17.1勾股定理教学素材

合集下载

人教版八年级数学下册17.1勾股定理优秀教学案例

人教版八年级数学下册17.1勾股定理优秀教学案例
1.导入:以生动有趣的故事引入勾股定理,激发学生的学习兴趣。
2.自主探究:让学生通过观察、实验、推理等方法,发现并证明勾股定理。
3.合作交流:组织学生进行小组讨论,分享学习心得,培养合作精神。
4.巩固练习:设计有针对性的练习题,让学生在实践中掌握勾股定理。
5.课堂讨论:组织学生分享自己的解题心得,丰富数学思维。
3.引导学生认识数学在生活中的应用,提高他们运用数学解决实际问题的能力。
4.培养学生团队协作、沟通交流的能力,增强他们的社会责任感。
三、教学重点与难点
1.教学重点:勾股定理的定义及其证明方法,勾股定理在实际问题中的应用。
2.教学难点:勾股定理的推导过程,运用勾股定理解决复杂直角三角形问题。
四、教学过程
2.生活实例:展示一些生活中常见的直角三角形现象,如建筑物、家具等,让学生感受数学与生活的紧密联系,提高他们运用数学解决实际问题的意识。
3.提问引导:教师提问:“你们知道什么是勾股定理吗?”“勾股定理在我国古代是如何被发现的?”引发学生的思考和讨论。
(二)讲授新知
1.勾股定理的定义:引导学生通过观察、实验、推理等方法,发现并证明勾股定理。例如,可以让学生分组讨论,每组设计一个实验来验证勾股定理。
2.自主探究,培养能力:在讲授新知环节,我引导学生通过观察、实验、推理等方法,自主发现并证明勾股定理。这种自主探究的学习方式,培养了学生的数学思维能力,提高了他们的问题解决能力。
3.小组合作,增强合作精神:在学生小组讨论环节,我将学生分成若干小组,让他们选择一个证明方法进行讨论。这种小组合作的方式,既能够提高学生的团队合作能力,又能够促进学生之间的沟通交流。
1.激发学生兴趣:通过故事、图片等素材,引发学生对勾股定理的好奇心,激发他们学习数学的兴趣。

人教版数学八年级下册17.1勾股定理优秀教学案例

人教版数学八年级下册17.1勾股定理优秀教学案例
1.将学生分成若干小组,每组选择一种证明方法,共同探讨、交流证明过程。
2.教师巡回指导,对学生在探究过程中遇到的问题给予及时帮助和解答。
3.组织小组成果展示,让学生分享自己的学习心得和证明方法,互相学习和借鉴。
(四)总结归纳
1.教师引导学生总结勾股定理的证明方法,并运用该定理解决实际问题。
2.总结本节课的学习重点和难点,强调勾股定理在数学史上的重要地位和现实生活中的应用。
二、教学目标
(一)知识与技能
1.让学生掌握勾股定理的定义和证明方法,能够熟练运用勾股定理解决实际问题。
2.培养学生运用几何图形和逻辑推理来分析问题、解决问题的能力。
3.引导学生了解勾股定理在数学史上的重要地位,以及它在现实生活中的应用。
(二)过程与方法
1.通过小组合作、讨论交流的形式,引导学生主动探究勾股定理的证明过程,提升学生的动手实践和思维创新能力。
在现实生活中,勾股定理也有着广泛的应用。例如,在建筑、工程、艺术等领域,勾股定理都发挥着重要作用。因此,本节课的学习不仅有助于提高学生的数学素养,还能激发学生学习数学的兴趣,培养其运用数学知识解决实际问题的能力。
为了更好地进行教学,我将以生动的故事、丰富的实例和实际应用为载体,引导学生探究勾股定理的证明过程,让学生在理解的基础上掌握这一重要定理。同时,我将注重培养学生的合作交流能力,通过小组讨论、探究活动等形式,提高学生的动手实践和思维创新能力。
三、教学策略
(一)情景创设
1.利用多媒体课件展示古代建筑中的勾股定理应用实例,如中国的赵州桥、埃及的金字塔等,让学生直观地感受到勾股定理在现实生活中的重要作用。
2.通过设置有趣的故事情境,如古代数学家毕达哥拉斯发现勾股定理的过程,激发学生的好奇心和求知欲。

