2021学年高中数学1.2排列与组合1.2.2第1课时组合一课件人教A版选修2_3.ppt
2021学年高中数学1.2排列与组合1.2.2第1课时组合一课堂练习含解析人教A版选修2_3

第一章 1.2 1.2.2 第1课时1.下列问题不是组合问题的是( D )A .10个朋友聚会,每两人握手一次,一共握手多少次?B .平面上有2015个不同的点,它们中任意三点不共线,连接任意两点可以构成多少条线段?C .集合{a 1,a 2,a 3,…,a n }的含有三个元素的子集有多少个?D .从高三(19)班的54名学生中选出2名学生分别参加校庆晚会的独唱、独舞节目,有多少种选法?[解析] 组合问题与次序无关,排列问题与次序有关,D 选项中,选出的2名学生,如甲、乙,其中“甲参加独唱、乙参加独舞”与“乙参加独唱、甲参加独舞”是两个不同的选法,因此是排列问题,不是组合问题,选D .2.已知C 7n +1-C 7n =C 8n (n ∈N *),则n 等于( A )A .14B .12C .13D .15 [解析] 因为C 8n +C 7n =C 8n +1,所以C 7n +1=C 8n +1.∴7+8=n +1,∴n =14,故选A .3.把三张游园票分给10个人中的3人,分法有( B )A .A 310种B .C 310种 C .C 310A 310种D .30种[解析] 三张票没区别,从10人中选3人即可,即C 310,故选B .4.若C 4n >C 6n ,则n 的集合是__{6,7,8,9}__.[解析] ∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧ C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧ n !4!n -4!>n !6!n -6!,n ≥6⇒ ⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧ -1<n <10,n ≥6. ∵n ∈N *,∴n =6,7,8,9.∴n 的集合为{6,7,8,9}.5.在6名内科医生和4名外科医生中,现要组成5人医疗小组送医下乡,依下列条件各有多少种选派方法?(1)有3名内科医生和2名外科医生;(2)既有内科医生,又有外科医生.[解析] (1)先选内科医生有C36种选法,再选外科医生有C24种选法,故有C36C24=120种选派方法.(2)既有内科医生,又有外科医生,正面思考应包括四种情况,内科医生去1人,2人,3人,4人,有C16C44+C26C34+C36C24+C46C14=246种选派方法.若从反面考虑,则有C510-C56=246种选派方法.。
2021学年高中数学1.2排列与组合1.2.1第2课时排列二练习含解析人教A版选修2_3

第一章 1.2 1.2.1 第2课时请同学们认真完成练案[4]A级基础巩固一、选择题1.5人站成一排,甲、乙两人之间恰有1人的不同站法的种数为( C )A.18 B.24C.36 D.48[解析] 5人站成一排,甲、乙两人之间恰有1人的不同站法有3A33×A22=36(种).2.某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天.若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( C )A.504种B.960种C.1 008种D.1 108种[解析] 甲、乙相邻的所有方案有A22A66=1 440种;其中丙排在10月1日的和丁排在10月7日的一样多,各有:A22A55=240种,其中丙排在10月1日且丁排在10月7日的有A22A44=48种,故符合题设要求的不同安排方案有:1 440-2×240+48=1 008种,故选C.3.停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,则不同的停车方法有( D )A.A812种B.2A88A44种C.8A88种D.9A88种[解析] 将4个空车位视为一个元素,与8辆车共9个元素进行全排列,共有A99=9A88种.4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( B )A.192种B.216种C.240种D.288种[解析] 分两类:最左端排甲有A55=120种不同的排法,最左端排乙,由于甲不能排在最右端,所以有4A44=96种不同的排法,由分类加法原理可得满足条件的排法共有120+96=216种.5.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有( A ) A.20种B.30种C.40种D.60种[解析] 分类完成,甲排周一,乙、丙只能从周二至周五这4天中选2天排,有A24种安排方法;甲排周二,乙、丙有A23种安排方法;甲排周三,乙、丙只能排周四和周五,有A22种安排方法.由分类加法计数原理可知,共有A24+A23+A22=20种不同的安排方法.6.(2020·广元模拟)在航天员进行一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B和C在实施时必须相邻,问实验顺序的编排方法共有( C )A.34种B.48种C.96种D.144种[解析] 根据题意,程序A只能出现在第一步或最后一步,则从第一个位置和最后一个位置选一个位置把A排列,有A12=2种结果,又由程序B和C实施时必须相邻,把B和C看作一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果,根据分步计数原理知共有2×48=96种结果,故选C.