勾股定理导学案学案

课题名称:勾股定理 (1 )

学习目标:

1 ?了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。

2. 培养在实际生活中发现问题总结规律的意识和能力。了解我国古代在勾股定

理研究方面所取得的成就。

学习目标:经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。

自助探究

1. 1、2002年北京召开了被誉为数学界“奥运会”的国际数学家大会,这就是当

时采用的会徽.你知道这个图案的名字吗?你知道它的背景吗?你知道为什么会

用它作为会徽吗?

量关系.请同学们也观察一

下,

2、相传2500年前,古希腊的数学家毕达哥/

么?

拉斯在朋友家做客时,发现朋友家用地砖铺'

成的地面中反映了直角三角形三边的某种数

(1) 引导学生观察三个正方形之间的面积的关系;

(2) 引导学生把面积的关系转化为边的关系.

结论:等腰直角三角形三边的特殊关系:斜边的平方等于两直角边的平方和

3、等腰直角三角形有上述性质,

其它直角三角形也有这个性质吗?

4、____________________________________________________ 猜想:命题1

自助提升

1、定理证明

(1) 赵爽利用弦图证明。

显然4个_________ 的面积+中间小正方形的面积二该图案的面积.

1 22

即4 X X _______ +〔〕= c ,化简后得到___________ . ________

2

(2) 其他证明方法:教材72页思考讨论完成

2、在Rt△ ABC中,/ C=90°,AB=17,BC=8,求AC 的长

3、Rt△ ABC和以AB为边的正方形ABEF,/ ACB=90°

AC=12,BC=5,则正方形的面积是________ .

4、(1)已知Rt△ ABC 中,/ C=90 ° BC=6,AC=8,求AB.

(2) 已知Rt△ ABC 中,/ A=90 ° AB=5,BC=6,求AC.

(3) 已知Rt△ ABC 中,/ B=90 ° a,b,c 分别是/ A,/ B, / C的对

A F

i片i C B

边,c : a=3 : 4,b=15,求a,c及斜边高线h.

分析:要求岀梯子的底端 B 是否也外移 0.5米,实际就是求 BD 的长,而 BD = OD-OB

2、例2、如图,一个3米长的梯子 AB ,斜靠在一竖直的墙 AO 上,这时AO 的距离为2.5米.如 果梯子的

顶端 A 沿墙下滑 0.5米,那么梯子底端 B 也外移0.5米吗?

(计算结果保留两位小数)

5、如图1-1-4,所有的四边形都是正方形,所有的三角 形都是直角三角形,其中最大的正方形的边长为 7 cm , 则正方形A ,B ,C ,D 的面积之和是多

少? 自助检测

1.

一个直角三角形,两直角边长分

别为

3和4,下列说法正确的是( 2. 斜边长为25 B .三角形的周长为25 C .斜边长为5 D .三角角丿 3. —直角三角形的斜边长比一条直角边长多 2,另一直角边长为 为( ) A . 4

B . 8

B

A

/

7角形面积为20

_丄6,则斜边长 C . 10

D . 12

4. 直角三角形的两直角边的长分别是

5和12,则其斜边上的高的长为(

13

60 13

5、已知,如图1-1-5,折叠长方形(四个角都是直角,对边相等)的一边 AD 使点D

落在BC 边的点F 处,已知AB=8cm , BC=10cm ,求CF CE

小结与反思

这节课你学到了一些什么?你想进一步探究的问题是什么? 教学反思

§ 18.1 勾股定理(2)

、学习目标

通过经历和体验,运用勾股定理解决一些实际问题的过程,进一步掌握勾股定理。 重点:勾股定理的应用。 难点:实际问题向数学问题的转化。

二、自助探究

1、一个门框的尺寸如图所示:

(1) 若有一块长3米,宽0.8米的薄木板,能否从门框内通过? (2) 若有一块长3米,宽1.5米的薄木板,能否从门框内通过? (3) 若有一块长3米,宽2.2米的薄木板,能否从门框内通过? 分析:

(3)木板的宽2.2米大于1米,所以横着不能从门框内通过.

木板的宽2.2米大于2米,所以竖着不能从门框内通过. 因为对角线AC 的长度最大,所以只能试试斜着能否通过. 所以将实际问题转化为数学问题. 小结:此题是将实际为题转化为数学问题,从中抽象出 Rt △ ABC ,并求岀斜边 AC 的

C D

E

C

图 1-1-5

7、有一个水池,水面是一个边长为 10尺的正方形,在水池正中央有一根芦苇,它高岀水面 1

尺。如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面。谁的深度和这根芦 苇的长度分别是多少?

小结与反思 教后记

§ 18.1 勾股定理(3)

学习目标:1、熟练掌握勾股定理的内容

2、 会用勾股定理解决简单的实际问题

3、 利用勾股定理,能在数轴上表示无理数的点

重点:会在数轴上表示.n (n 为正整数) 难点:综合运用 自助探究

1、 勾股定理的内容 ________________________________________________

2、 如图,已知长方形 ABCD 中 , AB=3cm A 、6cm 2

B 、8cm 2 AD=9cm 将此长方形折

C 、10cm 2

D 、12cm 2

叠,使点B 与点D 重合,折痕为 EF ,则厶 ABE 的面积为(

3、一个大树高8米,折断后大树顶端落在离大树底端 2米处,折断处离地面的高度是多少?

自助提升

1、 已知:△ ABC 为等边三角形,

2、 如果直角三角形的三边分别为

3、 以知正三角形ABC 的边长为

自助检测

1、 若等腰三角形中相等的两边长为 的高为( A 、12 cm

2、 如图,在/ 求:( 1 ) AC 的长; AD 丄BC 于D , AD =6.求AC 的长. 3 , a, 5, a 试求满足条件 a 的值? 求AAEC 的面积?