八年级数学下册人教版17.1勾股定理优秀教学案例

八年级数学下册人教版17.1勾股定理优秀教学案例
(二)问题导向
1.引导学生提出问题:在情景创设的基础上,让学生思考如何计算另一条直角边的长度,引导学生提出探究勾股定理的需求。
2.引导学生自主探究:鼓励学生通过实验、观察、讨论等方法,自主探究勾股定理的证明,培养他们的创新思维和问题解决能力。
3.引导学生应用拓展:设计不同难度的实际问题,让学生运用勾股定理进行解决,引导学生将所学知识应用于实际情境中。
二、教学目标
(一)知识与技能1.学生能 Nhomakorabea理解勾股定理的定义,掌握勾股定理的证明方法,并能够灵活运用勾股定理解决实际问题。
2.学生能够通过探究活动,了解勾股定理的发现过程,提高他们的归纳总结能力。
3.学生能够运用勾股定理进行直角三角形的边长计算,提高他们的数学应用能力。
(二)过程与方法
1.学生通过观察、实验、讨论等方法,自主探究勾股定理的证明,培养他们的问题解决能力和创新思维。
(三)小组合作
1.分组讨论:将学生分成若干小组,让他们在小组内讨论、分享学习心得,共同完成任务。
2.小组合作探究:鼓励学生互相协助,共同探究勾股定理的证明方法,培养他们的团队合作能力和沟通能力。
3.小组展示成果:各小组代表上台展示本组的探究成果,其他小组成员可进行评价和提问,促进学生之间的互动和交流。
2.探究性:本节课注重学生的探究学习,通过引导学生自主探究勾股定理的证明,培养了学生的创新思维和问题解决能力。学生在探究过程中,通过观察、实验、讨论等方法,自主发现并证明勾股定理,提高了他们的科学探究能力。
3.合作性:本节课通过小组合作学习,培养了学生的团队协作能力和沟通能力。学生在小组内讨论、分享学习心得,共同完成任务。通过合作学习,学生学会了倾听他人意见,学会了与他人合作,提高了他们的团队协作能力。

人教版八年级数学下册17.1勾股定理(第一课时)优秀教学案例

人教版八年级数学下册17.1勾股定理(第一课时)优秀教学案例
1.设计一系列递进式问题,引导学生逐步发现勾股定理,如:“直角三角形三边之间有什么关系?”“如何用勾股定理验证一个三角形是否为直角三角形?”;
2.鼓励学生提出疑问,如:“为什么勾股定理只适用于直角三角形?”“勾股定理能否推广到非直角三角形?”;
3.引导学生思考勾股定理在现代科技领域的应用,如:卫星导航、工程设计等。
三、教学策略
(一)情景宫等,让学生感受数学与实际的联系;
2.通过提出实际问题,如测量一块不规则石块的体积,引导学生思考勾股定理的应用价值;
3.创设探究性情境,如自制直角三角形纸片,让学生在动手操作中感受勾股定理的发现过程。
(二)问题导向
5.教学策略:本节课运用了情境创设、问题导向、小组合作、反思与评价等多种教学策略,使学生在轻松愉快的氛围中学习,提高了教学效果。教师关注学生的个体差异,充分调动学生的积极性、主动性和创造性,使每个学生都能在课堂上得到锻炼和发展。
3.让学生分享预习成果,了解勾股定理的起源和发展历程,为新课学习做好铺垫。
(二)讲授新知
1.教师通过几何画板展示直角三角形的三边关系,引导学生发现勾股定理;
2.讲解勾股定理的证明方法,如几何拼接、代数证明等,让学生理解并掌握定理;
3.结合实际例子,如卫星导航、工程设计等,展示勾股定理在现代科技领域的应用。
人教版八年级数学下册17.1勾股定理(第一课时)优秀教学案例
一、案例背景
本节课为人教版八年级数学下册17.1勾股定理(第一课时),旨在让学生理解并掌握勾股定理及其应用。在此之前,学生已学习了平面直角坐标系、相似三角形等知识,但对勾股定理的理解仍有一定难度。因此,本节课的教学案例将结合学科特点和课程内容,以提高学生的数学思维能力和实际应用能力为目标,通过情境创设、自主探究、合作交流等环节,引导学生深入理解勾股定理,提高教学效果。

