光合作用 (2)

合集下载

2022生物浙科版必修1学案:第三章 19 光合作用(二)

2022生物浙科版必修1学案:第三章 19 光合作用(二)

第19课时光合作用(二)[目标导读] 1.概述光反应发生的变化和碳反应的过程,并分析二者的联系。

2.结合光合作用过程,阐明不同条件下光合作用中间产物的含量变化状况。

[重难点击] 1.光合作用的过程。

2.CO2或光照骤变时,叶绿体中物质的变化。

一光反应和碳反应的过程光合作用分两个阶段进行,称为光反应和碳反应,请结合下面的材料探讨二者的过程。

1.光反应(1)场所:叶绿体的类囊体膜。

(2)条件:光能、色素、酶等。

(3)产物:氧气、NADPH、ATP等。

(4)光反应中发生的变化主要有:①光能被吸取并转化为ATP和NADPH中的化学能。

②水在光下裂解为H+、O2和电子。

③水中的氢(H++e-)在光下将NADP+还原为NADPH。

2.碳反应(1)场所:叶绿体的基质。

(2)条件:酶、ATP、NADPH等。

(3)产物:三碳糖等。

(4)碳反应过程(卡尔文循环)①一个五碳糖分子(RuBP)与一个二氧化碳结合,形成一个六碳分子,它随即分解成2个三碳酸分子。

②每个三碳酸分子接受来自NADPH的氢和来自A TP的磷酸基团,形成1分子三碳糖。

③生成的三碳糖中,5/6再生为RuBP,1/6可以在叶绿体中合成淀粉、蛋白质和脂质,或者到叶绿体外转变成蔗糖。

特殊提示光反应与碳反应的比较(1)光反应必需在光下才能进行,碳反应虽不直接需要光,但也只有在有光的条件下才能循环往复地进行。

(2)碳反应的产物是三碳糖,三碳糖可以在叶绿体中转化为淀粉等,更多的在叶绿体外转变为蔗糖,运输到植物体被全部细胞利用,因此蔗糖是光合产物的主要运输形式。

(3)色素只存在于光反应部位——叶绿体类囊体膜上,但光反应和碳反应都需要酶参与,所以与光合作用有关的酶存在于两个部位——叶绿体类囊体膜上和基质中。

活学活用1.光合作用过程中,水的分解及三碳化合物形成糖类所需要的能量分别来自()A.细胞呼吸产生的A TP和光能B.都是细胞呼吸产生的A TPC.光能和光反应产生的A TPD.都是光反应产生的ATP答案 C解析光合作用中水的分解发生在光反应阶段,需光能作能源,三碳化合物是在碳反应中被还原,其动力来自光反应产生的A TP,还原剂是光反应产生的NADPH。

植物的光合作用-2

植物的光合作用-2

所以其量子效率接近1 。
(三)光能的吸收与传递
1、光合作用单位
根据能否进行光化学反应,将叶绿体色素分为二 类:
一类是反应中心色素:它具有光化学活性,既能捕获光能, 又能将光能转换为电能(称为“陷阱”),少数特殊状态的 叶绿素a分子属于此类。 另一类是聚光色素:又称天线色素,它没有光化学活性, 只能进行光物理过程,把吸收的光能传递到反应中心色素, 绝大多数色素(包括大部分chla和全部的chlb、胡萝卜素、 叶黄素等)都属于此类。

一个是吸收短波红光(680nm)的光系统Ⅱ(PSⅡ), PSⅡ颗粒较大,位于类囊体膜的内侧。 另一个是吸收长波红光(700nm)的光系统I(PSⅠ), PSⅠ颗粒较小,在类囊体膜的外侧。 这两个光系统是以串联的方式协同作用的。
4、PSⅠ和PSⅡ的光化学反应
PSⅠ的原初电子受体是叶绿素分子(A0),PSⅡ的 原初电子受体是去镁叶绿素分子(Pheo),它们的次 级电子受体分别是铁硫中心和醌分子。 PSⅠ的原初反应: P700· 0 A