二、填空题7.(2020·和平区高三)现有6个人排成一横排照相,其中甲不能被排在边上,则不同排法的总数为__480__.[解析] 假设6个人分别对应6个空位,甲不站在两端,有4个位置可选,则其他5人对应其他5个位置,有A55=120种情况,故不同排列方法种数4×120=480种.故答案为480.8.将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是__96__.[解析] 先分组后用分配法求解,5张参观券分为4组,其中2个连号的有4种分法,每一种分法中的排列方法有A44种,因此共有不同的分法4A44=4×24=96(种).9.2020年某地举行博物展,某单位将展出5件艺术作品,其中不同书法作品2件、不同绘画作品2件、标志性建筑设计1件,在展台上将这5件作品排成一排,要求2件书法作品必须相邻,2件绘画作品不能相邻,则该单位展出这5件作品不同的方案有__24__种.(用数字作答)[解析] 将2件书法作品排列,方法数为2种,然后将其作为1件作品与标志性建筑设计作品共同排列有2种排法,对于其每一种排法,在其形成的3个空位中选2个插入2件绘画作品,故共有不同展出方案:2×2×A23=24种.三、解答题10.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前四个节目要有舞蹈节目,有多少种排法?[解析] (1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=14 400种.(2)先不考虑排列要求,有A88种排列,其中前四个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有A88-A45A44=37 440种.B级素养提升一、选择题1.(2020·濮阳三模)《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A必须排在前三位,且任务E、F必须排在一起,则这六项任务的不同安排方案共有( D )A.240种B.188种C.156种D.120种[解析] 根据题意,由于任务A必须排在前三位,分3种情况讨论:①A排在第一位,任务E、F必须排在一起,则任务E、F相邻的位置有4个,考虑两者的顺序,有2种情况,将剩下的3个任务全排列,安排在其他三个位置,有A33=6种安排方法,则此时有4×2×6=48种安排方案;②A排在第二位,任务E、F必须排在一起,则任务E、F相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个任务全排列,安排在其他三个位置,有A33=6种安排方法,则此时有3×2×6=36种安排方案;③A排在第三位,任务E、F必须排在一起,则任务E、F相邻的位置有3个,考虑两者的顺序,有2种情况,将剩下的3个任务全排列,安排在其他三个位置,有A33=6种安排方法,则此时有3×2×6=36种安排方案;则符合题意要求的安排方案有36+36+48=120种.故选D.2.(多选题)某地为了迎接2021年城运会,某大楼安装了5个彩灯,它们闪亮的顺序不固定.每个彩灯只能闪亮红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯所闪亮的颜色各不相同,记这5个彩灯有序地各闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间可以是( ABC )A.1 205秒B.1 200秒C.1 195秒D.1 190秒[解析] 由题意每次闪烁共5秒,所有不同的闪烁为A55个,相邻两个闪烁的时间间隔为5秒,因此需要的时间至少是5A55+(A55-1)×5=1 195秒,故选ABC.二、填空题3.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为__576__.[解析] “不能都站在一起”与“都站在一起”是对立事件,由间接法可得A66-A33A44=576.4.有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有__300__种不同的安排方法.(用数字回答) [解析] 法一:(分类法)分两类.第1类,化学被选上,有A13A35种不同的安排方法;第2类,化学不被选上,有A45种不同的安排方法.故共有A13A35+A45=300种不同的安排方法.法二:(分步法)第1步,第四节有A15种排法;第2步,其余三节有A35种排法,故共有A15A35=300种不同的安排方法.法三:(间接法)从6门课程中选4门安排在上午,有A46种排法,而化学排第四节,有A35种排法,故共有A46-A35=300种不同的安排方法.三、解答题5.用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.[解析] (1)各个数位上的数字允许重复,故由分步乘法计数原理知,共有4×5×5×5×5=2 500(个).(2)解法一:先排万位,从1,2,3,4中任取一个有A14种填法,其余四个位置四个数字共有A44种,故共有A14·A44=96(个).