人教版八年级下册第十七章:17.1勾股定理优秀教学案例

人教版八年级下册第十七章:17.1勾股定理优秀教学案例
2.向学生提出问题:“你们听说过勾股定理吗?它是什么?”引导学生思考和讨论,激发学生对勾股定理的学习欲望;
3.简要介绍勾股定理的表述和应用,引发学生的思考,为讲授新知识做好铺垫。
(二)讲授新知
在讲授新知时,我采取了以下措施:
1.以生动的语言和实例,详细讲解勾股定理的表述和证明过程,让学生理解和掌握勾股定理;
2.通过几何图形和数学公式,展示勾股定理的证明过程,帮助学生形象地理解勾股定理;
3.结合现实生活中的实例,讲解勾股定理的应用,让学生感受勾股定理的实际意义和价值。
(三)学生小组讨论
在学生小组讨论环节,我采取了以下措施:
1.设计一些具有挑战性的练习题,让学生分组讨论和解答,培养学生的团队合作和沟通能力;
3.强调勾股定理在数学和实际生活中的重要性,激发学生对数学的热爱和兴趣。
(五)作业小结
在作业小结环节,我采取了以下措施:
1.布置一些有关勾股定理的练习题,让学生巩固所学知识,提高问题解决能力;
2.提醒学生做好作业的检查和复习,养成良好的学习习惯;
3.对学生的作业进行及时批改和反馈,关注他们的知识掌握程度和问题解决能力,为下一步教学做好准备。
2.组织学生进行相互评价,鼓励他们给出建设性的意见和反馈,培养学生的评价能力和批判性思维;
3.对学生的学习成果进行评价,关注他们的知识掌握程度和问题解决能力,给予适当的表扬和鼓励,提高他们的学习动力和自信心。
四、教学内容与过程
(一)导入新课
在导入新课时,我采取了以下措施:
1.利用多媒体展示勾股定理的古代壁画和碑文,让学生了解勾股定理的历史背景,引发学生对勾股定理的好奇心和兴趣;
三、教学策略
(一)情景创设
在教学过程中,我注重情景的创设,以激发学生的学习兴趣和积极性。具体包括:

人教版八年级数学下册17.1勾股定理的探究优秀教学案例

人教版八年级数学下册17.1勾股定理的探究优秀教学案例
二、教学目标
(一)知识与技能
1.理解并掌握勾股定理,能够准确地表述出勾股定理的内容及其适用条件。
2.学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个三角形是否为直角三角形等。
3.能够运用勾股定理推导出一些特殊直角三角形的性质,如等腰直角三角形的边长关系。
4.通过勾股定理的学习,培养逻辑推理能力和空间想象能力,为后续学习几何知识奠定基础。
2.提问:“同学们,你们知道直角三角形有什么特殊之处吗?”引导学生回顾直角三角形的定义及性质。
3.介绍勾股定理的历史背景,如古代数学家毕达哥拉斯的故事,激发学生的兴趣。
4.提出问题:“今天我们要学习一个关于直角三角形的重要定理——勾股定理,你们猜猜这个定理是什么?它是如何被发现和证明的?”
(二)讲授新知
3.认识到勾股定理在数学发展史上的重要地位,了解我国古代数学家在几何学领域做出的贡献,增强民族自豪感。
4.学会尊重他人意见,善于倾听、合作与交流,培养良好的人际关系。
5.感受数学与生活的紧密联系,认识到数学在解决实际问题中的价值,增强应用意识。
三、教学策略
(一)情景创设
在本章节的教学中,我将通过以下方式创设情景,引导学生进入学习状态:
1.教师引导学生总结勾股定理的内容、适用范围及其证明方法。
2.强调勾股定理在数学发展史上的重要地位,以及它在解决实际问题中的应用价值。
3.帮助学生梳理本节课的学习思路,总结学习方法,提高学生的自主学习能力。
(五)作业小结
1.布置课后作业,包括:
a.请用文字和图形描述勾股定理的证明过程。
b.解决以下实际问题:测量学校旗杆的高度、计算三角形花园的面积等。
2.分组讨论上述问题,鼓励学生发表自己的观点,倾听他人的意见。

人教版八年级数学下册17.1勾股定理(第3课时)优秀教学案例

人教版八年级数学下册17.1勾股定理(第3课时)优秀教学案例
一、案例背景
本节内容为“人教版八年级数学下册17.1勾股定理(第3课时)”,是在学生已经掌握了勾股定理的证明和应用的基础上进行深入学习的。通过前两节课的学习,学生已经了解了勾股定理的含义和基本应用,但仍然存在对定理的理解不够深入、不能灵活运用等问题。因此,本节课的主要目标是让学生深刻理解勾股定理,并能够运用勾股定理解决实际问题。
在创设情境时,我会注意选择与学生生活经验相关的问题,使他们能够更好地理解和接受。同时,我会尽量使用生动、形象的描述和图示,帮助学生形成直观的认识,为后续的学习打下良好的基础。
(二)问题导向
问题导向的教学方法能够激发学生的思考和探索能力。在本节课中,我会设置一系列具有挑战性和实际意义的问题,引导学生积极探索、发现和应用勾股定理。这些问题会涵盖勾股定理的证明、应用范围和限制条件等方面,帮助学生全面理解和掌握知识。
在问题导向的过程中,我会鼓励学生发表自己的观点和思考,培养他们的批判性思维和沟通能力。我会引导学生通过讨论、思考和尝试解决这些问题,让他们在解决问题的过程中获得成就感和自信心。
(三)小组合作
小组合作是提高学生团队合作意识和沟通能力的重要手段。在本节课中,我会组织学生进行小组讨论和合作,让他们在团队合作中共同解决问题。我会将学生分成小组,并根据每个小组的特点和需求,分配不同的问题和任务。
二、教学目标
(一)知识与技能
本节课的教学目标是让学生深刻理解勾股定理,并能够运用勾股定理解决实际问题。在知识方面,我希望学生能够掌握勾股定理的证明方法,了解勾股定理的应用范围和限制条件。具体来说,学生需要能够熟练运用勾股定理计算直角三角形的边长,解决与直角三角形相关的问题。此外,我还希望学生能够理解勾股定理与其他数学知识之间的联系,例如与相似三角形、勾股数等概念的关系。