2、光合电子传递体的组成与功能
(1)PSⅡ复合体
A、PSII由3部分组成:
反应中心由2个交叉排列多 肽 D 1和D2组成,其中含有原 初电子供体(Z)、P680、原初电 子受体去镁叶绿素(Pheo)和质 体醌(QA和QB), D 1和D2之间 可能由Fe连接;
PSII反应中心结构模式图
PSII外围是由聚光色素蛋白复合体与细胞色素b559结合的2 条多肽;它们围绕P680,可更快地把吸收的光能传至PSⅡ反应 中心,所以被称为中心天线或“近侧天线”。 放氧复合体(锰聚合体)
卟啉环
第三节 光合作用(Photosynthesis)的机理
光合作用当然需要光,但不是任何步骤都需要光。 根据需光与否,光合作用将分为两个反应─光反应(light reaction)和暗反应(dark reaction)。

光合作用2

光合作用2

20世纪40年代
卡尔文
4、光合作用过程
划分依据:反应过程是否需要光能 光反应 暗反应
光合作用.swf
光合作用的过程:
2H2O
光解 吸收
O2 4[H]

2C3
固定
CO2
可见光
色素分子
ATP 酶 ADP+Pi
还 原

多种酶 C5
(CH2O)
光反应
暗反应
原料和产物的对应关系: C CO2 (CH2O) H H2O O CO2
绿色植物的光合作用与呼吸作用的比较 :
光合作用 有氧呼吸
活细胞 细胞质基质、线粒体 氧气、酶 有机物
CO2、H2O
在哪些细 胞进行 反应场所 反应条件
含叶绿体的细胞 叶绿体 光、色素、酶
CO2、H2O
物质转化 能量转变
联系
有机物
光能转变为化学能储存 将有机物中的能量释放出 在有机物中 来,一部分转移到ATP中 光合作用的产物为细胞呼吸提供了物质基础— —有机物和氧气;细胞呼吸产生的二氧化碳可 被光合作用所利用
⑵CO2浓度对光合作用强度的影响
A点:CO2启动点, 即发生光合作用的 最低CO2浓度
光 合 速 率
B
C
AB段:随CO2浓度升高 A ,光合作用(暗反应)增强
CO2的浓度
B点:CO2饱和点,受限于C5含量、有关酶活性等
空气中CO2含量一般占330mg/L,与植物光合所需最 适浓度(1000mg/L)相差太远。
色素

基质 含多种光合作用所必需
的酶
功能: 光合作用的场所。
1.下列标号各代表: ① 外膜 ② 内膜 ③ 基粒 ④ 类囊体膜 ⑤ 基质 叶绿体是进行 2.在④上分布有光合作用所需的 色素 和 酶 ,在⑤中也分布有光 光合作用 合作用所需的 酶 。 ⑤ 的场所。 ①

11光合作用(二)光合作用的原理和应用知识讲解

11光合作用(二)光合作用的原理和应用知识讲解

光合作用(二)光合作用的原理和应用知识讲解【学习目标】1、理解光合作用的过程及原理,掌握光反应、暗反应的过程及其相互关系2、描述叶绿体的结构、说明叶绿体的功能。

3、理解环境因素对光合作用强度的影响。

4、重点:光合作用的发现及研究历史、光合作用的光反应和暗反应过程及其相互关系5、重点:影响光合作用强度的外界因素。

6、难点:光反应和暗反应的过程、探究影响光合作用的环境因素【要点梳理】要点一、光合作用及其探究历程1、光合作用光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转换成储存着能量的有机物,并且释放出氧气的过程。

要点二、光合作用过程及原理的应用1、光合作用过程图解2、光反应阶段和暗反应阶段的区别和联系项目 光反应暗反应 区 别场所 类囊体囊状结构的薄膜上叶绿体基质 条件需色素、光、酶不需色素、光,需要酶物质变化(1)水的光解(2)ATP 的生成(1)CO 2的固定 (2)C 3的还原能量变化叶绿素将光能转化为活跃的化学能储存在ATP 中。

ATP 中活跃的化学能转化为有机物中稳定的化学能。

两者联系(1)光反应为暗反应提供ATP 和还原剂[H],暗反应为光反应提供ADP 和Pi (2)没有光反应,暗反应无法进行;没有暗反应,有机物无法合成。

总之,光反应是暗反应的物质和能量的准备阶段,暗反应是光反应的继续,是物质和能量转化的完成阶段。

二者是光合作用全过程的两个阶段,是相辅相成的。

要点诠释:①光反应必须在光下进行,而暗反应有光无光都可以进行。

②催化光反应与暗反应的酶,其种类和场所均不同,前者分布在类囊状膜上,后者分布在叶绿体基质中。

3、光合作用反应式及其元素去向6CO 2+12H 2O −−−→光能叶绿体C 6H 12O 6+6H 2O +6O 2要点诠释:上述方程式表示光合产物只是单糖,实际上光合产物主要是糖类,包括单糖(葡萄糖和果糖)、二糖(蔗糖)、多糖(淀粉),其中以蔗糖和淀粉最为普遍,但也有一些实验证明,蛋白质、脂肪也是光合作用的直接产物。

