医用高分子材料的结构与性能

合集下载

高分子材料的结构和性能研究

高分子材料的结构和性能研究

高分子材料的结构和性能研究高分子是由大量分子单元化合而成的材料,是众多材料之中使用最为广泛的一类材料,其中塑料是高分子材料中最常见和应用最广泛的一种。

随着科技的不断发展,人们对高分子材料的研究和应用也越来越深入,对高分子材料的结构和性能进行探究已成为重要的研究方向之一。

一、高分子材料的基本结构和组成高分子材料的基本结构是由大量简单分子单元通过共价键或离子键连接而成的长链分子。

这些长链分子可能包含数千上万个单元,其分子量也可达数百万至数千万不等。

除了长链分子,高分子材料中还可能存在支链分子、交错分子、网状分子等不同的形态。

高分子材料的组成不仅有单一的高分子,还可能由多种高分子组成的共混物或复合材料。

共混物由两种或以上的高分子混合而成,其组分可以均为同质高分子,也可以为不同种类的高分子。

而复合材料则是将高分子与其它材料混合而成,这些材料可以是同种的或不同种的。

复合材料的成分可以按照功能需求进行配比,形成满足不同使用需求的高性能材料。

二、高分子材料的性能及其研究方法高分子材料因其结构特点,在力学、光学、电学、化学、热学等方面表现出一系列独特的性能。

高分子材料的性能取决于分子结构、分子量、结晶度、形态结构、分子力学运动状态等因素。

其中,热性能、机械性能和流变性能等是高分子材料中最为重要和常见的性能。

研究高分子材料的性能需要运用多种方法和技术。

其中,常用的方法包括热分析、质谱分析、核磁共振、傅里叶变换红外光谱、拉伸测试、动态力学分析、热重分析等。

这些方法可以实现对高分子材料的性能进行定量描述,并能够揭示高分子材料的制备过程中的关键因素和作用机理。

三、高分子材料的应用及其发展趋势高分子材料由于其独特的性能和广泛的应用领域,成为了现代工业中不可或缺的材料之一。

塑料制品、纤维、色素、润滑剂、胶粘剂、电线电缆、医疗器械等领域均有广泛应用。

而在新能源、新兴材料、高效催化剂、生物医学领域等新兴领域,高分子材料也取得了许多创新和突破性的进展。

高分子材料的结构特点和性能

高分子材料的结构特点和性能

高分子材料的性能是其内部结构和分子运动的具体反映。

掌握高分子材料的结构与性能的关系,为正确选择、合理使用高分子材料,改善现有高分子材料的性能,合成具有指定性能的高分子材料提供可靠的依据。

高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。

因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特点。

高分子结构通常分为链结构和聚集态结构两个部分。

链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。

近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。

远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。

聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。

1. 近程结构(1) 高分子链的组成高分子是链状结构,高分子链是由单体通过加聚或缩聚反应连接而成的链状分子。

高分子链的组成是指构成大分子链的化学成分、结构单元的排列顺序、分子链的几何形状、高聚物分子质量及其分布。

高分子链的化学成份及端基的化学性质对聚合物的性质都有影响。

通常主要是指有机高分子化合物,它是由碳-碳主链或由碳与氧、氮或硫等元素形成主链的高聚物,即均链高聚物或杂链高聚物。

高密度聚乙烯(HDPE)结构为-[CH2CH2]n-,是高分子中分子结构最为简单的一种,它的单体是乙烯,重复单元即结构单元为CH2CH2 ,称为链节,n为链节数,亦为聚合度。

聚合物为链节相同,集合度不同的混合物,这种现象叫做聚合物分子量的多分散性。

聚合物中高分子链以何种方式相连接对聚合物的性能有比较明显的影响。

对于结构完全对称的单体(如乙烯、四氟乙烯),只有一种连接方式,然而对于CH2=CHX或CH2=CHX2类单体,由于其结构不对称,形成高分子链时可能有三种不同键接方式:头-头连接,尾-尾连接,头-尾连接。

