准确评价材料的静电性能,在对材料进行电阻(率)测试时,应首先对其进行消电处理,并静置一定的时间,静置时间可取5分钟,然后,再按测量程序测试。一般而言,对一种材料的测试,至少应随机抽取3~5个试样进行测试,以其平均值作为测试结果。

4、测试设备的泄漏

在测试中,线路中绝缘电阻不高的连线,往往会不适当地与被测试样、取样电阻等并联,对测量结果可能带来较大的影响。为此:

为减小测量误差,应采用保护技术,在漏电流大的线路上安装保护导体,以基本消除杂散电流对测试结果的影响;采用聚乙烯、聚四氟乙烯等绝缘材料制作测试台和支撑体,以避免由于该类原因导致测试值偏低。

高电压线由于表面电离,对地有一定泄漏,所以尽量采用高绝缘、大线径的高压导线作为高压输出线并尽量缩短连线,减少尖端,杜绝电晕放电;

5、外界干扰

高绝缘材料加上直流电压后,通过试样的电流是很微小的,极易受到外界干扰的影响,造成较大的测试误差。热电势、接触电势一般很小,可以忽略;电解电势主要是潮湿试样与不同金属接触产生的,大约只有20mV,况且在静电测试中均要求相对湿度较低,在干燥环境中测试时,可以消除电解电势。因此,外界干扰主要是杂散电流的耦合或静电感应产生的电势。在测试电流小于10-10A或测量电阻超过1011欧姆时;被测试样、测试电极和测试系统均应采取严格的屏蔽措施,消除外界干扰带来的影响。

七.实验结论

1.薄层方块电阻为R□=6.74Ω/□

2.薄片电阻率为ρ=0.1Ω.cm

八.思考题

1.什么是体电阻?方块电阻?

答:体电阻是指材料两端之间的直流电压与通过电流的比值,单位是欧姆。

薄层电阻又叫方块电阻,长L和宽W相等的一个方块的电阻称为方块电阻R。如果一个均匀导体是一宽为W,厚度为d的薄层,则

R=ρL/S=ρL/dW=ρ/d 单位为Ω/□。可见R阻值大小与正方形的边长无关,故称为方块电阻,仅仅与薄膜的厚度有关。

2.为什么要用四探针进行测量,如果只用两根探针既做电流探针又做电压探针,是否能够对样品进行准确的测量,为什么?

答:接触电阻的影响严重。探针与半导体体接触产生一定厚度的耗尽层,耗尽层是高阻的,另外探针与半导体之间不像与金属之间一样很好的接触,还会产生产生一个额外的电阻扩展电阻。

变温霍尔效应的测定

一.实验目的

1、了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。

2、掌握霍尔系数和电导率的测量方法、样品导电类型的判别方法、半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率的计算方法。

3、掌握动态法测量霍尔系数的原理。

4、了解霍尔器件的应用,理解半导体的导电机制。

5、掌握实验数据处理方法,并能利用Origin绘图软件对实验数据进行处理和分析。

二.实验器材

变温霍尔实验仪

二.实验原理

1.霍尔效应和霍尔系数

霍尔效应是一种电流磁效应(如图一)

当半导体样品通以电流Is,并加一垂直于电流的磁场B,则在样品两侧产生一横向电势差U H,这种现象称为“霍尔效应”,U H称为霍尔电压,U H=R H I S B/d (1)

R H=U H d/I S B (2)R H叫做霍尔系数,d 为样品厚度。

对于P 型半导体样品,R H=1/qp (3)式中q 为空穴电荷电量,p 为半导体载流子空穴浓度。

对于n 型半导体样品,R H= -1/qn (4)式中为n电子电荷电量。

考虑到载流子速度的统计分布以及载流子在运动中受到散射等因素的影响。在霍尔系数的表达式中还应引入霍尔因子A,则(3)(4)修正为p 型半导体样品R H=A/qp(5)

n 型半导体样品,R H= -A/qn(6)

A的大小与散射机理及能带结构有关。在弱磁场(一般为200mT)条件下,对球形等能面的非简并半导体,在较高温度(晶格散射起主要作用)情况下,A=1.18,在较低的温度(电离杂质散射起主要作用)

情况下,A=1.93,对于高载流子浓度的简并半导体以及强磁场条件

A=1。

对于电子、空穴混合导电的情况,在计算RH 时应同时考虑两种载流子在磁场偏转下偏转的效果。对于球形等能面的半导体材料,可以证明:

R H=A(p-nb2)/q(p+nb)2 (7)

式中b=U N/U P ,Up、Un分别为电子和空穴的迁移率,A 为霍尔因子,A的大小与散射机理及能带结构有关。

从霍尔系数的表达式可以看出:由RH 的符号可以判断载流子的型,正为P 型,负为N 型。由RH 的大小可确定载流子浓度,还可以结合测得的电导率算出如下的霍尔迁移率UH

UH=|RH|σ(8)

对于P 型半导体UH=UP,对于N 型半导体UH=UN

霍尔系数RH 可以在实验中测量出来,表达式为R H=U H d/I S B (9)

式中UH、Is、d,B 分别为霍尔电势、样品电流、样品厚度和磁感应强度。单位分别为伏特(V)、安培(A),米(m)和特斯拉(T)。但为与文献数据相对应,一般所取单位为UH 伏(V)、Is 毫安(mA)、d 厘米(cm)、B 高斯(Gs)、则霍尔系数RH 的单位为厘米3/库仑(cm3/C)。

但实际测量时,往往伴随着各种热磁效应所产生的电位叠加在测量值UH 上,引起测量误差。(详见讲义)为了消除热磁效应带来的测量误差,可采用改变流过样品的电流方向及磁场方向予以消

除。

2.霍尔系数与温度的关系

RH 与载流子浓度之间有反比关系,当温度不变时,载流子浓度不变,RH 不变,而当温度改变时,载流子浓度发生,RH 也随之变化。实验可得|R H |随温度T 变化的曲线。

3.半导体电导率

在半导体中若有两种载流子同时存在,其电导率σ为

σ=qpuP+qnun (7)

实验中电导率σ可由下式计算出

σ=I/ρ=Il/Uσad (8)

式中为ρ电阻率,I 为流过样品的电流,Uσ、l 分别为两测量点间的电压降和长度,a 为样品宽度,d 为样品厚度。

四.实验步骤

(一)常温下测量霍尔系数RH和电导率σ

1.打开电脑、霍尔效应实验仪(I)及磁场测量和控制系统(II)

电源开关。(以下简称I或II)