高中生物人教版必修一导学案:5.4-光合作用的原理和应用(二)

高中生物人教版必修一导学案:5.4-光合作用的原理和应用(二)

第五章第四节能量之源——光与光合作用(二)【教学目标】1.说明光合作用以及对它的相识过程。

2.简述出光合作用的原理、原料、产物、条件和反应场所。

【教学重点】1.光合作用的探究历程。

2.光合作用的过程、反应场所、原料、产物和反应条件。

【教学难点】1.光合作用的发觉及探讨历史。

2.光合作用的光反应、暗反应过程及相互关系。

【课时支配】 3课时第2课时【教学过程】导入:同学们,通过初中生物课的学习,我们已经知道,植物的每一片绿叶就似乎是一个“绿色工厂”,源源不断地生产着有机物,绿色植物生产有机物的过程是通过什么生理过程完成的呢?完成这项生理过程的场所是哪里?反应物、生成物以及反应条件分别是什么?带着这些疑问,我们今日来共同学习光合作用的相关学问点。

进而绽开本节内容。

自主学习一:请同学们细致默读课本P101--102页“光合作用的探究过程”部分内容。

完成下列填空:1.公元前3世纪,古希腊哲学家亚里士多德认为:植物生长所需的物质全来源于土中。

2.1648年,海尔蒙特(比利时)做了盆栽柳树称重试验,得出柳树生长所需的养分物质是从水中获得。

他没有相识到空气中的物质参加了有机物的形成。

3.1771年,英国的普里斯特利做了一个出名的试验,通过试验他得出了结论:_________________________________________________________。

但他并没有发觉光的重要性。

4.1779年,荷兰的英恩豪斯证明5.1785年,由于发觉了空气的组成,人们才明确绿叶在光下放出的气体是______________________,汲取的是_____________________________。

6.1804年,法国的索叙尔通过定量探讨进一步证明二氧化碳和水是植物生长的原料。

7.1845年,德国的梅耶依据能量转化与明确指出8.1864年,德国的萨克斯发觉光合作用产生淀粉。

他做了一个试验,通过试验,胜利的证明9.1880年,美国的恩格尔曼发觉叶绿体是进行光合作用的场所,氧是由叶绿体释放出来的。

第3课时光合作用的原理和应用(2)

第3课时光合作用的原理和应用(2)
答案:C。
探究环境因素对光合作用强度的影响
1.实验原理:叶片在正常情况下,组织细胞间隙中充满空气,可采取真空渗入法,即排 除间隙内的空气,充以水分,使叶片沉于水中,然后在光合作用的过程中,利用不断产 生的氧气在细胞间隙中的积累,致使下沉的叶片又逐渐上浮。
2.变量分析 课题名称 因变量
探究光照 光照的 强弱对光 强弱 合作用强 度的影响
(5)叶龄(如下图所示)
①曲线分析: OA:为幼叶,随幼叶的不断生长,叶面积不断增大,叶内叶绿体不断增多,叶绿素含 量不断增加,光合作用速率不断增加。 AB:为壮叶,叶片的面积、叶绿体和叶绿素都处于稳定状态,光合速率也基本稳定。 BC:为老叶,随着叶龄的增加,叶片内叶绿素被破坏,光合速率也随之下降。 ②应用: 农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理, 可降低其细胞呼吸消耗有机物。
(3)CO2浓度、含水量及矿质元素(如下图所示)
①曲线分析: OA:CO2和水是光合作用的原料,矿质元素直接或间接影响光合作用。在一定范围内, CO2、水和矿质元素越多,光合作用速率越快。 A点:即CO2、水、矿质元素达到饱和时,就不再增加了。
②应用: a.“正其行,通其风”,温室内充CO2,即提高CO2浓度,增加产量的方法。 b.合理施肥可促进叶片面积增大,提高酶的合成速率,增加光合作用速率。 c.施用有机肥后,经土壤微生物分解后,既可为植物补充CO2,又可为植物提供各种矿 质元素。
步 操作方法
说明