高分子材料的微结构与性能研究

高分子材料的微结构与性能研究

高分子材料的微结构与性能研究高分子材料是一种具有重要应用价值的新材料,因其在各个领域的广泛应用而备受关注。

高分子材料的性能和结构之间存在着密切的关系,探究其微结构与性能的研究可以为高分子材料的设计、合成及应用提供重要的参考依据。

1. 高分子材料的微结构高分子材料由大量分子链构成,其微观结构决定了其宏观性质,因此对高分子材料的微结构进行研究是十分重要的。

高分子材料的微观结构包括分子尺寸、分子量、分子结构和分子链排布方式等方面。

1.1 分子量分子量是高分子材料最基础的结构参数之一,它反映了高分子长链分子实体的大小。

通常采用分子量分布来表示高分子材料的分子量。

分子量分布分类方法众多,一般分别采用群分子量和平均分子量来描述。

高分子材料的分子量分布决定了其机械性能、热稳定性和可加工性等性质。

1.2 分子结构高分子材料的分子结构主要包括线型聚合物、支化聚合物、交联聚合物等。

线型聚合物的结构简单、分子量大可以为高分子质量提供可靠的保障,而支化聚合物由于其复杂的分支结构,具有更改高分子材料性质的能力。

另外,交联聚合物的三维网络结构可大大提高高分子材料的机械性能和耐用性等特性。

1.3 分子排布高分子材料的分子排布方式包括线型、交叉交联、缠绕排列、高分子共聚等。

高分子材料的分子排布影响其熔体流动性能、性能均匀性和物理化学性质等。

2. 高分子材料的性能研究高分子材料的性能和微观结构之间有着紧密的联系,高分子材料的性能受其材料的微观结构先天性影响,在高分子材料的制备和应用过程中先天性影响需付出很高的代价。