(如《II》电流有输出,则按一下《I》复位开关,电流输出为零。)2.将霍尔效应实验仪(I),<样品电流方式>拨至“自动”, <测

量方式>拨至“动态”,将II〈换向转换开关〉拨至“自动”。

按一下《I》复位开关,电流有输出,调节《II》电位器,至电流

为一定电流值同时测量磁场强度。(亦可将II开关拨至手动,

调节电流将磁场固定在一定值,一般为200mT即2000GS)

3.将测量样品杆放入电磁铁磁场中(对好位置)。

4.进入数据采集状态,选择电压曲线。如没有进入数据采集状态,则按一下《I》

复位开关后进入数据采集状态。记录磁场电流正反向的霍尔电压V3、V4、V5、V6。

可在数据窗口得到具体数值。

5.将《I》<测量选择>拨至σ,记录电流正反向的电压V1、V2。6.按讲义计算霍尔系数RH,电导率σ等数据。

(二)变温测量霍尔系数RH和电导率σ

1.将《I》<测量选择>拨至“RH”,将〈温度设定〉调至最小(往左旋到底,加热指示灯不亮)

2.将测量样品杆放入杜瓦瓶中冷却至液氮温度。

3.将测量样品杆放入电磁铁磁场中(对好位置)。

4.重新进入数据采集状态。(电压曲线)

5.系统自动记录随温度变化的霍尔电压,并自动进行电流和磁场换向。到了接近室温时调节〈温度设定〉至最大(向右旋到底)。也可一开始就加热测量。

6.到加热指示灯灭,退出数据采集状态。保存霍尔系数RH文件。7.将《I》<测量选择>拨至“σ”

8.将测量样品杆放入杜瓦瓶中冷却至液氮温度。

9.将测量样品杆拿出杜瓦瓶。

10.重新进入数据采集状态。

11.系统自动记录随温度变化的电压,到了接近室温时调节〈温度设定〉至最大。

12.当温度基本不变,退出数据采集状态。保存电导率σ文件13.根据实验要求进行数据处理。

注:样品为N型锗长l=6mm 宽a=4mm厚d=0.6mm

R H=-0.0185*10-3*0.6*10-3/1.000*10-3*200*10-3=-5.55X10-2 cm3/c 八.思考题

1.霍尔系数测量中,有哪些副效应?其形成的机制是什么?如何消除?

答:(1)爱廷豪森效应(2)能斯脱效应(3)里纪-勒杜克效应(4)电极位置不对称产生的电压降改变I和B的方向,使

、、从计算结果中消除,而却因与I、B方向同步变化而无法消除,但引起的误差很小,可以忽略不计。

超导材料临街转变温度的测量

一.实验目的

1、了解超导材料研究历史、进展以及实验研究的一般过程。

2、初步学会文献资料的检索、收集与整理。

3、初步了解低温物理实验方法。

4、了解高临界温度氧化物超导材料电阻率的温度特性。

二.实验仪器

HT288型高Tc超导体电阻-温度特性测量仪

三.实验原理

图为本机工作的原理示意。图中所示的低温度恒温器用导热性能良好的紫铜制成,超导样品及铂电阻温度传感器置于其上,并形成良好的热接触。加热器是为稳态法测量而设置的。当低温度恒温器处于液氮中或液氮液面以上不同位置时,低温恒温器的温度将有相应的变化。按典型的四端子法的样品及温度传感器分别联接至各自的恒流源和放大器,以减小测量误差。数据经数据采集、处理传输系统送入电子计算机运算并在显示器上显示。仪器内安装有自动控温系统。它由放大器、温度设定器、PID控制器及加热功率控制器等部分组成。稳态测量时将所设定的温度值显示在计算机屏幕上,同时自动调整加热功率,使温度平衡。

实验步骤

(一)准备工作

将液氮注入液氮杜瓦瓶,再将装有测量样品的低温恒温器浸入液氮,固定于支架上,并用电缆连接至HT288测量仪“恒温器输入”端,再用通讯电缆将测量仪与计算机串行口1联接。

如无支架可将保温套套入恒温器。

将超导软件装入WINDOWS98系统或XP 系统的电脑中。

(二)开启仪器

开启电脑电源,待系统启动完成后,用鼠标点击电脑屏幕上的 “数据采集”图标后,开启测量仪器电源进入数据采集工作程序,电脑屏幕显示“HT288型超导体电阻一温度特性测量仪”。

(三)动态测量

将“动态测量/稳态测量”开关拨至“动态测量”,系统进入动态测量模式。

1.动态自动测量

拨动“自动/手动”开关,选择“自动”工作模式。“自动”指示灯亮,“正向/反向”指示灯交替闪烁,表示系统已开始采集数据。在电脑显示器右部“工作参数”区“样品电流方向”栏交替显示“正向”和“反向”。提升装有样品的低温恒温器,使其脱离液氮液面,温度将逐渐升高,此时在计算机屏幕上逐点描出两条电压一温度特性曲线。 计数

:表示数据采集开始后所有采集到的有效数据的计数

值;

样品当前温度:表示低温恒温器温度传感器所测到的恒温器当前温度值,单位为(K)。若温度变化缓慢,温度传感器与样品之间的温度误差可以被忽略,因此该温度值可表征为样品温度值;

样品正向电压值:表示当流过样品的电流为正向时所测得的样品两端的电压降数值,单位为(mV) ;

样品反向电压值:表示当流过样品的电流为反向时所测得的样品两端的电压降数值,单位为(mV) ;

样品电流值:表示正向和反向流过样品的电流的平均值,单位为(mA) ;

改变恒温器与液面的距离,可以获得不同变化速率的升/降温特性曲线。

2.动态手动测量

拨动“自动/手动”开关,选择手动工作模式。“手动”指示灯亮,拨动“正向/反向”开关,可选择流过样品的电流为正向或反向,同时与之相对应的指示灯亮。

(四)稳态测量

将“动态测量/稳态测量”开关拨向“稳态测量”时,样品电流方向自动切换功能消失,只能采用“手动”方式转换样品电流方向。调节“温度设定”旋钮,在电脑屏幕上出现“恒温器设定温度为:XXX.X(K)”。为获得满意的稳态温度值,调节恒温器与液氮液面的距离,使加热器的加温与液氮的降温保持平衡,方可测到比较准确的数

值。此过程比较繁琐,必须仔细操作。

稳态测量时将超导恒温器套上随机所带保温套,这样在低温环境

下调节温度就可稳定地测量。

超导材料为包银铋锶钙铜氧线材。

四.数据分析

1、由图像可得,降温的零电阻转变温度为108.7K,升温的零电阻转变温度为109.0K。

2、拐点产生的原因:

正常情况下,电子在金属中运动时,会因为金属晶格的不完整性(如缺陷或杂质等)而发生弹跳损耗能量,即有电阻。而超导状态下,电子能毫无羁绊地前行。这是因为当低于某个特定温度时,电子即成对,这时金属要想阻碍电子运动,就需要先拆散电子对,而对于某个温度时,能量就会不足以拆散电子对,因此电子对就能流畅运动。

七.实验结论

升温过程中零电阻转变温度为109.0K,降温过程中零电阻转变温度为108.7K。八.思考题

1.该实验的动态法升降温过程获得的R—T曲线有哪些具体差异?说明原因.