10cm ,第三边长为 16 cm ,那么第三〕

B

B 、10 cm

C 、8 cm

D 、6 cm

, 0

ABC 中 , / ACB=90 , (2)/ ABC 的面积;

(3) CD 的长。

AB=5cm BC=3cm CD 丄 AB 与 D 。 3、 如图,一圆柱高8cm,底面半径2cm , 一只蚂蚁从点 A 爬到点 B 处吃食,要爬行的最短路程 A 、20cm; B 、10cm; C

4、 若等腰直角三角形的斜边长为 斜边上的高的长为 ______ 。

5、要登上8m 高的建筑物,为了安全需要,需使梯子底端离建筑物 (画岀示意图)

6、 小明的叔叔家承包了一个矩形鱼池,已知其面积为 要计算这个矩形鱼池的周长,你能帮助小明算一算吗?

( 取3)是() 、14cm; D 、无法确定.

2,则它的直角边的长为 _

6 m,至少需要多长的梯子?

48m 2 ,其对角线长为10m 为建栅栏,

一 2 - 2 2

3、13 = 9+ 4,即卩..13 =

.9

+〔

〕2;若以 _和_为直角三角形的两直角边

长,则斜边长为..13。同理以 _________ 和 ___ 为直角三角形的两直角边长,则斜边长为 (17)

自助提升

1、探究:我们知道数轴上的点有的表示有理数, 有的表示无理数, 你能在数轴上画岀表示

.13

的点吗?

分析:⑴若能画岀长为 J3的线段,就能在数轴上画岀表示 J3的点.

⑵由勾股定理知,直角边为1的等腰Rt △,斜边为? 2 ?因此在数轴上能表示 ..2的点.那 么长为-.13的线段能否是直角边为正整数的直角三角形的斜边呢?

__

1

2 3 4 5

在数轴上画岀表示 -J7的点?(尺规作图)

2、如图:螺旋状图形是由若干个直角

0 1 2 3 4 5

三角形所组成的,其中①是直角边长为 1的

等腰直角三角形。那么 0A = , 0A = , 0A = , OAt =, 0A =

, 0A =

,

0A =

, …,0A 4=

,

…,0A =

.

思考:怎样在数轴上画岀表示 ?. n (n 为正整数)的点?

自助检测:

1、在数轴上找岀表示 8和-.45的点

2、 已知:如图,在△ ABC 中,AD BC 于 D ,AB=6,AC=4,BC=8,求 BD ,DC 的长.

3、 已知矩形 ABCD 沿直线BD 折叠,使点 C 落在同一平面内 C'处,BC'与AD 交于点E ,

AD= 6,AB=4,求 DE 的长. ABCD 中,AB=2,CD=1,/

A=60 ° /

B=£D=90 ° 求四边形 ABCD

学习目标: 1?掌握勾股定理的逆定理,并会用它判断一个三角形是不是直角三角形

2?探究勾股定理的逆定理的证明方法

3?理解原命题、逆命题、逆定理的概念及关系 学习重点: 勾股定理的逆定理及其实际应用

.

学习难点: 勾股定理逆定理的证明.

自助探究:

1、画以线段 a ,b , c.为边的三角形并判断分别以上述 a 、b 、c 为边的三角形的形状

⑴ a=3, b=4

c=5

⑵ a=5, b=12 c=13

⑶ a=7, b=24 c=25

2、猜想:命题2 _______________________________________

4、已知:如图,四边形

小结与反思 教后记

§ 18.2勾股定理的逆定理

A

该猜想的题设和结论与勾股定理的题设和结论正好

如果两个命题的题设、结论正好相反,那么这样的两个命题叫做

一个叫做原命题.,那么另一个叫做它的____________________ 命题.譬如:

①原命题:若 a = b,则a2= b2;逆命题:______________________________ .(正确吗?答 _ )

②原命题:对顶角相等;逆命题:____________________________________ .(正确吗?答 _)

由此可见:原命题正确,它的逆命可能__________ 也可能 ________ .正确的命题叫真.命题,不正确的命题叫假命题

自助提升:

1、命题2:如果三角形的三边长a、b、c满足a2 b2 c2,那么这个三角形是直角三角形.

2 2 2

已知:在厶ABC 中,AB=c,BC=a, CA=b,且a b c

求证:/ C=90°

思路:构造法一一构造一个直角三角形,使它与原三角形全等,利用对应角相等来证明.

通过证明,我发现勾股定理的逆题是 ___________ 的,它也是一个 _

理的___________ . __________ -

小结注:(1)每一个命题都有逆命题.

(2)一个命题的逆命题是否成立与原命题是否成立没有因果关系

(3)每个定理都有逆命题,但不一定都有逆定理

2、例1、判断由线段a,b,c组成的△ ABC是不是直角三角形.

(1) a=40,b=41,c=9

⑵ a=13,b=14,c=15

(3) a : b : c= .13 : 3 : 2

(4) a n21,b n21,c 2n (n>1 且n 为整数)

分析:①首先确定最大边;②验证最大边的平方与最短的两边平方和是否相等

3、勾股数(P75)

能够成为直角三角形三条边长的三个正整数,称为勾股数.

如果a、b、c是一组勾股数,m>0,那么ma,mb,mc也是一组勾股数

自助检测:

1、分别以下列四组数为一个三角形的边长:(1)3,4,5 ; (2)5,12,13;

(3)8,15,17; (4)4,5,6. 其中能构成直角三角形的有()

2 2 2 2

a2+ b2、2ab、a2—b2(a、b都是正整数),则这个三角形是

( )

A.直角三角形 B .钝角三角形C.锐角三角形 D .不能确定

3、已知两条线段的长为5cm和12cm,当第三条线段的长为

?????????????