材 打 取生长旺盛的绿叶,用 注意避开大的叶脉
料 孔 直径为 1 cm 的打孔器

打出小圆形叶片 30 片
理 抽 将小圆形叶片置于注射 这一步骤可重复几次
气 器内,并让注射器吸入

光合作用2--光合作用的原理和应用


碳的转移途径:
(CH2O)
下图是光合作用过程图解,请分析后回答下列问题:
H2O 光 A B C D G F CO2
E+Pi H I
J
水 色素 O2 ①图中A是______,B 是_______, 它来自于______ 的分解。 基质 部位,用 [H] ,它被传递到叶绿体的______ ②图中C是_______ 用作还原剂,还原C3 于____________________ 。 色素吸收 ATP,在叶绿体中合成D所需的能量来自的光能 ③图中D是____ ______ C3化合物 糖类 ④图中G________,F 是_____________ C5化合物 是__________,J 光反应 , H为I提供__________ [H]和ATP ⑤图中的H表示_______
光合作用释放的O2来自CO2还是H2O? 如何来检测?
分泌蛋白的合成与运输 科学家用3H标记亮氨酸注射给豚鼠的胰腺细胞以 合成蛋白质。然后每隔一段时间进行检测和观察。
117分钟后
17分钟后
细胞外
高尔基体 内质网 核糖体
3分钟后
——同位素标记法
同位素标记法
放射性同位素可用于追踪物质的运 行和变化规律。用放射性同位素标记 的化合物,其化学性质不变。科学家 通过追踪放射性同位素标记的化合物 ,可以弄清化学反应的详细过程。这 种科学研究方法叫做同位素标记法
三、光合作用与呼吸作用
1.光合速率与呼吸速率
(1)呼吸速率的表示方法:植物置于黑暗环境中,测定 实验容器内CO2增加量、O2减少量或有机物减少量。 (2)净光合速率和真正光合速率: ①净光合速率:常用一定时间内O2释放量、CO2吸收 量或有机物积累量表示。 ②真正光合速率:常用一定时间内O2产生量、CO2固

光合作用 (2)


基质 主要成分是可溶性蛋白质及
其它代谢活跃物质。羧化酶约占可
溶性蛋白质的50﹪,还DNA、
RNA、核糖体、淀粉体、嗜锇颗粒
(叶绿体的脂类仓库)等。
二、光合色素的结构与性质 光合色素主要有三类:叶绿素、类胡 萝卜素、藻胆素。它们存在于类囊体上。 前两类为高等植物的叶绿体色素。 1、叶绿素(chlorophyll,chl) 主要有Chla和Chlb,不溶于水,易溶 于乙醇、丙酮等有机溶剂。
类胡萝卜素的最大吸收峰在蓝紫光区。不 吸收长波光
(三)荧光现象和磷光现象
荧光现象:叶绿素溶液在透射光下呈 绿色,而在反射光下呈红色的现象。
Chl + hν chl* 激发态
基态 光子能量
蓝 光
红 光
荧光(fluorescence): CHL从第一
-
单线态回到基态所发射的光。
磷光(phosphorescence):CHL从 第一三单线态回到基态所发射的光。 叶绿素的荧光和磷光现象说明叶 绿素能被光所激发,而叶绿素的激发 是将光能转变为化学能的第一步。
吸收光谱:叶绿素对不同波长光吸收后 形成的光谱。
叶绿素在红光区(640~660nm)和蓝紫 光区( 430~450nm)有最强吸收。叶绿素 对绿光吸收最少,故叶绿素溶液呈绿色。
类胡箩卜素在蓝紫光区有最强的吸收。
chla与chlb吸收光谱的区别: ▽ chla在红光区的吸收带偏向长波方向, 吸收带较宽,吸收峰较高。在蓝紫光区吸收 带偏向短波方向,吸收带较窄,吸收峰较低。 对蓝紫光的吸收为对红光的吸收的1.3倍。 ▽ chlb在红光区的吸收带偏向短波方向, 吸收带较窄,吸收峰较低。在蓝紫光区吸收 带偏向长波方向,吸收带较宽,吸收峰较高。 对蓝紫光的吸收为对红光的吸收的3倍,说明 chlb吸收短波蓝紫光的能力较chla 强。