答:两种测量方式测量出的转变温度不同。温降过程中测出电压为

0uV的温度区间不同,并且升温时测出的温度区间长度小于降温时的温度区间长度。

原因:由于动态法测量过程中没有足够的时间使匀温块和超导样品及温度计达到热平衡。这导致温度测量存在误差。

测定金属电阻率-

测定金属的电阻率 实验目的: 学会用伏安法测量电阻的阻值,测定金属的电阻率。 实验原理: 用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测 导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS /L =πd 2 R /4L 实验器材: 金属丝、千分尺、安培表、伏特表、(3伏)电源、(20Ω)滑动变阻器、电键一个、导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 实验步骤: (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横 截面积S =πD 2 /4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 【点拨】为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 实验记录 图1

高中物理测定金属的电阻率实验检测题

高中物理测定金属的电阻率实验检测题 1.(2019·天津高考)现测定长金属丝的电阻率。 (1)某次用螺旋测微器测量金属丝直径的结果如图所示,其读数是________mm 。 (2)利用下列器材设计一个电路,尽量准确地测量一段金属丝的电阻。这段金属丝的电阻R x 约为100 Ω,在方框中画出实验电路图,并标明器材代号。 电源E (电动势10 V ,内阻约为10 Ω) 电流表A 1(量程0~250 mA ,内阻R 1=5 Ω) 电流表A 2(量程0~300 mA ,内阻约为5 Ω) 滑动变阻器R (最大阻值10 Ω,额定电流2 A) 开关S 及导线若干 (3)11A 2的读数为I 2,则这段金属丝电阻的计算式R x =________。从设计原理看,其测量值与真实值相比 (填“偏大”“偏小”或“相等”)。 解析:(1)d =20.0×0.01 mm =0.200 mm 。 (2)本题中测量金属丝的电阻,无电压表,故用已知内阻的电流表A 1充当电压表;由于A 1的内阻已知,因此A 2应采用外接法;由于电流表A 1的额定电压U A1=I m R 1=1.25 V ,比电源电动势小得多(或滑动变阻器的总电阻比待测电阻的阻值小得多),故电路采用分压式接法,电路图如图所示。 (3)当电流表A 1、A 2读数分别为I 1、I 2时,通过R x 的电流为I =I 2-I 1,R x 两端电压U =I 1R 1,故R x =U I = I 1R 1 I 2-I 1 ,不考虑读数误差,从设计原理看测量值等于真实值。 答案:(1)0.200(0.196~0.204均可) (2)见解析图 (3) I 1R 1 I 2-I 1 相等 2.(2019·江苏高考)某同学测量一段长度已知的电阻丝的电阻率。实验操作如下: (1)螺旋测微器如图所示。在测量电阻丝直径时,先将电阻丝轻轻地夹在测砧与测微螺杆之间,再旋动________(选填“A ”“B ”或“C ”),直到听见“喀喀”的声音,以保证压力适当,同时防止螺旋测微器的损坏。

电阻选型:厚膜、薄膜电阻特性优缺点比较

电阻选型:厚膜、薄膜电阻特性优缺点比较 薄膜电阻由陶瓷基片上厚度为50 ? 至250 ? 的金属沉积层组成(采用真空或溅射工艺)。薄膜电阻单位面积阻值高于线绕电阻或Bulk Metal? 金属箔电阻,而且更为便宜。在需要高阻值而精度要求为中等水平时,薄膜电阻更为经济并节省空间。 它们具有最佳温度敏感沉积层厚度,但最佳薄膜厚度产生的电阻值严重限制了可能的电阻值范围。因此,采用各种沉积层厚度可以实现不同的电阻值范围。薄膜电阻的稳定性受温度上升的影响。薄膜电阻稳定性的老化过程因实现不同电阻值所需的薄膜厚度而不同,因此在整个电阻范围内是可变的。这种化学/机械老化还包括电阻合金的高温氧化。此外,改变最佳薄膜厚度还会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。

由于金属量少,薄膜电阻在潮湿的条件下极易自蚀。浸入封装过程中,水蒸汽会带入杂质,产生的化学腐蚀会在低压直流应用几小时内造成薄膜电阻开路。改变最佳薄膜厚度会严重影响 TCR。由于较薄的沉积层更容易氧化,因此高阻值薄膜电阻退化率非常高。 如前所述,受尺寸、体积和重量的影响,线绕电阻不可能采用晶片型。尽管精度低于线绕电阻,但由于具有更高的电阻密度(高阻值/小尺寸)且成本更低,厚膜电阻得到广泛使用。与薄膜电阻和金属箔电阻一样,厚膜电阻频响速度快,但在目前使用的电阻技术中,其噪声最高。虽然精度低于其他技术,但我们之所以在此讨论厚膜电阻技术,是由于其广泛应用于几乎每一种电路,包括高精密电路中精度要求不高的部分。 厚膜电阻依靠玻璃基体中粒子间的接触形成电阻。这些触点构成完整电阻,但工作中的热应变会中断接触。由于大部分情况下并联,厚膜电阻不会开路,但阻值会随着时间和温度持续增加。因此,与其他电阻技术相比,厚膜电阻稳定性差(时间、温度和功率)。 由于结构中成串的电荷运动,粒状结构还会使厚膜电阻产生很高的噪声。给定尺寸下,电阻值越高,金属成份越少,噪声越高,稳定性越差。厚膜电阻结构中的玻璃成分在电阻加工过程中形成玻璃相保护层,因此厚膜电阻的抗湿性高于薄膜电阻。 金属箔电阻 将具有已知和可控特性的特种金属箔片敷在特殊陶瓷基片上,形成热机平衡力对于电阻成型是十分重要的。然后,采用超精密工艺光刻电阻电路。这种工艺将低、长期稳定性、无感抗、无感应、低电容、快速热稳定性和低噪声等重要特性结合在一种电阻技术中。