解法二:先排0,从个、十、百、千位中任选一个位置将0填入有A14种方法,其余四个数字全排有A44种方法,故共有A14·A44=96(个).(3)构成3的倍数的三位数,各个位上数字之和是3的倍数,按取0和不取0分类:①取0,从1和4中取一个数,再取2进行排,先填百位A12,其余任排有A22,故有2A12·A22种.②不取0,则只能取3,从1或4中再任取一个,再取2然后进行全排为2A33,所以共有2A12A22+2A33=8+12=20(个).(4)考虑特殊位置个位和万位,先填个位,从1、3中选一个填入个位有A12种填法,然后从剩余3个非0数中选一个填入万位,有A13种填法,包含0在内还有3个数在中间三位置上全排列,排列数为A33,故共有A12·A13·A33=36(个).6.4个男同学,3个女同学站成一排.(1)3个女同学必须相邻,有多少种不同的排法?(2)任何两个女同学彼此不相邻,有多少种不同的排法?(3)三位女同学站在中间三个位置上的不同排法有多少种?(4)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?(5)若3个女生身高互不相等,女同学从左到右按高矮顺序排,有多少种不同的排法?[解析] (1)3个女同学是特殊元素,她们排在一起,共有A33种排法;我们可视排好的女同学为一整体,再与男同学排队,这时是5个元素的全排列,应有A55种排法,由分步乘法计数乘法原理,有A33A55=720种不同排法.(2)先将男生排好,共有A44种排法,再在这4个男生之间及两头的5个空档中插入3个女生有A35种方案,故符合条件的排法共有A44A35=1 440种不同排法.(3)三位女同学站在中间三个位置上的不同排法有A33·A44=144种.(4)先排甲、乙和丙3人以外的其他4人,有A44种排法;由于甲、乙要相邻,故再把甲、乙排好,有A22种排法;最后把排好的甲、乙这个整体与丙分别插入原先排好的4人的空档中有A25种排法.这样,总共有A44A22A25=960种不同排法.(5)从7个位置中选出4个位置把男生排好,则有A47种排法.然后再在余下的3个空位置中排女生,由于女生要按身体高矮排列,故仅有一种排法.这样总共有A47=840种不同排法.。
人教高中数学选修23 .1《排列》课件

答:共要照24张。
活动探究
(1) 6 !
A2
(2) 6
6
A (3)
6 4
A4
A
2 6
A
6 6
A
4 4
A
m n
A
n n
A nm nm
(1)若
Am n
=20×19×18×…×5,则
n 20 , m 16 .
(2)证明: AnmnAnm 11(mn)
课堂小结
1、排列与排列数的定义 2、排列数公式 3、全排列的定义和公式
•
9.迫于现实社会生存的巨大综合压力 和人类 因物质 文明进 步而带 来的精 神困惑 ,当代 诗歌的 内容越 来越局 限于私 人性的 东西, 正日愈 失去处 理重大 社会题 材的艺 术能力 ,这就 使得它 日愈减 少获得 公众关 注的机 会,而 只有在 少数未 被现代 社会物 质化的 心灵当 中获得 知音;
•
5.传统的经济理论不考虑经济系统和 生态系 统的物 质和能 量交换 是基于 以下的 假设: 生态系 统的物 质和能 量是取 之不尽 、用之 不竭的 。
•
6.这一前提假设在经济系统相对于生 态系统 较小时 ,即世 界是一 个“空 的世界 ”时尚 能满足 ,但在 经济系 统快速 增长, 世界逐 渐从“ 空的世 界”变 成“满 的世界 ”后, 这一假 设就很 难满足 了。
用n!表示,所以n个不同元素的全排列
数公式可以写成
An n
n!
另外,我们规定 0!=1
例2 计算:
(1 ) A 3
; 1 61 514 3360
16
(2 )
8
A 12
7
人教版高中数学选修2-3第一章1.2.2组合

导入新课先看下面的问题问题一:从甲,乙,丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?观察问题二:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?问题一与问题二有何不同?问题1中不但要求选出2名同学,而且还要按照一定的顺序“排列”,而问题2只要求选出2名同学,是与顺序无关的.这就是我们这节课要学习的内容———组合1.2.2组合教学目标知识与能力(1)使学生正确理解组合的意义;(2)明确组合与排列的区别与联系;(3)掌握组合数公式;(4)能够应用组合数公式解决一些简单的实际应用问题.过程与方法(1)通过创设问题情景,引导学生主动探究,积极思考,学会学习;(2)通过师生互动及时反映教学信息,以调整教学进度.情感态度与价值观(1)通过组合数公式的推导过程,使学生学会用联系的观点看问题,从排列与组合的概念中找到区别与联系,来培养学生探索数学规律的能力;(2)通过问题的解决,树立自信心,体会成功与快乐,学会探究,学会自主学习.教学重难点重点组合数及排列与组合的区别.难点组合数公式的推导及应用.知识要点1 组合一般地,从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m 个元素的一个组合.你能说说排列与组合的联系与区别吗?相同点:都要“从n个不同元素中任取m 个元素”不同点:对于所取出的元素,排列要“按照一定的顺序排成一列”,而组合却是“不管怎样的顺序并成一组”.排列与元素的顺序有关,而组合则与元素的顺序无关.ab与ba是相同的排列还是相同的组合?为什么?由于组合与顺序无关,ab与ba是相同的组合.