《勾股定理》数学教学PPT课件(10篇)

= (DE+CE)·( DE- BE)
=BD·
CD.
D
B
E
C
课堂小

利用勾股定理解
决实际问题
勾股定理
的应用
构造直角三角形
解决实际问题
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
点.容易知道,长为
的线段是两条直角边的长都为1的直角三
角形的斜边.
长为 13 的线段能是直角边的长为正整数的直角三角形的
斜边吗?
新知导入
想一想:
利用勾股定理,可以发现,直角边的长为正整数2, 3
知识
的直角三角形的斜边长为
AC2+BC2=AB2
由上面的例子,我们猜想:
命题1 如果直角三角形的两条直角边长分别为a,b,斜边
长为c,那么a2+b2=c2.两直角边的平方和等于斜边的平方.
a
c
b
课程讲授
1
勾股定理
下面让我们跟着以前的数学家们用拼图法来证明这一猜想.
c
证明:∵S大正方形=c2,
S小正方形=(b-a)2,
b
a
b-a
例 如图是由4个边长为1的正方形构成的“田字格”,只用没有刻
度的直尺在这个“田字格”中最多可以作出长度为
8
_____条.

17.1 第1课时 勾股定理 公开课一等奖教案

17.1勾股定理第1课时勾股定理1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】直接运用勾股定理如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD =AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A旋转90°得直角三角形AED,所以∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE的面积等于Rt△BAE和Rt△BFE的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和进行解答;方法2:根据△ABC和Rt△ACD的面积之和等于Rt△ABD和△BCD的面积之和解答.解:方法1:S正方形ACFD=S四边形ABFE=S△BAE+S△BFE,即b2=12c2+12(b+a)(b-a),整理得2b2=c2+b2-a2,∴a2+b2=c2;方法2:此图也可以看成Rt△BEA绕其直角顶点E顺时针旋转90°,再向下平移得到.∵S四边形ABCD=S△ABC+S△ACD,S四边形ABCD =S△ABD+S△BCD,∴S△ABC+S△ACD=S△ABD+S△BCD,即12b2+12ab=12c2+12a(b-a),整理得b2+ab=c2+a(b-a),b2+ab=c2+ab-a2,∴a2+b2=c2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D 的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.。

人教版八年级下册第十七章17.1勾股定理优秀教学案例

本节课的教学目标是使学生理解勾股定理的含义,掌握勾股定理的应用,培养学生的空间想象能力、逻辑推理能力和团队合作能力。通过本节课的学习,学生能够熟练运用勾股定理解决实际问题,为后续学习打下坚实的基础。
二、教学目标(一)知识与来自能1.让学生掌握勾股定理的定义和表述,能够正确运用勾股定理计算直角三角形的长度。
3.培养学生运用数学知识解决实际问题的能力,使其能够将所学知识运用到生活实践中,提升学生的数学应用意识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和好奇心,激发学生学习数学的内在动力,使其能够主动参与数学学习。
2.培养学生勇于探究、积极思考的科学精神,使其能够面对数学问题,勇于挑战,不断提高解决问题的能力。
(三)小组合作
1.将学生分成小组,鼓励学生相互讨论、交流,共同解决问题。教师给予适当的引导和帮助,促进学生之间的合作与交流。
2.设计小组活动,让学生通过实际操作,探究勾股定理的应用。例如,让学生用硬纸板制作直角三角形,测量其边长,并验证勾股定理。
3.教师巡回指导,关注每个小组的学习情况,及时给予反馈和鼓励,提高学生的合作能力和团队意识。
在教学案例中,我以生动的生活情境导入,激发学生的学习兴趣,引导学生从实际问题中抽象出数学问题。在探究过程中,我鼓励学生运用合作、交流、归纳等学习方法,培养他们的团队协作能力和表达能力。同时,我注重引导学生运用数学知识解决实际问题,提高他们的数学应用能力。
在教学过程中,我遵循由浅入深、循序渐进的原则,让学生在掌握基础知识的同时,提高他们的思维品质。针对学生的个体差异,我采取差异化的教学策略,关注每一个学生的成长,使他们在课堂上充分展示自己,提高自信心。
五、案例亮点
1.生活情境导入:通过展示实际生活中的直角三角形实例,激发学生的学习兴趣,使其能够主动参与到课堂学习中。这种教学方式体现了“从生活走向数学”的新课程理念,有助于提高学生的学习积极性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档