四探针测量金属薄膜电阻率

实验三(I)探针测量半导体或金属薄膜电阻率 一.实验目的 1.熟悉四探针测量半导体或金属薄膜电阻率的原理 2.掌握四探针测量材料电阻率的方法 二.实验原理 薄膜材料是支持现代高新技术不断发展的重要材料之一,已经被广泛地应用在微电子器件、微驱动器/ 微执行器、微型传感器中。金属薄膜的电阻率是金属薄膜材料的一个重要的物理特性,是科研开发和实际生产中经常要测量的物理特性,对金属薄膜电阻率的测量也是四端法测量低电阻材料电阻率的一个实际的应用,它比传统的四端子法测量金属丝电阻率的实验更贴近现代高新技术的发展。 直流四探针法也称为四电极法,主要用于半导体材料或超导体等的低电阻率的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见,测试时四根金属探针与样品表面接触,外侧两根1、4为通电流探针,内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降,同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23(伏)。 (a)仪器接线(b)点电流源(c)四探针排列 图3-1 四探针法测试原理示意图 若一块电阻率为ρ的均匀半导体样品,其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I,由于均匀导体内恒定电场的等位面为球面,则在半径为r处等位面的面积为2πr2,电流密度为 j=I/2πr2(3-1)

根据电导率与电流密度的关系可得 E =2222r I r I j πρσπσ== (3-2) 则距点电荷r 处的电势为 r I V πρ2= (3-3) 半导体内各点的电势应为四个探针在该点形成电势的矢量和。通过数学推导可得四探针法测量电阻率的公式为: I V C r r r r I V 2313413241223)1111(2=+--?=-πρ (3-4) 式中,134 132412)1111(2-+--=r r r r C π为探针系数,单位为cm ;r 12、r 24、r 13、r 34分别为相应探针间的距离,见图3-1c 。若四探针在同一平面的同一直线上,其间距分别为S 1、S 2、S 3,且S 1=S 2=S 3=S 时,则 S I V S S S S S S I V ππρ2)1111(223133221123=++-+-?=- (3-5) 这就是常见的直流等间距四探针法测电阻率的公式。 为了减小测量区域,以观察电阻率的不均匀性,四根探针不—定都排成—直线,而可排成正方形或矩形,此时,只需改变计算电阻率公式中的探针系数C 。 四探针法的优点是探针与半导体样品之间不要求制备合金结电极,这给测量带来了方便。四探针法可以测量样品沿径向分布的断面电阻率,从而可以观察电阻率的不均匀情况。由于这种方法可迅速、方便、无破坏地测量任意形状的样品且精度较高,适合于大批生产中使用。但由于该方法受针距的限制,很难发现小于0.5mm 两点电阻的变化。 根据样品在不同电流(I )下的电压值(V )计算出该样品的电阻值及电阻率,例如某一种薄膜样品,在薄膜的面积为无限大或远大于四探针中相邻探针间距的时候,金属薄膜的电阻率ρ可以由以下式算出。

测量金属丝的电阻率(含答案)

测量金属丝的电阻率 一、实验题 1.在“测定金属的电阻率”的实验中,测定阻值约为3?6Ω的金属丝的电阻率,实验中所用的电压 表规格:量程0?3V、内阻3kΩ;电流表规格:量程0?0.6A、内阻0.1Ω;还有其他一些器材: (1)用螺旋测微器测得金属丝的直径,如图2所示,可知金属丝的直径d=______mm (2)需要通过实验直接测量的物理量有:____________________________________________(写出 名称和符号).电阻率的测量计算公式为ρ=______ 电流表、电压表的示数如图1所示.可计算出金属丝的电阻为______Ω. 2.在“测定金属的电阻率”的实验中,金属丝的阻值约为5Ω,某同学先用刻度尺测量金属丝的长度 l=50.00cm,用螺旋测微器测量金属丝直径时刻度位置如图1所示,再用伏安法测出金属丝的电阻,然后根据电阻定律计算出该金属材料的电阻率。 ①该电阻丝直径的测量值d=______mm; ②实验中能提供的器材有: A.电压表V1(量程0~3V,内阻约3kΩ) B.电压表V2(量程0~15V,内阻约15kΩ) C.电流表A1(量程0~3A,内阻约0.01Ω) D.电流表A2(量程0~0.6A,内阻约0.1Ω)

E.滑动变阻器R1(0~20Ω) F.滑动变阻器R2(0~500Ω) G.电源E(电动势为3.0V)及开关和导线若干 该同学从以上器材中选择合适的器材连接好电路进行测量,则电压表应选择______,电流表应选择______,滑动变阻器应选择______,(选填各器材前的字母)。要求在流过金属丝的电流相同情况下,电源消耗功率最小,并能较准确地测出电阻丝的阻值,实验电路应选用图2的______。 ③该同学建立U?I坐标系,如图3所示,图中已标出了与测量数据对应的五个坐标点,还有一 次测量的电压表和电流表示数如图4所示,请根据测量数据将坐标点补全,并描绘出U?I图线。 由图线数据可计算出金属丝的电阻为______Ω(保留两位有效数字)。设被测金属丝电阻为R,则该金属材料电阻率的表达式是_________(用题目给出的物理量符号表示)。 ④实验中使用的电流表内阻为R A,电压表内阻为R V,若考虑电流表和电压表内阻的影响,图3 中U?I图象中图线斜率k与该金属材料的电阻率ρ的关系是k=______(用题目给出的物理量符号表示)。 3.现有一合金制成的圆柱体,为测量该合金的电阻率,现用伏安法测圆柱体两端之间的电阻,用螺 旋测微器测量该圆柱体的直径,用游标卡尺测量该圆柱体的长度.螺旋测微器和游标卡尺的示数如图(a)和图(b)所示. (1)由上图读得圆柱体的直径为______mm,长度为______cm. (2)若流经圆柱体的电流为I,圆柱体两端之间的电压为U,圆柱体的直径和长度分别用D、L表 示,则用测得的D、L、I、U表示的电阻率的关系式为ρ=______. 4.为了测量一精密金属丝的电阻率: Ⅰ.先用多用电表×1Ω挡粗测其电阻为______ Ω,然后用螺旋测微器测其直径为______ mm,游标卡尺测其长度是______ mm.