例题1判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?知识要点2 组合数从n 个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号表示.mn C上面的问题,是求从3个不同元素中取出2个元素的组合数,记为,已经算得注:C 是英文combination(组合)的第一个字母23C 223322A 3*2C =3==2*1A知识要点3 组合数公式这里,n ,m ∈N*,并且m≤n.m m n nm mA n(n -1)(n -2)...(n -m -1)C ==.Am!因为m n n!A =,(n-m)!所以,上面的组合数公式还可以写成m n n!C=.m!(n-m)!nC1.例题2解不等式n-4n-2n-1212121C <C <C .2n 21C 1n 2)(n 21----∵n253n C 4)(n 213n C3n 214n 21--=---=--1n 212n 21C C 3)(n 212n -----·=解:∴原不等式可化为,1n n231n)n)(24(252)3)(n (n --<<----继续解答即∴n <12.但原不等式中n 取值范围为n -4≥0,即n ≥4,所以n =4,5,6, (11)⎩⎨⎧->--->--1n n 233)2)(n (n n)n)(24(25(n ∈N +),例题3从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:236C C C C C 5625364516=++共有例题45名同学同时参加五门不同科目的考试,恰有两名学生拿到了自己该考的科目的试卷,问试卷分发的方法有多少种?解:5名同学选出2名选法有种,3名学生拿到的都不是自己该考的试卷,试卷分发的方法有2种,故共有试卷分发方法25C25C*2=20 。
数学:1.2.1《排列》课件(4)(新人教A版选修2-3)

m n
An- 1 =
An
有什
An
= ( n - m )A
m n
思考3 ( 思考3:n
- 1)( n - 2) L ( n - m + 1)( n - m ) m 用排列数符号如何表示? 用排列数符号如何表示?它与 A n 有什
思考3 思考3:将排列数公式变形为 n ( n - 1) L ( n - m + 1) ( n - m ) L 2 1 m An = (n - m ) L 2 1 m 进一步用阶乘如何表示 A n ?
A
m n
n! = (n - m ) !
m n
思考4 思考4:当m=n时,公式 A 成立吗?对此怎样处理? 成立吗?对此怎样处理? 规定: !=1 规定:0!=1
么关系? 么关系? A m = n - m A m n- 1 n n 思考4 思考4:考察恒等式 n(n-1)(n-2)…(n- n(n-1)(n-2)…(n-m+1) [(n-m)+m](n-1)(n-2)…(n- =[(n-m)+m](n-1)(n-2)…(n-m+1) (n-1)(n-2)…(n- 1)(n-m)+ =(n-1)(n-2)…(n-m+1)(n-m)+ m(n-1)(n-2)…(n- 1), m(n-1)(n-2)…(n-m+1),用排列数 表示可得什么结论? 表示可得什么结论? m = A m + m A m - 1 A
3.排列数公式源于分步乘法计数原理, 3.排列数公式源于分步乘法计数原理, 排列数公式源于分步乘法计数原理 对排列数公式作进一步的变形与拓展, 对排列数公式作进一步的变形与拓展, 可以得出排列数的一些基本性质. 可以得出排列数的一些基本性质.
2021学年高中数学1.2排列与组合1.2.1第1课时排列一练习含解析人教A版选修2_3.doc

第一章 1.2 1.2.1 第1课时请同学们认真完成练案[3]A级基础巩固一、选择题1.甲、乙、丙三名同学排成一排,不同的排列方法有( C )A.3种B.4种C.6种D.12种[解析] 由排列定义得,共有A33=6种排列方法.2.从1,2,3,4中任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( C )A.2 B.4C.12 D.24[解析] 本题相当于从4个元素中取2个元素的排列,即A24=12.3.(2020·东安区校级期末)A59+A49A610-A510=( D )A.415B.715C.310D.320[解析]A59+A49A610-A510=9×8×7×6×5+9×8×7×610×9×8×7×6×5-10×9×8×7×6=5+110×5-10=320.故选D.4.下列问题属于排列问题的是( A )①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作log a b中的底数与真数.A.①④B.①②C.④D.①③④[解析] 根据排列的概念知①④是排列问题.5.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有( B )A.108种B.186种C .216种D .270种[解析] 从全部方案中减去只选派男生的方案数,所有不同的选派方案共有A 37-A 34=186(种),选B .6.有4名司机、4名售票员分配到4辆汽车上,使每辆汽车上有一名司机和一名售票员,则可能的分配方案有( C )A .A 88种 B .A 48种 C .A 44A 44种D .2A 44种[解析] 安排4名司机有A 44种方案,安排4名售票员有A 44种方案.