段能组成一个直角三角形

命题,若把其中

,我们把它叫做勾股定A

A. 4组

B. 3组

C. 2组

D. 1组

2、三角形的三边长分别为

第17章《勾股定理》单元备课

第十七章勾股定理单元备课 一、教材分析: 新版教材在原有教材的基础上进行了修订,“勾股定理”为独立的一章,其主要内容包括勾股定理(直角三角形三边的关系);勾股定理的逆定理(直角三角形的判定);勾股定理及逆定理的应用。 本章所研究的勾股定理,是直角三角形的一条非常重要的性质,它也是几何学中重要的定理之一。勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。通过探索勾股定理的活动,体验由特殊到一般的探索数学问题的方法,尝试用数形结合来解决数学问题的思想。 1.本章的主要内容 (1)勾股定理(直角三角形的三边关系) (2)勾股定理的逆定理(直角三角形的判定方法之一) (3)勾股定理及勾股定理逆定理的应用。 2.重点与难点 本章内容的重点是勾股定理及勾股定理逆定理的应用。勾股定理是解几何题中有关线段计算问题的重要依据,也是以后学习解直角三角形的主要依据之一。本章的难点是勾股定理的证明。课本通过构造图形,利用面积相等来证明的,证明思路的获得学生感到困难,这涉及到了解决几何问题的方法之一:割补法。 二、教学目标:

(1)理解勾股定理的内容,已知直角三角形的两边,会运用勾股定理求第三边。 (2)能验证勾股定理。 (3)会运用勾股定理的逆定理,判定直角三角形。 (4)通过介绍古今中外对勾股定理的研究,激发学生的爱国热情。 (5)能运用勾股定理及勾股定理的逆定理解决简单的实际问题。 三、教学中应注意的问题: 1.让学生获得更多与勾股定理有关的知识背景,注重介绍数学文化。 2.让学生体验勾股定理的探索和运用过程。 3.注意引导学生体会数形结合的思想方法,培养应用意识。 4.适当总结与定理、逆定理有关的内容 四、课时安排: 17.1勾股定理4课时 17.2 勾股定理的逆定理3课时 小结与复习1课时第十八章单元测试2课时

最新人教版初二下册数学第十七章《勾股定理》导学案

探索勾股定理-(1) (第1课时)学生姓名: 学习目标:会探索勾股定理,会初步利用勾股定理解决实际问题。 重难点:会用勾股定理求直角三角形的边长 学习过程: 一、课前预习: 1、三角形按角的大小可分为:、、。 2、三角形的三边关系:三角形的任意两边之和;任意两边之差。 3、直角三角形的两个锐角;直角三角形中最长边是。 4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。 二、自主探究: 探究一:探索直角三角形三边的特殊关系: (1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; (2)猜想:直角三角形的三边关系为。https://www.360docs.net/doc/192396712.html, 探究二:如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?

思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。 勾股定理: 直角三角形 等于 ; 几何语言表述:如图1.1-1,在Rt ΔABC 中, C = 90°, 则: ; 若BC=a ,AC=b ,AB=c ,则上面的定理可以表示为: 。 三、课堂练习: 1、求下图中字母所代表的正方形的面积 12米处。旗4、如图,点C 是以AB 为直径的半圆上一点,∠ACB=90°, AC=3,BC=4,则图中阴影部分的面积是多少? 四、课后反思 第4题 B C A

探索勾股定理-(2) (第2课时)学生姓名: 学习目标:掌握勾股定理,理解利用拼图验证勾股定理的方法。能运用勾股定理解决一些实际问题。 重难点:勾股定理的应用。 学习过程: 一、知识回顾: 1、直角三角形的勾股定理: 2、求下列直角三角形的未知边的长 二、自主探究:利用拼图验证勾股定理 活动一:用四个全等的直角三角形拼出图1,并思考: 1.拼成的图1中有_______个正方形,___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。 3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗? 分析:大正方形的面积= 边长的平方 =小正方形的面积+ 个直角三角形的面积 得: ( + )2= 2+ ×1 2ab . 化简可得: 活动二:用四个全等的直角三角形拼出图2验证勾股定理。 用四个相同的直角三角形(直角边为a ,b ,斜边为c )构成如图所示的正方形. 图2 分析:大正方形的面积=边长的平方= +4个直角三角形的面积 得 2=( - )2+4×1 2 ab . 化简可得: 12 B A C

201x春八年级数学下册 17 勾股定理 17.1 勾股定理(第2课时)学案 新人教版

17.1 勾股定理(第2课时) 学习目标 1.会用勾股定理解决简单的实际问题.(重点) 2.树立数形结合的思想.(难点) 3.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.(难点) 4.培养思维意识,发展数学理念,体会勾股定理的应用价值. 一、合作探究 阅读教材25~26页,并完成预习内容. 1.自学例1,回答下列问题(小组谈论) 如图1中,①若有一块长3米,宽0.8米的薄木板,问怎样从课本中的门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢? 例1中解决第③题时,通过分析可知木板只能斜着进,因此门框的的长度是斜着进的最大长度,问题就转化为利用求AC的长度. 图1 2.自学例2回答下列问题 如图2中,在Rt△AOB中已知和,根据勾股定理可求,梯子下滑过程中梯子长度不变,即这两个直角三角形中=. 在Rt△COD中已知和,根据勾股定理可求; 图2 3.由上述两例题可以看出我们通常把实际问题转化成数学问题来求解. 二、自主练习 1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树离地面的高度是米. 2.如图,山坡上两株树木之间的坡面距离是4米,则这两株树之间的垂直距离是米,水平距离是米.

三、跟踪练习 1.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是. 2.如图,原计划从A地经C地到B地修建一条高速公路,后因技术攻关,可以打隧道由A地到B地直接修建,已知高速公路每千米造价为300万元,隧道总长为2千米,隧道造价为每千米500万元,AC=80千米,BC=60千米,则改建后可省工程费用是多少? 四、变式演练 1. 如图,将一根长24 cm的筷子,置于底面直径为5 cm,高为12 cm的圆柱形茶杯中,设筷子露在杯子外面的长为a cm(茶杯装满水),则a的取值范围是. 2.小东拿着一根长竹竿进一个宽为三米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1米,当他把竿斜着时,两端刚好顶着城门的对角,问竿长多少米.(写出解题过程) 五、达标检测 1.一个高2米、宽1.5米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为. 2. 如图,小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店,已知家距离邮局640米,那么小明家距离书店米. 3.若等腰直角三角形的斜边长为2,则它的直角边的长为,斜边上的高的长为. 4.有一个边长为50 dm的正方形洞口,想用一个圆盖盖住这个洞口,圆的直径至少为(结果保留根号). 5.如图,隔湖有两点A,B,从与BA方向成直角的BC方向上的C点,测得CA=100 m,CB=60 m.