18 光合作用2(过程及探索历程) 课件--2022届高考生物大一轮复习

1928年,科学家发现甲醛对植物有毒害作用, 而且甲醛不能通过光合作用转化成糖类。
(15)1931年,微生物学家尼尔(C.B.Van Niel) 将细菌光合作用与绿色植物的光合作用加以比较, 提出了以下光合作用的通式∶CO2 +2H2A→(CH2O)+ 2A +H2O,
光合细菌在光下同化CO2而没有O2的释放,O2不是来自二氧化碳而 是水。因此他第一次提出光在光合作用中的作用是将水光解。
(16)1937年,英国植物学家希尔(R.Hill)发现,在离体叶绿体的
悬浮液中加入铁盐或其他氧化剂(悬浮液中有H2O,没有CO2),在 光照下可以释放出氧气。
希尔 反应
H2O
铁盐(或其他氧化剂) 离体叶绿体 光照
水的 2H+ + O2 光解
希尔反应是否说明植物光合作用产生的氧气中的氧元素全部都来
3.光合作用的过程
(1)定义
指绿色植物通过 叶绿体 ,利用光能,把 二氧化碳和水转化成储存着能量的有机物,并且释放 出 氧气 的过程。
实质 合成有机物,储存能量(将无机物合成有机 物,光能转换为有机物中稳定的化学能)
(2)过程 NADP+2e-+H+→NADPH NADPH的合成:
光反应 暗反应
学 能
储存在什么 物质中?
(11)1864年,萨克斯的实验
光照
一在 半暗 曝处 光放 ,置
一几 暗处理
半小 遮的 光叶 片
碘蒸汽处理
酒精 脱色
结论:绿色叶片在光的作用下产生了淀粉
①萨克斯:自身对照, 自变量: 是否照光
(一半曝光与另一半遮光),
因变量:叶片是否制造出淀粉。
(或颜色变化)

影响光合作用的环境因素 (2)