司机与售票员都安排好,这件事情才算完成,由分步乘法计数原理知共有A 44A 44种方案.二、填空题7.(2020·天津模拟)由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有__120__个.[解析] 1,2,3,4,5,6组成没有重复数字的六位数,奇数不相邻,有A 33A 34=144个, 4在第四位,则前3位是奇偶奇,后两位是奇偶或偶奇,共有2A 33A 22=24个, ∴所求六位数共有120个.故答案为120.8.将A 、B 、C 、D 、E 、F 六个字母排成一排,且A 、B 均在C 的同侧,则不同的排法共有__480__种(用数字作答).[解析] A 、B 两个字母与C 的位置关系仅有3种:同左、同右或两侧,各占13,∴排法有23A 66=480. 9.(2020·烟台一模)上合组织峰会于2018年6月在青岛召开,组委会预备在会议期间将A ,B ,C ,D ,E 这五名工作人员分配到两个不同的地点参与接待工作.若要求A ,B 必须在同一组,且每组至少2人,则不同分配方法的种数为__8__.[解析] 根据题意,分2种情况讨论:①A ,B 在一组,C ,D ,E 都分在另一组,将两组全排列,对应两个地点即可,有A 22=2种分配方法;②C ,D ,E 中取出1人,与A 、B 一组,剩下2人一组,再将两组全排列,对应两个地点, 有3A 22=6种分配方法; 故一共有2+6=8种分配方法. 故答案为8. 三、解答题10.(2020·深圳高二检测)用一颗骰子连掷三次,投掷出的数字顺序排成一个三位数,此时:(1)各位数字互不相同的三位数有多少个?(2)可以排出多少个不同的三位数? [解析] (1)三位数的每位上数字均为 1,2,3,4,5,6之一.第一步,得首位数字,有6种不同结果, 第二步,得十位数字,有5种不同结果, 第三步,得个位数字,有4种不同结果, 故可得各位数字互不相同的三位数有 6×5×4=120(个).(2)三位数,每位上数字均可从1,2,3,4,5,6六个数字中得一个,共有这样的三位数6×6×6=216(个).B 级 素养提升一、选择题1.从集合{1,2,3,…,11}中任选两个元素作为椭圆方程x 2m 2+y 2n2=1中的m 和n ,则能组成落在矩形区域B ={(x ,y )||x |<11,且|y |<9}内的椭圆个数为( B )A .43B .72C .86D .90[解析] 在1、2、3、4、…、8中任取两个作为m 、n ,共有A 28=56种方法;可在9、10中取一个作为m ,在1、2、…、8中取一个作为n ,共有A 12A 18=16种方法,由分类加法计数原理,满足条件的椭圆的个数为:A 28+A 12A 18=72.2.给出下列4个等式: ①n !=n +1!n +1;②A m n =n A m -1n -1;③A mn =n !n -m !;④A m -1n -1=n -1!m -n !.其中正确的个数为( C ) A .1 B .2 C .3D .4[解析] 由排列数公式逐一验证,①②③成立,④不成立.故选C . 二、填空题3.(1)7个人站成一排,若甲必须站在正中间的站法有__720__种; (2)7个人站成一排,若甲、乙2人必须站在两端的站法有__240__种;(3)7个人站成两排,其中3个女孩站在前排,4个男孩站在后排的站法有__144__种; (4)7个人站成两排,其中前排站3人,后排站4人的站法有__5_040__种. [解析] (1)甲站中间后,剩下的人的位置排列数为A 66=720.(2)甲、乙必须站两端,剩下的人的位置排列数为A55,甲、乙站两端的站法有A22,故共有A55·A22=240.(3)女孩和男孩的排列相互独立,故为A44·A33=144.(4)先排前排,再排后排,故为A37·A44=5 040.4.如果A m n=15×14×13×12×11×10,那么n=__15__,m=__6__.[解析] 15×14×13×12×11×10=A615,故n=15,m=6.三、解答题5.(2020·宝鸡市金台区高二检测)“渐降数”是指每一位数字比其左边的数字小的正整数(如632),那么比666小的三位渐降数共有多少个?[解析] 百位是6,十位是5比666小的渐降数有654,653,652,651,650共5个,百位是6,十位是4比666小的渐降数有643,642,641,640共4个,百位是6,十位是3比666小的渐降数有632,631,630共3个,百位是6,十位是2比666小的渐降数有621,620共2个,百位是6,十位是1比666小的渐降数有610,所以百位是6比666小的渐降数有1+2+3+4+5=15个,同理:百位是5比666小的渐降数有1+2+3+4=10个,百位是4比666小的渐降数有1+2+3=6个,百位是3比666小的渐降数有1+2=3个,百位是2比666小的渐降数有1个,所以比666小的三位渐降数共有15+10+6+3+1=35个.。
高中数学第一章计数原理1.2排列与组合1.2.1.1排列与排列数公式a23a高二23数学
12/7/2021
第三十九页,共四十九页。
忽视排列问题中的限制条件致误 【例 4】 在 1,2,3,4 的排列 a1a2a3a4 中,满足 a1>a2,a3>a2, a3>a4 的排列个数是_____5___. 【错解】 排列的个数是 12 个或 8 个. 【错因分析】 3 个限制只注意 1 个限制条件或 2 个限制条 件.