勾股定理中蕴含的数学思想

勾股定理中蕴含的数学思想 河北张家口市第十九中学 贺峰 数学思想方法是对数学的认识内容和所使用的方法的本质的认识,是数学知识的精髓,又是知识转化为能力的桥梁,有了数学思想方法为灵魂,数学才有了魅力。在学习数学的过程中,既要掌握基础知识,又要注重挖掘题目中蕴含的数学思想和方法,从而不断提高数学素养,增强探索创新能力,激发学习数学的兴趣,本文着重将勾股定理中蕴含的数学思想为同学们加以分析: 一、 特殊到一般的思想 例1如图1所示的螺旋形由一系列等腰直角三角形组成,其序号依次为①、②、③、④、⑤……,则第n 个等腰直角三角形的斜边长为_____________。 析解:观察图象,第①、②、③、④个等腰直角三角形的斜边长分别为2、4、8、16,由此类推,第n 个等腰直角三角形的斜边长为2n 。 说明:猜想型问题是近几年各地中考试题的热点问题,根据问题提 供的信息,通过观察、类比、推理、猜想、验证得出一般性规律和 结论是解决这类问题一般方法,解题时要注意数形结合。 二、 分类思想 例2 如果三条线段的长分别为6cm 、xcm 、10cm ,这三条线段恰好能组成一个直角三角形,那么x =_______。 析解:本题分两种情况解答 (1)当以6cm 、xcm 为直角边,10cm 为斜边时,102=62+x 2,x =±8(舍负) (2)当6cm 、10cm 均为直角边时,62+102=x 2,x =±234(舍负) 因此,x 为4或34。 说明:在利用勾股定理解答某些数学问题时,常见的分类情况有以直角边、斜边分类,按等腰三角形的腰与底分类,依三角形的形状分类,按展开方式的不同分类等,同学们在解题须注意这一点,以避免出现丢解或遭成错解。 三、 整体思想 例3 如图2,已知Rt △ABC 的周长为2+6,其中斜边AB =2,求这个三角形的面积。 析解:在Rt △ABC 中,根据勾股定理,得 BC 2+AC 2=2 2 即(BC +AC )2-2BC 2AC =4 又由已知得BC +AC = 6 所以(6)2-2 BC 2AC =4 解得BC 2AC =1 所以S =12BC 2AC =12 说明:若要直接求出BC 与AC 的值,再求三角形的面积,比较繁杂,但由S =12 BC 2AC B C A 图2 图1

第十七章勾股定理复习导学案

第十七章:《勾股定理》复习学案 一、勾股定理: 如果直角三角形的两直角边长分别为,斜边为,那么。 直角三角形 b c a2+b2=c2 (数) (形) a a 变形为:a= ;b= 。 1、设直角三角形的斜边为c,两直角边为a和b,求: (1)已知a=6,b=8,则c= ; (2) 已知a=3,c=8,则b= ; (3)已知b=4,c=8,则a= ; 二、勾股定理的逆定理: 如果三角形的三边长a,b,c满足,那么这个三角形是.2(1)已知三条线段长分别是8,15,17,那么这三条线段能围成一个() A、直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定 (2)下列各组数不是股数的是() A、5、12、13 B、3、4、5 C、8、6、17 D、15、20、25 三、勾股定理与正方形面积 3、已知图中所有四边形都是正方形,且A与C、B与D所成的角都是直角,其最大正方形的边长为5,则A,B,C,D四个小正方形的面积之和为 4、是一株美丽勾股树,其四边形正方形,.若正方形A,B,C,D边长分别

是3,5,2,3,则最大正方形E 面积是 5、在直线l 上依次摆放着七个正方形(如上图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______. 四、木板能否通过门框 6,如图,长4m ,宽3m 薄木板 (能或不能)从门内通过. 7、门高2米,宽1米,现有为3米,宽为2.2米薄木板能否从门框内通过?为什么? 五、梯子移动问题 8、一个5米长的梯子AB 斜靠在一竖直的墙AO 上,这时OB=3米,如果底端B 沿直线OB 向右滑动1米到点D ,同时顶端A 沿直线向下滑动到点C (如图所示).求AC . 9、如图,一个2.5米长的梯子AB 斜靠在一竖直的墙AO 上,这时梯子顶端A 距离墙角O 的高度为2米. ①求底端B 距墙角O 多少米? ②如果顶端A 沿角下滑0.5米至C ,底端也滑动0.5米吗? l 3 2 1 S 4 S 3 S 2 S 1

第17章勾股定理导学案17.2勾股定理的逆定理第5课时

勾股定理的逆定理(第5课时) 【 学习目标】:1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。 2.探究勾股定理的逆定理的证明方法。3.理解原命题、逆命题、逆定理的概念及关系。 【学习重点】:掌握勾股定理的逆定理及证明。 【学习难点】:勾股定理的逆定理的证明 【学习过程】 一、温故知新1、如何判定一个三角形是直角三角形? 二、自学探究 1、在练习本上用尺规画以线段a ,b , c . 为边的三角形,并判断分别以上述a 、b 、c 为边的三角形的形状. ⑴ a =3,b =4 c =5 ⑵ a =2.5,b =6,c =6.5, ⑶ a =4, b =7.5 , c =8.5 2、猜想:如果三角形的三边长a 、b 、c ,满足222c b a =+,那么这个三角形是 三角形 猜想的题设是: __________ 猜想的结论是: ____________________________________ 该猜想的题设和结论与勾股定理的题设和结论正好 . 3、如果两个命题的题设、结论正好相反,那么这样的两个命题叫做 命题,若把其中一个叫做原命题...,那么另一个叫做它的 命题.譬如: ①原命题:若a =b ,则a 2=b 2;逆命题: .(正确吗?答 ) ②原命题:对顶角相等;逆命题: . (正确吗?答 ) 由此可见:原命题正确,它的逆命可能 也可能 . 正确的命题叫真命题...,不正确的命题叫假命题... 4、验证猜想 已知:△ABC 中,BC 2+AC 2=AB 2 ; 求证:∠C =90°. 证明:作Rt △A ′B ′C ′,使∠C ′=90°, B ′ C ′=BC =a , A ′C ′=AC =b . 通过证明,我发现勾股定理的逆命题是 的,它也是一个 ,我们把它叫做勾股定理的 . 三、回顾与归纳 1、勾股定理是直角三角形的 定理;勾股定理的逆定理是直角三角形的 定理. 2、已知三角形的三边长,判断该三角形是不是直角三角形的步骤是: ①先算两条短边的 再算最长边的 ;把 作比较;作出 . ②勾股数:我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)是一组勾股数吗?一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)是一组勾股数吗? 比一比看谁能说出的勾股数多?