因此,了解和掌握高分子材料的性能和微观结构对高分子材料的设计、制备和改性有着重要的意义。

2.1 机械性能高分子材料的机械性能是其最基本的性能之一,反映了高分子材料承受外力的能力。

高分子材料的性能受其分子量、交联度和缠绕等因素的影响。

增加高分子材料的分子量、交联度和缠绕可提高高分子材料的极限拉伸强度和弹性模量等机械性能。

医用高分子材料

医用高分子材料

医用高分子材料首先,医用高分子材料具有良好的生物相容性。

这意味着它们与人体组织和生物体具有良好的相容性,不会引起排斥反应或过敏反应。

这使得它们可以用于制造各种植入式医疗器械,如人工关节、心脏起搏器和血管支架等。

常用的医用高分子材料包括聚乙烯、聚丙烯、聚氯乙烯、聚碳酸酯和聚乳酸等。

其次,医用高分子材料具有良好的耐用性和可塑性。

它们可以根据需要进行设计和加工,制成各种形状和结构的医疗器械和用品。

同时,它们具有较高的耐用性,能够承受人体内外的各种环境和应力,保持稳定的性能和形状。

这使得医用高分子材料在医疗器械和用品的制造中具有广泛的应用前景。

医用高分子材料在医疗行业中的应用非常广泛。

它们被用于制造各种医疗器械,如手术器械、诊断设备、植入式医疗器械和医疗用品等。

比如,聚乳酸材料被用于制造可降解的缝线和骨修复材料;聚碳酸酯材料被用于制造人工眼角膜和牙科修复材料;聚乙烯材料被用于制造输液管和输液袋等。

这些医疗器械和用品在临床上发挥着重要的作用,帮助医生诊断疾病、进行手术治疗和康复护理。

随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也在不断拓展和创新。

未来,医用高分子材料有望在生物医学工程、组织工程和再生医学等领域发挥更大的作用。

同时,人们也在不断研发新型的医用高分子材料,以满足不同医疗器械和用品的需求。

总之,医用高分子材料在医疗行业中具有重要的地位和应用前景。

它们具有良好的生物相容性、耐用性和可塑性,适用于各种医疗器械和用品的制造。

随着医疗技术的不断发展和医疗需求的不断增加,医用高分子材料的应用也将不断拓展和创新,为人类健康事业做出更大的贡献。

高分子材料的结构及其性能

高分子材料的结构及其性能

高分子材料的结构及其性能1. 引言高分子材料是由大量重复单元构成的大分子化合物,具有重要的工程应用价值。

其结构和性能之间的关系对于材料科学和工程领域的研究至关重要。

本文将介绍高分子材料的结构特点,并探讨其与性能之间的关系。

2. 高分子材料的结构高分子材料的结构可以分为线性结构、支化结构、交联结构以及共聚物结构等。

不同结构的高分子材料具有不同的特点和应用领域。

线性结构是最简单的高分子材料结构,由一条长链构成,链上的重复单元按照一定的顺序排列。

线性结构的高分子材料具有较高的可拉伸性和延展性。

2.2 支化结构支化结构在线性结构的基础上引入了支链,可以增加高分子材料的分子间距离,提高其熔融性和热稳定性。

支化结构的高分子材料常用于塑料制品的生产。

2.3 交联结构交联结构是指高分子材料中分子之间通过共价键形成网络结构。

交联结构的高分子材料具有较高的强度和硬度,常用于橡胶制品的生产。

共聚物是指由两种或两种以上不同单体按照一定比例聚合而成的高分子化合物。

共聚物结构的高分子材料具有多种物化性质的综合优点,广泛应用于各个领域。

3. 高分子材料的性能高分子材料的性能与其分子结构密切相关,主要包括力学性能、热学性能、电学性能和光学性能等。

3.1 力学性能高分子材料的力学性能包括强度、韧性、硬度等指标。

线性结构的高分子材料通常具有较高的延展性和可拉伸性,而交联结构的高分子材料则具有较高的强度和硬度。

3.2 热学性能高分子材料的热学性能包括熔点、热膨胀系数、导热系数等指标。

分子结构的不同会对高分子材料的热学性能产生显著影响,如支化结构的高分子材料通常具有较低的熔点和较高的热膨胀系数。

3.3 电学性能高分子材料的电学性能主要包括导电性和介电性能。

共聚物结构的高分子材料常具有较高的导电性,而线性结构的高分子材料则通常具有较好的介电性能。

3.4 光学性能高分子材料的光学性能指材料对光的吸收、透过性和反射性等特性。

不同结构的高分子材料在光学性能上也会有所差异,如支化结构的高分子材料通常具有较高的透光性。

高分子材料的结构与性能研究

高分子材料的结构与性能研究

高分子材料的结构与性能研究高分子材料是一类重要的材料,具有广泛的应用前景。

在材料科学领域,研究高分子材料的结构与性能是一项重要的课题。

本文将从分子结构、物理性质和应用等方面探讨高分子材料的结构与性能研究。

一、分子结构对高分子材料性能的影响高分子材料的性能与其分子结构密切相关。

分子结构的不同可以导致高分子材料的物理性质和化学性质的差异。

例如,聚合度的不同会影响高分子材料的力学性能和热稳定性。

聚合度较高的高分子材料通常具有较高的强度和较好的耐热性能。

此外,分子结构中的官能团对高分子材料的性能也有重要影响。

不同的官能团可以赋予高分子材料不同的化学性质,例如亲水性、亲油性等。

因此,通过调控分子结构,可以实现对高分子材料性能的调控和优化。

二、高分子材料的物理性质研究高分子材料的物理性质是指其在外界作用下所表现出的性质。

物理性质的研究可以帮助我们了解高分子材料的力学性能、热学性能、光学性能等。

例如,通过拉伸实验可以获得高分子材料的强度、韧性等力学性能指标。

热学性能的研究可以通过热重分析、差示扫描量热法等手段来获得高分子材料的热分解温度、玻璃化转变温度等信息。

光学性能的研究可以通过紫外可见光谱、荧光光谱等手段来获得高分子材料的吸收光谱、发射光谱等信息。