第四章 光合作用和细胞呼吸
晴朗的夏季一天
光合速率
B
D
“午休”现象
A
C
E
AB段 光合速率增加的原因? DE段 光合速率下降的原因? 在BC段光合速率明显减弱的原因?
此时温度很高,蒸腾作用很强,气孔大量关闭, CO2供应减少,导致光合作用强度明显减弱。
5.提高光能利用率 在农业生产中主要通过增加 光照面积、延长 光照时间 等
第四章 光合作用和细胞呼吸
(2)图中曲线上B点的含义是什么? 答案 B点的含义是指达到最大光合速率时,所需的最小CO2浓度。 (3)请思考CO2浓度是通过影响光合作用哪一阶段来达到影响光合 速率的?并说明理由。 答案 CO2浓度是通过影响光合作用暗反应阶段来达到影响光合 速率的。CO2浓度降低,暗反应中CO2固定速率减弱,从而导致光合 速率减小;CO2浓度增加,暗反应中的CO2固定速率增加,从而导致 光合速率提高。
第四章 光合作用和细胞呼吸
二 光照和二氧化碳骤变对光合作用影响的分析
光反应要在光下进行,暗反应需要二氧化碳,请结合光反应和暗反 应的关系图解,分析光照和二氧化碳的变化对叶绿体中各种物质 的含量的影响。
第四章 光合作用和细胞呼吸
1.光反应为暗反应提供 [H]和ATP ;暗反应产生的ADP和Pi 、 为光反应提供原料;二者是光合作用全过程的两个阶段,是 相辅相成的。 2.当光照骤然减弱,CO2供应不变时:光反应生成的[H]和 ATP 减少;暗反应中三碳化合物被还原减少 ,含量 上升 ;生 成的糖类减少,含量 下降 ;再生的五碳化合物也减少,含量 也 下降 。
第四章 光合作用和细胞呼吸
2.科学家研究CO2浓度、光照强度和温度对同一种植物 光合速率的影响,得到的实验结果如图。请据图判断下列 叙述不正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⒉叶绿体利用光能转换成的另一部分电能,将ADP和Pi 转化成ATP,这一部分电能则转换成活跃的化学能储存 在ATP中。 酶 ADP+Pi+能量 ATP
㈢活跃化学能转换成稳定化学能 CO2+C5
固定
C3
酶 NADPH
ATP
糖类等有机 物
问题:NADPH的作用是什么?
二、 C3植物与C4植物
C3植物与C4植物是依据光合作用中暗反应不同而分的。二者的光反应过 程完全相同,进行的场所也相同。
叶肉
海绵组织 维管束 维管束鞘
含叶 绿体 不含 叶绿 体
叶脉:
C4植物:
C4植物的叶片中,围绕着维管束 的是呈“花环型”的两圈细胞: 里面的一圈是维管束鞘细胞,外 面的一圈是一部分叶肉细胞。 C4植物中构成维管束鞘的细胞比 较大,里面含有没有基粒的叶绿 体,这种叶绿体不仅数量比较多, 而且个体比较大,叶肉细胞则含 有正常的叶绿体。
电子(e)
一、光能在叶绿提中的转换 ⒉光能转换成电能的过程 (2) 叶绿素a失去的电子 酶
失去电子的叶绿素a
电子传递物质 电子传递物质
NADP+
Hale Waihona Puke (3) H2O 2eH++2e+1/2O2 失去电子 的叶绿素a 恢复原状 的叶绿素a
在光照下,少数特殊状态下的叶绿素a,连续不断的丢失电 子和获得电子,从而形成电子流,使光能转变成电能
㈠C3植物与C4植物的定义
C3植物: (叶肉细胞中的叶绿体中) CO2+C5
固定
C3
酶 NADPH ATP
糖类等有机 物
C4植物:
CO2 + PEP C4 (叶肉细胞中的叶绿体中) 酶 NADPH 糖类等 固定 C4 CO2 CO2+C5 C3 有机物 ATP (维管束鞘细胞中的叶绿体中)
㈡C3植物与C4植物叶片结构的特点 表皮 C3植物叶 片结构: 栅栏组织
C3植物与C4植物比较表
植物类型
举例植物 叶片解剖结构 叶绿体类型
C3植物
温带植物:小麦、大豆 维管束鞘及周围无“花 环型”解剖结构 只有一种类型叶绿体
C4植物 热带、亚热带植物:玉 米
维管束鞘及周围有“花 环型”解剖结构 有两种类型叶绿体 C3和C4两个途径,在空 间和时间上是分开的 一种三碳酸(PEP)
问题:光能转变成电能过程中,最终的电子供体和 电子受体分别是什么?
㈡电能转换成活跃化学能
伴随着物质变化
⒈随着光能转换成电能,NADP+得到两个电子和一个氢离 子,就形成了NADPH。这样,一部分电能就转化成活跃 的化学能储存在NADPH中。 NADP++2e+H+ 酶 NADPH
问题:2e从何而来?H+从何而来?
天线色素
包含绝大多数叶绿素a和全部的叶绿素b、胡萝 卜素和叶黄素 作用: 吸收和传递光能 吸收光能 将光能转换成电能
少数处在特殊状 态下的叶绿素a ⑵ NADP+:
一、光能在叶绿提中的转换 ⒉光能转换成电能的过程 (1) 光能 天 线 色 素 少数特殊状态下的叶绿素a (分三个阶段)
(被激发)
缺少电子的叶绿素a (强氧化剂)
第二章 光合作用与生物固氮
第一节
光合作用
问题:1、什么是光合作用?
问题:2、光合作用过程分为几个阶段? 发生了哪些变化?
光能转换过程
光能转换成电能 光反应 电能转换成活跃化学能 暗反应
活跃化学能转换成稳定化学能
一、光能在叶绿提中的转换 ㈠光能转换成电能 ⒈相关知识点 ⑴色素的种类和功能 (据色素在能量转换中的作用)
CO2固定途径 C3循环途径 CO2的最初受 一种五碳糖(C5) 体 CO2的利用率 较低 光合作用效率 较低
较高。能把空气中很低 的CO2固定下来
较高
㈢C4途径的意义
C4途径中能够固定CO2的那种酶,对CO2具有很强的亲和 力,可以促使PEP把大气中含量很低的CO2以C4的形式固 定下来,并且使C4集中到维管束鞘细胞内的叶绿体中, 供维管束鞘细胞内叶绿体中的C3途径利用。科学家把C4 植物的这种独特作用,形象地比喻成“二氧化碳泵”。
相关文档
最新文档