勾股定理导学案

A B 17.1.1 《勾股定理》第一课时导学案 学习目标:1、了解多种方法验证勾股定理,感受解决同一个问题方法的多样性。 2、通过实例进一步了解勾股定理,应用勾股定理进行简单的计算。 学习过程: 活动一 动手做一做 1、在右边空白处画出Rt△A B C 令∠C = 90°, 直角边A C = 3cm ,B C = 4cm , (1)用刻度尺量出斜边A B = ________(2)计算:__________,_____,222===AB BC AC 2、探究:222,,AB BC AC 之间的关系: 活动二 毕达哥拉斯的发现 1、图中两个小正方形分别为A 、B ,大正方形为C , 则三个正方形面积之间的关系:_______________ 2、设三个正方形围成的等腰直角三角形的直角边为a , 斜边为c ,则图中等腰直角三角形三边长度 之间的关系:_____________________ 活动三 探索与猜想 观察下面两幅图:(每个小正方形的面积为单位1) (1)你是怎样得到正方形C 的面积的?与同伴交流一下。 (2)猜想命题:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_______________ 活动四 认识赵爽弦图 活动五 证明猜想 已知:如图,在边长为c 的正方形中,有四个两直角边分别为a 、b , 斜边为c 全等的直角三角形, 求证: 222 a b c +=(提示:大正小正=S S S Rt +?4) 证明:

勾股定理:直角三角形两条_______的平方和等于_____的平方 如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么_________________ 归纳直角三角形的主要性质: 在Rt △A B C 中,∠C = 90°, (1)两锐角的关系:∠ A + ∠ B = _____° (2)斜边与直角边的关系:若∠A = 30°,则 ________________ (3)三边之间的关系:______________________ 活动六 活学活用 1、如右图,在直角三角形中, x =______,y =______ 2、下列各图中所示的正方形的面积为多少。 (注:下列各图中的三角形均为直角三角形) 3、在Rt △A B C 中,∠C = 90°, (1)若a = 2,b = 3, 则c = _______ (2)若a = 1,c = 2, 则b = _______ (3)若c = 5,b = 4, 则a = _______ 4、在一个直角三角形中, 两边长分别为3、4,则第三边的长为______________ 5、(1)在Rt △A B C 中,∠C = 90°,∠A = 30°,AB = 4, 则BC = _______, 则AC = _______ (2)在Rt △A B C 中,∠A = 90°,BC = 7,AC = 5,则 AB = _________ x 8 6 13 5 y A B C

初中数学勾股定理

聚智堂学科教师辅导讲义 年级:课时数:学科教师: 学员姓名:辅导科目:数学辅导时间: 课题勾股定理 教学目的 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是 直角三角形。 3、满足2 2 2c b a= +的三个正整数,称为勾股数。 教学内容 一、日校回顾 二、知识回顾 1. 勾股定理 如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么 2 2 2c b a= + 即直角三角形两直角边的平方和等于斜边的平方。 说明: (1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。

(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。在没有特殊说明的情况下, 直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。 (3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利 用勾股定理有2 2 2 AC BC AB =+。 2. 利用勾股定理的变式进行计算 由2 2 2 c b a =+,可推出如下变形公式: (1)2 2 2 b c a -=; (2)2 2 2 a c b -= (3)22b c a -= (4)22a c b -= (5)22b a c += (平方根将在下一章学到) 说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。 三、知识梳理 1、勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2 b a +是否具有相等关系 (3) 若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。

人教版八年级下册数学第十七章勾股定理导学案(最新整理)

《17.1勾股定理》导学案(1) 【学习目标】:1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 2.培养在实际生活中发现问题总结规律的意识和能力。学习重点:勾股定理的内容及证明。学习难点:勾股定理的证明。学习过程 一、自学导航(课前预习)1、直角△ABC 的主要性质是:∠C=90°(用几何语言表示) (1)两锐角之间的关系: ( 2)若 D 为斜边中点,则斜边中线 (3)若∠B=30°,则∠B 的对边和斜边: 2、勾股定理证明:方法一; 如图,让学生剪4个全等的直角三角形,拼成如图图形,利用面积证明。 S 正方形=_______________=____________________ 方法二; 已知:在△ABC 中,∠C=90°,∠ A 、∠ B 、∠ C 的对边为a 、b 、c 。求证:a 2+b 2=c 2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=______________ 右边S=_______________左边和右边面积相等, 即: 化简可得 。 二、合作交流(小组互助)思考: A b

(图中每个小方格代表一个单位面积) (2)你能发现图1-1中三个正方形A ,B ,C 的面积之间有什么关系吗?图1-2中的呢? 由此我们可以得出什么结论?可猜想: 如果直角三角形的两直角边分别为a 、b ,斜边为c ,那么__________________ _____________________________________________________________________。 (3)展示提升(质疑点拨) 1.在Rt △ABC 中, ,90C ∠=?(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________; (3)如果a=5,b=12,则c=________; (4) 如果a=15,b=20,则c=________.2、下列说法正确的是( ) A.若、、是△ABC 的三边,则a b c 222 a b c +=B.若、、是Rt △ABC 的三边,则a b c 222 a b c +=C.若、、是Rt △ABC 的三边,, 则a b c 90A ∠=?2 a +D.若、、是Rt △ABC 的三边, ,则a b c 90C ∠=?2a +3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25 C .斜边长为5 D .三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________. 5、一个直角三角形的两边长分别为5cm 和12cm,则第三边的长为 。 三、本节课我们学习了哪些知识?用了哪些方法? 四、达标检测 1.在Rt △ABC 中,∠C=90°, ①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则