物理实验金属薄膜电阻率的测量

银薄膜电阻率测量数据记录表 膜厚:44.4nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.151 0.162 0.163 0.163 0.172 0.186 0.185 0.186 0.193 0.207 0.208 0.208 0.223 0.241 0.240 0.241 0.281 0.301 0.302 0.302 0.316 0.340 0.339 0.340 0.356 0.383 0.384 0.384 0.402 0.433 0.434 0.434 0.448 0.482 0.483 0.483 电阻率为216.879(Ω/nm) 膜厚:88.8nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.532 0.121 0.126 0.124 1.743 0.404 0.409 0.407 3.264 0.759 0.764 0.762 4.744 1.105 1.110 1.108 5.642 1.314 1.320 1.317 7.539 1.758 1.763 1.761 9.163 2.138 2.143 2.141 10.679 2.492 2.497 2.495 12.221 2.854 2.859 2.857 电阻率为94.11(Ω/nm) 膜厚:133.2nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 0.794 0.107 0.112 0.110 2.372 0.327 0.332 0.330 3.988 0.553 0.558 0.556 5.235 0.727 0.732 0.730 6.904 0.960 0.965 0.963 8.488 1.181 1.187 1.184 9.785 1.362 1.368 1.365 13.193 1.839 1.844 1.842 14.871 2.073 2.079 2.076 电阻率为84.35(Ω/nm) 膜厚:222nm 电流I/mA 正向电压U+/Mv 反向电压U-/mV 平均电压U/mV 3.970 0.376 0.382 0.379 10.090 0.962 0.967 0.965 14.480 1.382 1.387 1.385

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2

铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0

高二物理测定金属的电阻率

实验 测定金属的电阻率 一、实验目的:学会用伏安法测量电阻的阻值,测定金属的电阻率。 二、实验原理:用刻度尺测一段金属导线的长度L ,用螺旋测微器测导线的直径d ,用伏安法测导线的电阻R ,根据电阻定律,金属的电阻率ρ=RS/L=πd 2R/4L 三、实验器材:①金属丝②千分尺③安培表④伏特表⑤(3伏)电源⑥(20Ω)滑动变阻器⑦电键一个⑧导线几根 【点拨】被测金属丝要选用电阻率大的材料,如铁铬铝合金、镍铬合金等或300瓦电炉丝经细心理直后代用,直径0.4毫米左右,电阻5~10欧之间为宜,在此前提下,电源选3伏直流电源,安培表选0 0.6安量程,伏特表选0 3伏档,滑动变阻器选0 20欧。 四、实验步骤 (1)用螺旋测微器三次测量导线不同位置的直径取平均值D 求出其横截面积S=πD 2/4. (2)将金属丝两端固定在接线柱上悬空挂直,用毫米刻度米尺测量接入电路的金属丝长度L ,测三次,求出平均值L 。 (3)根据所选测量仪器和选择电路的原则画好电路图1,然后依电路图按顺序给实物连线并将滑动变阻器的阻值调到最大。 点拨:为避免接线交叉和正负极性接错,接线顺序应遵循:电源正极→电键(断开状态)→滑动变阻器→用电器→安培表正极→ 安培表负极→电源负极,最后将伏特表并接在待测电路的两端,即先接干路,后接支路。 (4)检查线路无误后闭合电键,调节滑动变阻器读出几组I 、U 值,分别计算电阻R 再求平均值,设计表格把多次测量的D 、L 、U 、I 记下来。 【点拨】测量时通过金属丝的电流应控制在1.00A 以下,本实验由于安培表量程0~0.60A ,每次通电时间应尽量短(以能读取电表数据为准),读数完毕立即断开电键S ,防止温度升高使金属丝长度和电阻率发生明显变化。 计算时,务必算出每次的电阻值再求平均值,不能先分别求电压U 和电流I 的平均值,再由欧姆定律得平均值,否则会带来较大计算误差。 五、实验记录 图1

实验八 测量金属的电阻率

实验八测量金属的电阻率 主干梳理对点激活 1.掌握电流表、电压表和滑动变阻器的使用方法。 2.学会使用螺旋测微器测量金属丝直径。 3.会用伏安法测电阻,进一步测定金属的电阻率。 由R=ρl S得ρ=RS l,因此,只要测出金属丝的长度l、横截面积S和金属丝的 电阻R,即可求出金属丝的电阻率ρ。实验电路图和实物连线图分别如图甲、乙所示。 毫米刻度尺、螺旋测微器、直流电流表和直流电压表、滑动变阻器(阻值范围0~50 Ω)、电池组、开关、被测金属丝、导线若干。 1.求金属丝横截面积S:在准备好的金属丝上三个不同位置用螺旋测微器各测一次直径,求出其平均值d。 2.按照电路图连好电路。 3.测量金属丝有效长度l:将金属丝两端固定在接线柱上悬空挂直,用毫米刻度尺测量接入电路的金属丝长度(即有效长度),反复测量三次,求出平均值l。 4.求金属丝的电阻R x:把滑动变阻器调到接入电路中的阻值最大的位置,检查无误后,闭合开关S,改变滑动变阻器滑片的位置,读出几组相应的电流值和电压值记录在表格中,断开开关S,求出金属丝电阻R x的平均值。 5.整理仪器。

6.将测得的R x、l、d值,代入公式S=πd2 4和ρ= RS l中,计算出金属丝的电 阻率。 1.求R x的两种方法 (1)用R x=U I算出各次的数值,再取平均值。 (2)用U-I图线的斜率求出。 2.计算电阻率:将记录的数据R x、l、d的值,代入电阻率计算公式ρ=R x S l= R x πd2 4l。 1.金属丝直径、长度的测量及电流表、电压表读数带来的偶然误差。 2.电路中因为电流表外接,所以R测

金属膜电阻规格书

文件修订记录 版本修订内容日期 文件汇签记录 版本签名日期版本签名日期

1、目的 确保本公司所生产的金属膜电阻都有一个统一的标准 2、范围 本规格仅适用于本厂所生产之金属膜固定电阻器成品规格。 3、定义 3.1 型号(type):具有相似的设计和制造工艺,在鉴定批准或质量一致性检验中可以将它们组合在一起的 一组电子元件 3.2 额定温度:在该温度的耐久性试验条件下,可连续施加额定功耗的最高环境温度,本规范指70℃。 3.3 额定功耗:在70℃环境温度下进行70℃耐久试验,而且阻值变化不超过该试验的允许值时所允许的 最大功耗。 3.4 额定电压:用标称阻值和额定功耗乘积的平方根计算出的直流电压或交流电压有效值。 3.5元件极限电压:可经连续施加在电阻器两个引出端上的最大直流电压或交流电压有效值。即本规范所 指的最高使用电压。 3.6 绝缘电压:在连续工作条件下,在电阻器的各个引出端与任何导电安装面之间可以施加的最大峰值电 压。 3.7 电阻温度系数:两个规定温度之间的阻值相对变化除以产生这个变化的温度之差。 4、职责 本规格书执行标准GB/T 5729—2003/IEC 60115-1:2001 5、程序内容 5.1 类型命名:类型依种类、 功率、标称电阻值及阻值容许差等,如下列符号之排列构成 种类 功率 标称电阻值 电阻值容许差 RN 1/4W 150KΩ F 5.2符号之意义 5.2.1种类:以大写英文字母RN表示为金属膜固定电阻器(或以商用通称MF代表,或以RJ来表示)。 5.2.2功率:以W代表额定电功率,如加一英文字母“S”即表示小型化,例1/4WS,即表示额定功率为 1/4W之小型化Size。 5.2.3 标称电阻值:标称电阻值之单位为欧姆,以符号Ω表示,其电阻值以Ω、KΩ(103Ω)、MΩ(106 Ω)、mΩ(10-3Ω)表示之。 5.2.4电阻值容许差:电阻值容许差符号如F(±1%)、G(±2%)、J(±5%)、D(±0.5%)、C(±0.25%) 及B(±0.1%)等表示之 5.2.5形状:大写英文母表示“P”表示外形构造(其外形如图四),或者加工成型如PU、PUG、PF等到, (如图五) 5.3涂装要求 5.3.1电阻器1/8W为焊点不涂漆,≧1/4W均为焊点涂漆(除非客户特殊要求)。 5.3.2 正常尺寸以蓝色漆表示,小型化尺寸以淡蓝色漆表示