12/7/2021
第七页,共四十九页。
知识点一 排列的概念
1.排列的定义
[填一填]
一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一 定的顺序 排成一列,叫做从 n 个 不同 元素中取出 m 个
元素的一个排列.
2.相同排列 两个排列相同,当且仅当两个排列的元素 完全相同 ,且 元素的 排列顺序 也相同.
12/7/2021
第三十三页,共四十九页。
(2)计算AA5525的值. 解:AA5255=5×4×5×3×4 2×1=6.
12/7/2021
第三十四页,共四十九页。
类型三 列举法解决排列问题 【例 3】 (1)从 1,2,3,4 四个数字中任取两个数字组成两位
数,共有多少个不同的两位数? (2)写出从 4 个元素 a,b,c,d 中任取 3 个元素的所有排列.
Hale Waihona Puke [目标] 1.理解排列和排列数的特征.2.正确运用排列数公式 进行计算.
[重点] 理解排列的概念,会用排列数公式进行计算. [难点] 对排列的有序性的正确理解,排列数公式的逆用.
12/7/2021
第五页,共四十九页。
要点整合夯基础 课堂达标练经典
典例讲练破题型 课时作业
12/7/2021
第六页,共四十九页。
1[1].2.1排列第1课时 排列与排列数公式 课件(人教A版选修2-3)
排列与组合
1.2.1 排 列
第1课时 排列与排列数公式
【课标要求】 1.了解排列、排列数的定义. 2.掌握排列数公式的推导方法. 3.能用排列数公式解决简单的排列问题.
【核心扫描】
1. 排列概念的理解.(难点) 2. 排列的简单应用.(重点) 3. 排列与排列数的区别.(易混点)
自学导引
1.排列的定义
【题后反思】
(1)题属于求排列数问题;(2)题不属于求
排列数问题,应注意它们的区别,区分的关键看“事件”是 否符合排列定义,排列的特点是先取后排,特点是序性.
【变式4】 用一颗骰子连掷三次,投掷出的数字顺序排成一个 三位数,此时: (1)各位数字互不相同的三位数有多少个? (2)可以排出多少个不同的数? (3)恰好有两个相同数字的三位数共有多少个?
题型四
排列的简单应用
【例4】 (1)有5个不同的科研小课题,从中选3个由高二(3)班
的3个学习兴趣小组进行研究,每组一个课题,共有多少
种不同的安排方法? (2)有5个不同的科研课题,高二(3)班的3个学习兴趣小组 报名参加,每组限报一项,共有多少种不同的安排方法? 审题指导 根据排列和计数原理的概念解题.
1 (3)性质:An=n!规定 A0=__,0!=1. n n
试 一 试 : 如 果 A m = 17×16×15×…×5×4 , 则 n = n ________,m=________.
提示
因为最大数为17,是17-4+1=14个数的积,
∴n=17,m=14.
名师点睛
1.对排列定义的理解 (1)排列的定义中包括两个基本内容,一是“取出元素”, 二是“按一定的顺序排列”. (2)排列的一个重要特征是每一个排列不仅与选取的元素 有关,而且与这些元素的排列顺序有关,选取的元素不同
高中数学第一章计数原理1.2排列与组合1.2.1第1课时排列与排列数公式a23a高二23数学
义及表示 叫做从n个不同元素中取出m个元素的排列数,用符号Amn 表示
全排列的概念
n个不同元素__全__部__(q_uá_nb_ù_)取_的出一个排列
阶乘的概念
把_n_·(_n_-__1_)_·…__·_2_·_1记作n!,读作:n的阶乘
Anm=___n_(_n_-__1_)…__(_n_-__m__+__1_) ____
2021/12/12
第十五页,共三十六页。
[跟踪训练] 1.判断下列问题是否是排列问题 (1)同宿舍4人,每两人互通一封信,问他们一共写了多少封信? (2)同宿舍4人,每两人通一次电话,问他们一共通了几次电话?
[解] (1)是一个排列问题,相当于从4个人中任取两个人,并且按顺序 排好.有多少个排列就有多少封信,共有A24=12封信.