勾股定理导学案

勾股定理 1 勾股定理(一) 学习目标: 1. 了解勾股定理的发现过程,掌握勾股定理的容,会用面积法证明勾股定理。 2. 利用勾股定理,已知直角三角形的两边求第三条边的长。 学习重点:探索和验证勾股定理。 学习难点:证明勾股定理。 导学流程: 一、 自主学习 前置学习: 自学指导:阅读教材第64至66页,完成下列问题。 1. 教材第64至65页思考及探究。 2. 画一个直角边为3cm 和4cm 的直角△ABC ,用刻度尺量出AB 的长。(勾3,股4,弦5)。 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。 再画一个两直角边为5和12的直角△ABC ,用刻度尺量AB 的长。 你是否发现23+24与25的关系,25+212和2 13的关系,即23+24_____25,25+212_____213,那么就有____2+____2=____2。(用勾、股、弦填空) 对于任意的直角三角形也有这个性质吗? 要点感知:如果直角三角形的两直角边长分别是a 、b , 斜边为c ,那么 ,即直角三角形中两直角边的平方和等于斜边的 。 二、展示成果 活动1 已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。求证:222a b c +=。 证明:如爽弦图, 思考:除此之外,还有证明勾股定理的其他办法吗? 活动2 如果将活动1中的图中的四个直角三角形按如图所拼,又该如何证明呢? 知识点归纳: 上述问题可视为命题1的证明 命题1如果直角三角形的两直角边长分别为a 、b , 斜边为c ,那么 。 总结:经过证明被确认正确的命题叫 。 命题1在我国称为 ,而在西方称为 。 三、合作探究 活动3 已知在Rt △ABC 中,∠C=90°,a 、b 、c 是△ABC 的三边,则 (1)a = 。(已知c 、b ,求a ) (2)b = 。(已知a 、c ,求b ) (3)c = 。(已知a 、b ,求c ) 活动4 △ABC 的三边a 、b 、c , (1)若满足222a b c +=,则∠C 是 角; (2)若满足222a b c +>,则∠C 是 角; (3)若满足222a b c +<,则∠C 是 角。 四、当堂自测 基础训练: 1. 在直角三角形ABC 中,∠C=90°,若=5a ,=12b ,则=c 。 2. 在直角三角形ABC 中,若=3a ,=5b ,则=c 。 3. 若把直角三角形的两条直角边同时扩大到原来的 2倍,则其斜边扩大到原来的 。 4. 在ABC ?中,90C ∠=?. b b

在勾股定理的教学中渗透数学思想方法

在勾股定理的教学中渗透数学思想方法 东莞东华初级中学 陈佩弟 《全日制义务教育数学课程标准》指出:“通过数学学习,学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法.”数学思想方法是数学的生命和灵魂,是数学知识的精髓,是把知识转化为能力的桥梁.因此,在数学教学活动中,教师应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,为学生的持续学习和发展作好奠基.勾股定理是平面几何有关度量的最基本、最重要的定理,也是中考的重要考点之一,其中蕴涵着多种数学思想,现小结如下: 一.勾股定理与数形结合思想 所谓数形结合思想,就是抓住数与形之间本质上的联系,将抽象的数学语言与直观的图形结合起来,通过“以形助数”或“以数解形”,使复杂问题简单化、抽象问题具体化,从而达到迅速解题的目的. 勾股定理反映了直角三角形三条边之间的关系,它是把三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范. 例1:(课本P76习题18.2 T5)△ABC 中,AB=13cm,BC=10cm,BC 边上的中线AD=12cm.求AC 思考与分析:解答本题一定要先根据题意画出相应的图形,求出BD=CD=5cm ,再将题目所给的数据标在图上,得到如图,因此很容易就想到本题的解答思路是:先利用勾股定理的逆定理说明∠ADB=90°,从而∠ADC=90°,再用勾股定理即可求得AC 解: ∵AD 是BC 边上的中线 ∴BD=CD= 21BC=21×10=5cm (由形到数) ∵169144251252222=+=+=+AD BD 1691322==AB ∴222AB AD BD =+ ∴△ADB 为直角三角形,且∠ADB=90°(由数到形) ∴∠ADC=180°-∠ADB=90° ∴△ADC 为直角三角形 (由数到形) ∴131695122222==+=+=CD AD AC cm (由形到数) B C D 13 12 5 5

勾股定理第二课时教学设计

第二课时 一、教案目标 知识与技能 会用勾股定理进行简单的计算。过程与方法 1.数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。 2.分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力 情感、态度与价值观 树立数形结合的思想、分类讨论思想。 培养思维意识,发展数学理念,体会勾股定理的应用价值。二、教案重、难点 重点:勾股定理的简单计算。 难点:勾股定理的灵活运用。 三、教案准备 多媒体,作图工具 四、教案方法 讲练结合 五、教案过程 (一)复习回顾,引入新课 复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。

预习新知(阅读教材第66至67页,并完成预习内容。) 1.①在解决问题时,每个直角三角形需知道几个条件? 1 / 7 ②直角三角形中哪条边最长? ABCDABmmAC的,求,长2.在长方形BC中,宽为为12长.ABCDABBCAC的大小关系?、问题:(1)在长方形中,、(2)一个门框的尺寸如图1所示. ①若有一块长3M,宽0.8M的薄木板,问怎样从门框通过? ②若薄木板长3M,宽1.5M呢? ③若薄木板长3M,宽2.2M呢?为什么? m1m 新课教授二) (中,∠△ABCC=90°、在例1Rt 求c;⑴已知a=b=5, ;求⑵已知a=1,c=2, b ⑶已知c=17,b=8, 求a;求:b=12,c=5, a;:⑷已知a ,c。aA=30b=15⑸已知,∠°,求分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。⑴已知两直角边,求斜边直接用勾股定理。⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。⑷⑸已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知2 / 7 一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体

2013新版北师版数学八年级(上)上第一章勾股定理导学案

第一章勾股定理 第1课时探索勾股定理(1) 一、三角形的边角关系: 边: 角: 引例: 二、探索直角三角形三边的特殊关系: (1)画一个直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;(2)猜想:直角三角形的三边满足什么关系? 勾股定理: 三、利用拼图验证勾股定理: 用四个全等的直角三角形拼出图1,并思考: 1.拼成的图1中有_______个正方形,___个直角三角形。 2.图中大正方形的边长为_______,小正方形的边长为_______。 3.你能请用两种不同方法表示图1中大正方形的面积,列出一个等式,验证勾股定理吗?