金属电阻应变片的种类、材料及粘贴

1.金属电阻应变片的种类金属电阻应变片种类繁多,形式多样,但常见的基本结构有金属丝式应变片、金属箔式应变片和薄膜式应变片。其中金属丝式应变片使用最早、最多,因其制作简单、性能稳定、价格低廉、易于粘贴而被广泛使用。 2.电阻应变片的结构金属丝式电阻应变片由敏感栅、基底、盖层、黏合层和引线等组成。图2-2为金属丝式应变片的典型结构图。其中敏感栅是应变片内实现应变——.电阻转换的最重要的传感元件,一般采用的栅丝直径为0. 015~ mm。敏感栅的纵向轴线称为应变片轴线,L为栅长,n为基宽。根据不同用途,栅长可为~200 mm。基底用以保持敏感栅及引线的几何形状和相对位置,并将被测件上的应变迅速、准确地传递到敏感栅上,因此基底做得很薄,一般为0. 02~ mm。盖层起防潮、防腐、防损的作用,用以保护敏感栅。用专门的薄纸制成的基底和盖层称为纸基,用各种黏合剂和有机树脂薄膜制成的称为胶基,现多采月后者。黏合剂将敏感栅、基底及盖层黏合在一起。在使用应变片时也采用黏合剂将应变片与被测件黏牢。引线常用直径为~ mm的镀锡铜线,并与敏感栅两输出端焊接。 金属箔式应变片的基本结构如图2-3所示,其敏感栅是由很薄的金属箔片制成的,厚度只有0. 01~ mm,用光刻、腐蚀等技术制作。箔式应变片的横向部分特别粗,可大大减少横向效应,且敏感栅的粘贴面积大,能更好地随同试件变形。此外与金属丝式应变片相比,金属箔式应变片还具有散热性能好、允许电流大、灵敏度高、寿命长、可制成任意形状、易加工、生产效率高等优点,所以其使用范围日益扩大,已逐渐取代丝式应变片而占主要的地位。 但需要注意,制造箔式应变片的电阻值的分散性要比丝式的大,有的能相差几十欧姆,故需要作阻值的调整。对金属电阻应变片敏感栅材料的基本要求如下。 ①灵敏系数K。值大,并且在较大应变范围内保持常数。 ②电阻温度系数小。 ③电阻率大。 ④机械强度高,且易于拉丝或辗薄。 ⑤与铜丝的焊接性好,与其他金属的接触热电势小。

《金属薄膜电阻率的测量》鉴定报告.

金属薄膜电阻率的测量》鉴定报告 一、主题把当今高新技术领域中的科研开发和生产中实际应用的物理测量技术放到大学本科的普通物理实验教学中,不断提高和更新普通物理实验教学的档次,使普通物理实验教学更贴近当今高新技术的发展,从而使学生们在学校期间就能够接触到一些同高新技术领域相关的实验内容,对于提高学生们的学习兴趣和培养将来实际科研开发能力将起到很大的帮助。培养创新型人才,使高等学校培养的毕业生进入社会后能够更快的担负起发展国家高新技产业的重担,这是当前普通物理实验教学改革的重要方向之一。 把科研开发中实际应用的方法向工科物理实验教学转化。科研开发中实际应用的方法包括二部分——(1)具体的实验方法、原理和设备(统称:硬件);(2)提出问题、分析问题和解决问题的思维方法(统称:软件)。 本实验是把科研开发中实际应用的方法——用四探针法测量金属薄膜电阻率引入到工科物理实验教学中。 二、目的 1.让同学们直接地接触薄膜材料,对薄膜材料有一个直观的感性认识;了解和学会现在科研开发和生产中使用的四探针法测量金属薄膜电阻率的原理和方法; 2.了解薄膜的膜厚对金属薄膜电阻率的影响(即,金属薄膜电阻率的尺寸效应);薄膜材料同普通块体材料的差异; 3.分析用四探针法测量金属薄膜电阻率时可能产生误差的根源;4.使学生们在直接感受到工科物理实验在当今高新技术中的应用实例,从而提高学生们的学习兴趣和探索自然的积极性; 5.培养学生们提出问题、分析问题和解决问题的科研开发能力,培养学生们的创新能力; 6.使低价格同时又具有一定科学实用价值的实验仪器进入工科物理实验教学中,降低实验教育的成本。 三、实验讲义 《实验讲义》在内容上有以下几个特点:(1)主要标题中的[引言]、[实验目的]、[实验仪器]、[实验原理]、[实验测量及数据处理]、[讨论]、[结论]、[参考文献]为通常科学论文所用的形式,其目的是让学生们在阅读实验讲义和写实验报告时能够熟悉科学论文的写作方式。(2)讲义中的[引言]部分主要介绍了与相关实验有关的应用背景、在物理学发展史 中的作用等知识,其目的是提高学生们的学习兴趣、探索自然奥秘的积极性以及开阔学生们的眼界。(3)讲义中的[讨论]、[研究性题目]和[思考题]部分主要分不同层次地给学生们提出一些与实验相关的问题,要求学生们认真思考后,通过自己设计、编排实验,用实验数据回答提出的问题,其目的是提高学生们提出问题、分析问题、解决问题能力,培养创新意识和创新能力,体现分层次教育的思想。(4)讲义中的[结论]部分让学生们通过实验给出自己想说的结论,其目的是让同学们从自己感兴趣的视角给出结论,拓宽学生们的思维空间,培养学生们的科学概括、总结能力。(5)讲义中的[参考文献]部分提醒、培养同学们在科研开发工作中应该养成参考学习前人的结果的工作习惯和实事求是的科学道德。 四、实验内容 1.实验仪器 主要实验仪器包括,四探针组件、SB118精密直流电流源、PZ158A直流数字电压表、 具有七种不同膜厚的金薄膜材料、具有七种不同膜厚的铁薄膜材料。 SB118精密直流电流源是精密恒流源,它的输出电流在1微安(1微安=10-6安培)一一 200毫安(1毫安=10-3安培)范围内可调,其精度为土0.03%。PZ158A直流数字电压表是具