题.
()
2021/12/12
第八页,共三十六页。
[解析] (1)× 因为相同的两个排列不仅元素相同,而且元素的排列顺 序也相同.
(2)√ 因为三名学生参赛的科目不同为不同的选法,每种选法与“顺 序”有关,属于排列问题.
(3)× 因为分组之后,各组与顺序无关,故不属于排列问题. (4)√ 因为任取的两个数进行指数运算,底数不同、指数不同结果不 同.结果与顺序有关,故属于排列问题. (5)√ 因为纵、横坐标不同,表示不同的点,故属于排列问题.
第二页,共三十六页。
[自 主 预 习·探 新 知]
1.排列的概念 从n个不同元素中取出m(m≤n)个元素,按照_一__定_(_yī_dì_ng_)_的_顺排序成一列,叫 做从n个不同元素中取出m个元素的一个排列. 2.相同排列的两个条件 (1)_元__素__(_yu相án s同ù) . (2)_顺__序__(s_hù相nxù同) . 思考:如何理解排列的定义?
排列与组合 课件-2021-2022学年高二下学期数学人教A版选修2-3
”就是与位置有关,这也是判断一个问题是不是排列问题的重要
标志。
根据排列的定义,两个排列相同,当且仅当两个排列的元素完全
相同,而且元素的排列顺序也相同。
下列问题是排列问题吗
?
(1)从1,2,3,4四个数字中,任选两个做加法,其结果有多少种不同
不是
4
3 4 1
3 4 2
4
1
4 2
2 4 3
4 1 2
4 1 3
4 2 1
4
2 3
4 3 1
4 3
4 3 2
概念形成
一般地说,从 n 个不同元素中,任取 m (m≤n)个不相同元
素(只研究被取出的元素各的情况),按照一定的顺序排成
一列,叫做从 n 个不同元素中取出 m 个元素的一个排列。
概念深化
排列的定义中包含两个基本内容:
同的化学书,现要将这些书放在一个单层的书架上.
(1)如果要选其中的6本书放在书架上,那么有多少种不同的
放法?
(2)如果要将全部的书放在书架上,且不使同类的书分开,那
么有多少种不同的放法?
答案:(1)665280;
(2)103680.
6.(1)空间中有8个点,其中任何4个点不共面,过每3个点作
一个平面,可以作多少个平面?
!
组合数
公式
!
! (−)!
性质
备注
①n、m∈
,m≤n ②规定:
1
1
1.计算:
2.在100件产品中,有98件合格品,2件次品.从这100件产品
中任意抽出3件.
(1)有多少种不同的抽法?
(2)抽出的3件中恰好有1件是次品的抽法有多少种?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题方向 2
组合数公式
典例 2 (1)计算:①3C38-2C25+C88;②C91800+C129090. (2)证明:mCmn =nCmn--11.
[思路分析] (1)先考虑利用组合数的性质对原式进行化 简,再利用组合数公式展开计算.(2)式子中涉及字母,可 以用阶乘式证明.
[解析] (1)①3C38-2C25+C88=3×83× ×72× ×61-2×52× ×41+1=149. ②C19080+C129090=C2100+C1200=1020××199+200=5 150. (2)证明:∵左边=m·m!nn! -m!=m-n1·n!-n1-!m!=n·m-1n- !1n-!m! =nCmn--11=右边, ∴mCmn =nCmn--11.
(5)是排列问题,因为 3 个人担任哪一科的课代表是有区别的,排列数为 A310= 720.
『规律总结』 1.组合的特点是只选不排,即组合只是 从n个不同的元素中取出m(m≤n)个不同的元素即可.
2.只要两个组合的元素完全相同,不管顺序如何,这两 个组合就是相同的组合.
3.判断组合与排列的依据是看是否与顺序有关,与顺序 有关的是排列问题,与顺序无关的是组合问题.
B.14 D.14 或 2
[解析]
由题意知2x=x-24x-≤41,4,或x2=x-144- ≤124x,-4,
x≤14
x≤14,
解得 x=4 或 6.
(C )互动探究·攻重难互动探究解疑 命题方向 1
组合概念的理解与应用
典例 1 判断下列问题是排列问题还是组合问题,并 求出相应的排列数或组合数.
新课标导学
数学
选修2-3 ·人教A版
第一章
计数原理 1.2 排列与组合
1.2.2 组合 第1课时 组 合(一)
1
自主预习·探新知
2
互动探究·攻重难
3
课堂达标·固基础
4
课时作业·练素能
自主预习·探新知
情景引入
某国际会议中心有 A、B、C、D 和 E 共 5 种不同功能的 会议室,且每种功能的会议室又有大、中、小和特小 4 种型 号,总共 20 个会议室.现在有一个国际学术会议需要选择 3 种不同功能的 6 个会议室,并且每种功能的会议室选 2 个型 号.