四、典型例题 例1、求出下列各图中x 的值。 例2、如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高? 例3、飞机在空中水平飞行,某一时刻刚好飞到一个站着不动的女孩头顶正上方4000米处,过了25秒,飞机距离女孩头顶5000米处,则飞机的飞行速度是多少? 例4、求下图中字母所代表的正方形的面积。 x 15 17C B A

例6、直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 . 五、知识巩固: 1.在△ABC 中,∠C=90°, (1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ; (3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = . 2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 . 3.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。 4.如图,所有的四边形都是正方形,所有的三角形都 是直角三角形,其中最大的正方形的边长为7cm , 则正方形A ,B ,C ,D 的面积之和为_______cm 2 . 5.一个直角三角形的两直角边长为3cm 、4cm ,斜边长为 a cm ,则以斜边为半径的圆的面积是 。 6.等腰三角形的腰长为13cm ,底边长为10cm ,则其面积为 .

勾股定理中四种重要的数学思想

勾股定理中四种重要的数学思想 摘要:本文主要针对勾股定理中的主要四种数学思想:方程思想、数形结合的思想、分类思想、转换思想,进行讨论、介绍. 关键字:勾股定理方程思想数形结合思想分类思想转换思想 勾股定理又称毕达哥拉斯定理,它是几何学中几个最重要的定理之一,它揭示了直角三角形三边之间的数量关系——如果在直角三角形三边的两直角边长分别为a,b,斜边为c,那么a2+b2=c2.它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一.它不仅在数学中,而且在其他自然科学、实际的生产生活中也被广泛地使用. 数学思想是数学的“灵魂”,数学思想遍及数学学习的各个角落,总结概括数学思想有利于透彻地理解所学的知识,有利于在数学学习中提高我们分析问题和解决问题的能力,形成用数学解决问题的意识.而在勾股定理这一章节的学习过程中我们同样可以发现其中蕴含着多种的数学思想. 本文主要介绍其中主要的四种数学思想. 1 方程思想 “方程”历来是数学研究的重要内容之一,也是研究数学重要的工具.对于众多数学问题的求解,方程常常可以充当由已知探索未知的桥梁而发挥巨大的作用.运用方程的观点去考察问题,运用方程的思想去分析问题,能有效地沟通知识间的纵横联系,发现各种数量之间的关系.有助于解题思路的寻求与优化. 勾股定理本身就是反应了直角三角形中三边的关系.所以在勾股定理的应用中最常见也是最基本的一类问题就在直角三角形中已知两边求第三边的问题,或是关于此类问题的变形题.而方程思想在勾股定理关于此类问题的求解过程中都得到了广泛的运用. 1.1 求距离长度问题 例1:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度与这根芦苇 的长度分别是多少? 分析:在Rt△ABC中,只有BC边的长度,利用勾股定理求一边的长度,还要知道另 一边的长度.因此可以通过设立未知量,建立方程求解. 解: 设:水的深度为AB为x 尺,则芦苇的长度AC(AD)为(x+1)尺. 依题意可以得到如图1所示的图形 ∵在Rt△ABC中,BC=5尺,根据勾股定理可得方程 (x+1)2=x2+52 解得 x=12 ∴ x+1=13 则水的深度为12尺,芦苇的长度为13尺. 图1 1.2 折纸问题 例2 如图所示,把一个长方形(四个角都是直角,对边相等)折叠,恰好点D落边BC上,交BC与点F.已知AB=8cm,BC=10cm,求EC的长. 分析:Rt△AEF,是Rt△AED沿边AE边折叠的,所以就可以通 过折叠中对称的性质得到许多的等量,在矩形中的折叠可以得到 许多的直角三角形.要求EC边长,构造直角三角形,找出EC边所 在的直角三角形,在根据勾股定理,找出所需的量以及各个量之间的关系.在已知量与为质量之间建立方程关系. 解:由题意,得AF=AD,DE=EF. 在Rt△ABF中,AB=8cm,AF=AD=10cm, E D A B C

八年级数学下册 17_1 勾股定理(2)导学案(新版)新人教版

17.1 勾股定理(2) 学习目标:1.会用勾股定理进行简单的计算。 2.勾股定理的实际应用,树立数形结合的思想、分类讨论思想。 学习重点:勾股定理的简单计算。 学习难点:勾股定理的灵活运用。 学习过程: 一、自主学习: 1、直角三角形性质有:如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示) (1)三边之间的关系:。 (2)已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则 c= 。(已知a、b,求c) A a= 。(已知b、c,求a) c b= 。(已知a、c,求b). b 2(1)在Rt△ABC,∠C=90°,a=3,b=4,则c= 。 C B (2)在Rt△ABC,∠C=90°,a=6,c=8,则b= 。 a (3)在Rt△ABC,∠C=90°,b=12,c=13,则a= 。 二、合作交流探究与展示: 例1:一个门框的尺寸如图所示. 若薄木板长3米,宽2.2米呢? 例2、如图,一个2.6米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.4米.如果梯B C 1m 2m A 实际问题数学模型

子的顶端A 沿墙下滑 0.5米,那么梯子底端B 也外移0.5米吗?(计算结果保留两位小数) 三、当堂检测: 必做 1、一个高1.5米、宽0.8米的长方形门框,需要在其相对的顶点间用一条木条加固,则需木条长为 。 2、从电杆离地面5m 处向地面拉一条长为7m 的钢缆,则地面 钢缆A 到电线杆底部B 的距离为 。 3、有一个边长为50dm 的正方形洞口,想用一个圆盖盖住这个洞口, 圆的直径至少为 (结果保留根号) 第2题 4、一旗杆离地面6m 处折断,其顶部落在离旗杆底部8m 处,则旗杆折断前高 。 5 如下图,池塘边有两点A ,B ,点C 是与BA 方 C A C A O B O B A C