测定金属的电阻率(高三、教案)

实验七测定金属的电阻率(练习使用螺旋测微器) 一、螺旋测微器的构造原理及读数 1.螺旋测微器的构造 如图1所示是常用的螺旋测微器.它的测砧A和固定刻度B固定在尺架C上.旋钮 D、微调旋钮D′和可动刻度 E、测微螺杆F连在一起,通过精密螺纹套在B上. 图1 2.螺旋测微器的原理 测微螺杆F与固定刻度B之间的精密螺纹的螺距为0.5 mm,即旋钮D每旋转一周,F前进或后退0.5 mm,而可动刻度E上的刻度为50等份,每转动一小格,F前进或后退0.01 mm.即螺旋测微器的精确度为0.01 mm.读数时估读到毫米的千分位上,因此,螺旋测微器又叫千分尺. 3.读数:测量时被测物体长度的整数毫米数由固定刻度读出,小数部分由可动刻度读出.测量值(毫米)=固定刻度数(毫米)(注意半毫米刻度线是否露出)+可动刻度数(估读一位)×0.01(毫米) 二、游标卡尺 1.构造:主尺、游标尺(主尺和游标尺上各有一个内外测量爪)、游标尺上还有一个深度尺,尺身上还有一个紧固螺钉.(如图2所示) 图2 2.用途:测量厚度、长度、深度、内径、外径. 3.原理:利用主尺的最小分度与游标尺的最小分度的差值制成. 不管游标尺上有多少个小等分刻度,它的刻度部分的总长度比主尺上的同样多的小等分刻度少1 mm.常见的游标卡尺的游标尺上小等分刻度有10个的、20个的、50个的,其读数见下表:

游标尺 精度 1 n (mm) 测量长度L=N +k 1 n (mm)(游 标尺上第k格 与主尺上的 刻度线对齐时) 总刻度格数n 刻度总长 度(mm) 每小格 与主尺 1格 (1 mm) 相差 1090.10.1 N(主尺上读的整毫米数)+ 1 10 k 20190.050.05 N(主尺上读的整毫米数)+ 1 20 k 50490.020.02 N(主尺上读的整毫米数)+ 1 50 k 三、伏安法测电阻 1.电流表、电压表的应用 电流表内接法电流表外接法电路图 误差原因 电流表分压 U测=U x+U A 电压表分流 I测=I x+I V 电阻测量值R测= U测 I测 =R x+R A>R x 测量值大于真实值 R测= U测 I测 = R x R V R x+R V R V R A时,用电流表内接法.

常见金属电阻率

常见金属的电阻率,都来看看哦 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.65480.00429(20℃) 钙 0 3.91 0.00416(0℃) 铍20 4.00.025(20℃) 镁20 4.45 0.0165(20℃) 钼 0 5.2 铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟208.37 铁209.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20.0 铅20 20.684 0.00376 (20℃~40℃) 锑0 39.0 钛20 42.0 汞50 98.4 锰23~100 185.0 金是一种贵重金属,是人类最早发现和开发利用的金属之一。它是制作首饰和钱币的重要原料,又是国家的重要储备物资,素以"金属之王"著称。它不仅被视为美好和富有的象征,而且还以其特有的价值,造福于人类的生活。随着科学技术和现代工业的发展,黄金在宇宙航 行、医学、电子学和其它工业部门,日益发挥着重要的作用。金的用途越来越广,消耗量也越来越大,因

四探针测试仪测量薄膜的电阻率题库

四探针测试仪测量薄膜的电阻率 一、 实验目的 1、掌握四探针法测量电阻率和薄层电阻的原理及测量方法; 2、了解影响电阻率测量的各种因素及改进措施。 二、实验仪器 采用SDY-5型双电测四探针测试仪(含:直流数字电压表、恒流源、电源、 DC-DC 电源变换器)。 三、实验原理 电阻率的测量是半导体材料常规参数测量项目之一。测量电阻率的方法很 多,如三探针法、电容---电压法、扩展电阻法等。四探针法则是一种广泛采用的标准方法,在半导体工艺中最为常用。 1、半导体材料体电阻率测量原理 在半无穷大样品上的点电流源, 若样品的电阻率ρ均匀, 引入点电流源的 探针其电流强度为I ,则所产生的电场具有球面的对称性, 即等位面为一系列以点电流为中心的半球面,如图1所示。在以r为半径的半球面上,电流密度j的分布是均匀的: 若E 为r处的电场强度, 则: 由电场强度和电位梯度以及球面对称关系, 则: 取r为无穷远处的电位为零, 则: (1) dr d E ψ -=dr r I Edr d 22πρψ-=-=???∞∞I -=-=)(022r r r r dr Edr d ψπρ ψ r l r πρψ2)(=

图3 四探针法测量原理图 上式就是半无穷大均匀样品上离开点电流源距离为r的点的电位与探针流 过的电流和样品电阻率的关系式,它代表了一个点电流源对距离r处的点的电势 的贡献。 对图2所示的情形,四根探针位于样品中央,电流从探针1流入,从探针4 流出, 则可将1和4探针认为是点电流源,由1式可知,2和3探针的电位为: 2、3探针的电位差为: 此可得出样品的电阻率为: 上式就是利用直流四探针法测量电阻率的普遍公式。 我们只需测出流过1、 4 探针的电流I 以及2、3 探针间的电位差V 23,代入四根探针的间距, 就可以 求出该样品的电阻率ρ。实际测量中, 最常用的是直线型四探针(如图3所示), 即四根探针的针尖位于同一直线上,并且间距相 等, 设r 12=r 23=r 34=S ,则有:S I V πρ223= 需要指出的是: 这一公式是在半无限大样 品的基础上导出的,实用中必需满足样品厚度及 边缘与探针之间的最近距离大于四倍探针间距, 这样才能使该式具有足够的精确度。 如果被测样品不是半无穷大,而是厚度,横向尺寸一定,进一步的分析表明, 在四探针法中只要对公式引入适当的修正系数B O 即可,此时: (223I V πρ=134132412)1111-+--r r r r )11(224122r r I -=πρψ)11(234 133r r I -=πρψ)1111(234 1324123223r r r r I V +--=-=πρψψS IB V πρ20 23=