3.从 1,2,3,…,9 这 9 个数中任取 5 个不同的数,则这 5 个数的中位数是 5
的概率等于
(C )
A.57
B.59
C.27
D.49
[解析] ∵5 个数的中位数是 5, ∴5 之前 4 个数中取 2 个,5 之后 4 个数中取 2 个,故所求概率为 P=CC24C59 24= 27.
4.方程 C1x4=C21x4-4的解为 A.4 C.4 或 6
『规律总结』 1.公式 Cnm=AAmnmm=nn-1n-m2!…n-m+1,一般用于求值 计算.
2.公式 Cnm=m!nn! -m!(m,n∈N*,且 m≤n),一般用于化简证明.在具 体选择公式时,要根据题目特点正确选择.
3.根据题目特点合理选用组合数的两个性质 Cnm=Cnn-m,Cnm+1=Cmn +Cmn -1, 能起到简化运算的作用,需熟练掌握.
跟踪练习2
(1)计算:C410-C37·A33; (2)求 C338n-n+C32n1+n的值. [解析] (1)原式=C410-A37=140××39××28××17-7×6×5=210-210=0. (2)∵338n- ≤n2≤ 1+3nn,∴9.5≤n≤10.5, ∵n∈N*,∴n=10, ∴C338n-n+C32n1+n=C2380+C3301=C230+C131=302× ×219+31=466.
A.①②
B.①③④
[解析] ①与顺序有关,是排列问题,而②③④均与顺 序无关,是组合问题,故选C.
2.从9名学生中选出3名参加“希望英语”口语比赛,
有____________种不同选法.
(C )
A.504
B.729
C.84
D.27
[解析] 只需从 9 名学生中选出 3 名即可,从而有 C39=93× ×82× ×71=84 种选法.
2.组合数公式及其性质
nn-1n-2…n-m+1
n!
(1)公式:Cmn =____________m_!_______________=__m__!__n_-__m__!____.
(2)性质:Cmn =__C_nn_-_m____,Cnm+1=Cmn +Cmn -1.
(3)规定:C0n=___1____.
(1)10个人相互写一封信,一共写了多少封信? (2)10个人相互通一次电话,一共通了多少次电话? (3)10支球队以单循环进行比赛(每两队比赛一次),这次 比赛需要进行多少场次? (4)从10个人中选3人去开会,有多少种选法? (5)从10个人中选出3人担任不同学科的课代表,有多少
[思路分析] 观察取出的元素与顺序有关还是无关,从 而确定是排列问题,还是组合问题.
预习自测
1.下面几个问题是组合问题的有
(C )
①从甲、乙、丙3名同学中选出2名去参加某两个乡镇的 社会调查,有多少种不同的选法?
②从甲、乙、丙3名同学中选出2名,有多少种不同的选 法?
③有4张电影票,要在7人中确定4人去观看,有多少种 不同的选法?
④某人射击8枪,命中4枪,且命中的4枪均为2枪连中, 不同的结果有多少种?
试问:会议中心的工作人员安排会议的方法有多少种?
新知导学
1.组合、组合数的概念 (1)组合的概念. 一般地,从 n 个不同元素中,任意取出 m(m≤n)个元素并成___一__组___,叫做 从 n 个不同元素中任取 m 个元素的一个组合. (2)组合数的概念. 从 n 个不同元素中,任意取出 m(m≤n)个元素的__所__有__组__合____的个数,叫做 从 n 个不同元素中,任意取出 m 个元素的组合数,用符号 Cmn 表示.
[解析] (1)是排列问题,因为发信人与收信人是有顺序区别的,排列数为 A210 =90.
(2)是组合问题,因为甲与乙通一次电话,也就是乙与甲通一次电话,没有顺 序区别,组合数为 C210=45.
(3)是组合问题,因为每两个队比赛一次,没有顺序的区别,组合数为 C210= 45.
(4)是组合问题,因为去开会的 3 个人之间没有顺序的区别,组合数为 C310= 120.
跟踪练习1
下列四个问题中,属于组合问题的是 ( )
C
A.从3个不同小球中,取出2个排成一列
B.老师在排座次时将甲、乙两位同学安排为同桌
C.在电视节目中,主持人从100位幸运观众中选出2名 幸运之星
D.将3张不同的电影票分给10人中的3人,每人1张
[解析] 只有从100名幸运观众中选出2名幸运之星与顺 序无关,是组合问题.