第17章勾股定理导学案17.1勾股定理第1课时

C B A 勾股定理第1课时 【学习目标】1、能用在方格纸上计算面积的方法探索勾股定理。 2、通过用拼图的方法验证勾股定理,经历观察、猜想、归纳和验证的数学发现过程获得数学知识,发展数形结合的数学思想。 3、能对勾股定理和它的变形简单应用。 【学习重点】勾股定理的探索和证明 【学习难点】勾股定理的证明 预 习 案 知识链接 我们学过的直角三角形有哪些性质?(每个同学自制4个大小完全一样的直角三角形) 边: 角: 探 究 案 探究一:直角三角形的三边关系 1、如图,在正方形瓷砖拼成的地面中,观察图中用阴影画出的三个正方形,两个小正方形P 、 Q 的面积与大正方形R 的面积有什么关系? 用图中的线段表示为: 即:在等腰直角三角形中,三边的长度之间存在关系: 。 2、如图,每一小方格表示1平方厘米,那么: 正方形P 的面积= 平方厘米; 正方形Q 的面积= 平方厘米; 正方形R 的面积= 平方厘米. 我们发现,正方形P 、 Q 、 R 的面积之间的关系是: . 用图中的线段表示为: (每一小方格表示1平方厘米) 即:在一般直角三角形中,三边的长度之间存在关系: 。 由此,对于任意的直角三角形,若它的两条直角边分别为a 、b ,斜边为c ,则一定有: 勾股定理:直角三角形 的平方和等于 的平方。 探究二:勾股定理的证明 每个同学拿出自制的4个直角三角形拼图,能否拼出下列图形。(利用面积证明勾股定理) 如左图,∵ S 大正方形= ,S 小正方形= , S 三角形= ,又∵S 大正方形-S 小正方形= ∴ ∴ 即: 勾股定理符号语言: ∵在ABC Rt ?中,090=∠C ∴ (勾股定理) 探究三:勾股定理的简单变形 对于勾股定理:2 2 2 c b a =+,可以有哪些变形? 训 练 案 1.在?Rt ABC 中,∠A 、∠B 、∠C 的对边分别为c b a ,,,∠C =90°.回答下列问题: ①若43 ==b a ,,则c = ②若817==a c ,,则b = ; ③若1312==c b ,,则a = .(提示:根据题意先画出草图辅助分析。) 2.如图是美国总统Garfield 于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形) 3.如图所示,AC =10,BC =17,CD ⊥AB 于点D ,CD =8,求△ABC 的面积. 4.设a ,b ,c ,d 都是正数.求证: + >

新北师大版八年级数学上册第一章勾股定理导学案(自编)已审

第一章勾股定理导学案 第1课时探索勾股定理(1) 一、学习目标:掌握勾股定理并能利用它来解决简单的实际问题。 二、预习设计: 1、三角形按角的大小可分为:、、。 2、三角形的三边关系: 三角形的任意两边之和;任意两边之差。 3、直角三角形的两个锐角; 4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。 5、自学感知:探索直角三角形三边的特殊关系: (1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表; (2)猜想:直角三角形的三边满足什么关系? (3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。猜想: 三、课堂探究::

如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是 怎样得到的? 思考: 每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。 勾股定理: 直角三角形等于; 几何语言表述:如图1.1-1,在RtΔABC中, C= 90°, 则:; 若BC=a,AC=b,AB=c,则上面的定理可以表示为:。 图1.1-1 课堂练习: 1、求下图中字母所代表的正方形的面积

落在离旗杆底部12米处。旗杆折断之前有多高? 三、师生互动: 例题.在△ABC 中,AB=AC=5cm ,BC=6cm,求△ABC 的面积. C B A

四、训练达标: 基础巩固: 1.在△ABC 中,∠C=90°, (1)若BC =5,AC =12,则AB = ; (2)若BC =3,AB =5,则AC = ; (3)若BC ∶AC =3∶4,AB =10,则BC = ,AC = . (4) 若AB=8.5,AC=7.5,则BC= 。 2.某农舍的大门是一个木制的矩形栅栏,它的高为2m ,宽为1.5m ,现需要在相对的顶点间用一块木棒加固,木棒的长为 . 3.在Rt △ABC 中,∠C=90°,AC=5,AB=13,则BC= ,该直角三角形的面积为 。 4.直角三角形两直角边长分别为5cm ,12cm ,则斜边上的高为 . 5.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为 。 能力提升: 6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方 形A ,B ,C ,D 的面积之和为_______cm 2 . 7.一个直角三角形的三边长为3、4和a ,则以a 的面积是 。 8.如图,点C 是以AB 为直径的半圆上一点,∠ACB=90AC=3,BC=4,则图中阴影部分的面积是 。9.等腰三角形的腰长为13cm ,底边长为10cm ,则其 面积为 . 10.△ABC 中,AB =15,AC =13,高AD =12,求△ABC 的周长。 课堂检测 1.在△ABC 中,∠C =90°,(l )若 a =5,b =12,则 c = (2)若c =41,a =9,则b = 2.等腰△ABC 的腰长AB =10cm ,底BC 为16cm ,则底边上的高为 ,面积为 第4题

勾股定理回顾与思考

第一章勾股定理 回顾与思考 一、学生起点分析 通过前面三节的学习,学生已经基本掌握了勾股定理及逆定理的知识,并能应用勾股定理及其逆定理解决一些具体的实际问题,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力. 八年级学生已初步具有几何图形的观察,几何证明的理论思维能力.他们希望老师创设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会.但对于勾股定理的综合应用,还需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,可能部分同学会有一些困难. 二、教学任务分析 勾股定理是反映自然界基本规律的一条重要结论,它揭示了直角三角形三边之间的数量关系,将形与数密切联系起来,理论上占有重要的地位,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用,勾股定理的应用蕴含着丰富的文化价值.勾股定理也是后续有关几何度量运算和代数学习必要的基础,具有学科的基础性与广泛的应用. 本课时教学是复习课,强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力.让学生通过动手、动脑、动口自主探索,感受数学的美,以提高学习兴趣. 为此,本节课的教学目标是: ①让学生回顾本章的知识,同时重温这些知识尤其是勾股定理的获得和验证的过程,体会勾股定理及其逆定理的广泛应用. ②在回顾与思考的过程中,提高解决问题,反思问题的能力.

相关文档
最新文档