测量金属丝的电阻率的实验报告

测量金属丝的电阻率的 实验报告 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

《测量金属丝的电阻率》实验报告 徐闻一中:麦昌壮 一、实验目的 1.学会使用伏安法测量电阻。 2.测定金属导体的电阻率。 3.掌握滑动变阻器的两种使用方法和螺旋测微器的正确读数。 二、实验原理 设金属导线长度为l ,导线直径为d ,电阻率为ρ,则: 由S l ρR =,得: l R d l RS 42?==πρ。 三、实验器材 已知长度为50cm 的被测金属丝一根,螺旋测微器一把,电压表、电流表各一个,电源一个,开关一个,滑动变阻器一只,导线若干。 四、实验电路 五、实验步骤 1.用螺旋测微器测三次导线的直径d ,取其平均值。 2.按照实验电路连接好电器元件。 3.移动滑动变阻器的滑片,改变电阻值。 4.观察电流表和电压表,记下三组不同的电压U 和电流I 的值。 5.根据公式计算出电阻率ρ的值。 六、实验数据

七、实验结果 ρ平均=(1.97+2.06+2.18)÷3×10-7Ω·m=2.07×10-7Ω·m 八、实验结论 金属丝的电阻率是2.07×10-7Ω·m。 九、【注意事项】 1.本实验中被测金属导线的电阻值较小,因此实验电访必须采用电流表外接法 2.实验连线时,应先从电源的正极出发,依次将电源、电键、电流表、待测金属导线、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待洲金属导线的两端 3.测量被测金属导线的有效长度,是指测量待测导线接入电路的两个端点之间的长度,亦即电压表两并入点间的部分待测导线长度.测量时应将导线拉直. 4.闭合电键S之前,一定要使滑动变阻器的滑动片处在有效电阻值最大的位置 5.在用伏安法测电阻时,通过待测导线的电流强度正的值不宜过大(电流表用0~0.6A量程),通电时间不宜过长,以免金属导线的温度明显升高,造成其电阻率在实验过程中逐渐增大.

薄膜电阻率表面粗糙度+5因素影响

Piezoresistance and electrical resistivity of Pd, Au, and Cu films S.U. Jen*, C.C. Yu, C.H. Liu, G.Y. Lee Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC Received 一些金属薄膜,如在Pd ,Au 和Cu 膜的电阻率及压阻被测量。即表面粗糙度和电子隧道模型,解释电阻率变化和压阻效应。 h 是表面粗糙度,2h 是波峰与波谷的平均距离。λ是电子平均自由程,t 是薄膜厚度。为了区分两个因素导致的电阻率变化。即表面粗糙度和电子隧道效应。引进2个式子:如果满足h/λ<0.3和2h/t<0.5,薄膜是连续的,粗糙度理论站主导地位。如果0.5<2h/t<1.处于聚合区,也就是岛状不连续区域。 如果满足下式: ?????≤<3.05 .02λ h t h (表面粗糙度小,且薄膜厚度较大) 则薄膜是连续的,影响薄膜电阻率的主要因素是表面粗糙度。 如果满足下式: ?????≤<<3.0125.0λ h t h (表面粗糙度较小,与薄膜厚度一个数量级,薄膜厚度很小) 则薄膜是聚合区,岛状结构。则影响薄膜电阻率的主要因素是电阻隧道效应。 实验中薄膜电阻厚度为400nm , 关键词:压阻电阻,表面粗糙度;隧道 1。介绍 压阻效应是指在收到外力电阻率发生变化的现象。例如,应变仪的使用采用这种现象。 =??=ε γR R 01 因此,如果薄膜是连续的,薄膜试样可能会影响克两种方式:一种是的表面粗糙度的效果,另一种是电子隧道effect.In 的这篇文章中,我们将讨论这些两方面

实验测定金属的电阻率

实验八 测定金属的电阻率 1.实验原理(如图1所示) 由R =ρl S 得ρ=RS l ,因此,只要测出金属丝的长度l 、横截面积S 和金属丝的电阻R ,即可求 出金属丝的电阻率ρ. 图1 2.实验器材 被测金属丝,直流电源(4 V),电流表(0~0.6 A),电压表(0~3 V),滑动变阻器(0~50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺. 3.实验步骤 (1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d . (2)连接好用伏安法测电阻的实验电路. (3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l . (4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置. (5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内. (6)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 2 4 中,计算出金属丝的电阻率. 1.数据处理 (1)在求R x 的平均值时可用两种方法 ①用R x =U I 分别算出各次的数值,再取平均值.

②用U -I 图线的斜率求出. (2)计算电阻率 将记录的数据R x 、l 、d 的值代入电阻率计算公式ρ=R x S l =πd 2U 4lI . 2.误差分析 (1)金属丝的横截面积是利用直径计算而得,直径的测量是产生误差的主要来源之一. (2)采用伏安法测量金属丝的电阻时,由于采用的是电流表外接法,测量值小于真实值,使电阻率的测量值偏小. (3)金属丝的长度测量、电流表和电压表的读数等会带来偶然误差. (4)由于金属丝通电后发热升温,会使金属丝的电阻率变大,造成测量误差. 3.注意事项 (1)本实验中被测金属丝的电阻值较小,因此实验电路一般采用电流表外接法. (2)实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、被测金属丝、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在被测金属丝的两端. (3)测量被测金属丝的有效长度,是指测量被测金属丝接入电路的两个端点之间的长度,亦即电压表两端点间的被测金属丝长度,测量时应将金属丝拉直,反复测量三次,求其平均值. (4)测金属丝直径一定要选三个不同部位进行测量,求其平均值. (5)闭合开关S 之前,一定要使滑动变阻器的滑片处在有效电阻值最大的位置. (6)在用伏安法测电阻时,通过被测金属丝的电流强度I 不宜过大(电流表用0~0.6 A 量程),通电时间不宜过长,以免金属丝的温度明显升高,造成其电阻率在实验过程中逐渐增大. (7)若采用图象法求R 的平均值,在描点时,要尽量使各点间的距离拉大一些,连线时要尽可能地让各点均匀分布在直线的两侧,个别明显偏离较远的点可以不予考虑. 命题点一 教材原型实验 例1 在“测定金属的电阻率”实验中,所用测量仪器均已校准.待测金属丝接入电路部分的长度约为50 cm. (1)用螺旋测微器测量金属丝的直径,其中某一次测量结果如图2所示,其读数应为 mm(该值接近多次测量的平均值). 图2

相关文档
最新文档