通过对高分子材料的物理性质进行研究,可以深入了解其性能表现和应用潜力。

三、高分子材料的应用研究高分子材料具有广泛的应用前景,涉及到诸多领域。

在材料科学领域,高分子材料被广泛应用于塑料、橡胶、纤维等材料的制备。

通过对高分子材料的结构和性能进行研究,可以开发出具有优异性能的高分子材料,满足不同领域的需求。

在生物医学领域,高分子材料被用于制备生物医用材料,如人工血管、人工关节等。

通过对高分子材料的生物相容性和药物控释性能进行研究,可以开发出安全有效的生物医用材料。

此外,高分子材料还被广泛应用于能源领域、环境保护领域等。

通过对高分子材料的结构与性能的研究,可以为这些领域的发展提供重要的支撑。

高分子材料的结构与性能关系研究

高分子材料的结构与性能关系研究

高分子材料的结构与性能关系研究概述:高分子材料是一种由大量分子重复单元构成的化合物,具有广泛的应用领域,如塑料、橡胶、纺织品等。

高分子材料的性能取决于其分子结构,在不同的结构下,材料会表现出不同的性能特点。

因此,研究高分子材料的结构与性能关系对于优化材料性能和开发新材料具有重要意义。

1. 结构与力学性能关系:高分子材料的力学性能是评价其结构性能的重要指标之一。

首先,聚合度是影响高分子材料力学性能的关键因素之一。

聚合度越高,分子量越大,材料的强度和韧性越高。

此外,分子排列的有序程度也会影响力学性能。

例如,在晶体结构较好的材料中,分子平均排列有序,具有较高的强度和硬度。

2. 结构与热学性能关系:高分子材料的热学性能对于其在高温环境下的应用具有重要意义。

分子间键的类型和键强度对热学性能产生影响。

比如,共价键相比于非共价键,更加稳定,在高温环境下表现出较好的稳定性。

此外,分子链的支化程度也会影响材料的热学性能。

支化链的存在会导致分子间的排列松散,使得材料的热传导性能下降。

3. 结构与光学性能关系:高分子材料的光学性能是其在光电子领域应用的关键考虑因素之一。

结构和分子排列对光学性能产生显著影响。

例如,高度有序排列的聚合物材料具有较高的折射率和透明度。

此外,染料分子在高分子材料中的添加也会影响光学性能。

不同种类的染料分子可以通过吸收、散射和发光等过程来调控材料的光学性能。

4. 结构与电学性能关系:高分子材料的电学性能对于其在电子器件领域的应用具有重要意义。

分子链的导电性是影响高分子材料电学性能的关键因素之一。

共轭的分子结构通常具有较好的导电性能,可用于制备导电高分子材料。

此外,材料中的杂质或添加剂也会对电学性能产生影响。

例如,掺杂导电高分子材料可以通过添加导电填料或进行化学掺杂来增强导电性能。

结论:高分子材料的结构与性能之间存在着紧密的关联。

优化高分子材料的结构可以显著改善其力学性能、热学性能、光学性能和电学性能。

高分子材料的结构与性能

高分子材料的结构与性能

高分子材料的结构与性能高分子材料是指由聚合物制成的材料,聚合物是由单体分子在化学反应中结合形成的长链分子。

高分子材料具有良好的物理、化学、力学和电子性能,广泛用于制造塑料、橡胶、纤维、涂料、粘合剂等材料。

在高科技领域中,高分子表现出了许多非凡的性能特征,比如强度高、稳定性强、抗氧化、耐腐蚀。

本文将探讨高分子材料的结构与性能。

一、高分子材料的结构1.1 分子结构高分子材料是由巨分子组成的,而巨分子则是由很多分子链状连接而成的。

它们具有极高的分子质量,分子量一般在10万到100亿之间。

分子结构的简单性质(如平面或立体)对其物理性质有很大影响。

例如,苯并芘(BP)是一种由苯(B)和芘(P)连接而成的分子,它们的分子结构决定了BP材料的密度、强度和稳定性。

由于BP的共轭结构和分子链的高度结晶性,它是一种非常优秀的聚合物材料。

然而,这种材料易于光氧化和生物降解,导致其应用范围受到限制。

1.2 分子排列高分子材料分子的排列方式也决定了其性能。

高分子材料有不同的排列方式,主要包括层状排列,链状排列,聚集态等。

层状排列的材料(例如石墨烯)具有优良的导电和导热性能,链状排列的材料(例如聚丙烯)具有良好的韧性和可塑性而且内部结构没有多余的杂质和空隙,因此有很好的电气性能和高温稳定性。

1.3 聚合度聚合度是指分子链中单体单位的数目,它对高分子物质的物理和化学性质有重要影响。

聚合度较小的分子链通常很容易断裂,但与此同时,它们也更容易流动。

聚合度较大的分子链则更难流动,更难断裂,但表现了较高的强度和稳定性。

若聚合度过高,会导致过浓的材料或粘稠的物质成为一种过筛子现象,因此在工业应用中需要合理控制聚合度。

二、高分子材料的性能2.1 强度和韧性高分子材料的强度和韧性是决定其性能的重要因素。

高分子材料的强度通常表示为杨氏模量和硬度,直接影响到其耐腐蚀性、热稳定性和维持形状的能力。

韧性则是一个材料在受到冲击负载时不易断裂的能力,母材料的应力值和形状极限是材料韧性的主要影响因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (1)1 前言 (2)2 医用高分子材料的分类 (2)2.1 来源 (2)2.2 降解性 (3)2.3 应用方向 (4)2.3.1 人工脏器 (4)2.3.2 人工组织 (4)2.3.3 护理和医疗用具相关的医用材料 (4)2.3.4 药用高分子 (5)3 医用高分子的性质 (5)3.1 生物功能性 (5)3.2 生物相容性 (5)4 医用高分子的表面改性方法 (6)4.1 物理方法 (6)4.1.1 表面涂层 (6)4.1.2 物理共混 (7)4.2 化学方法——表面接枝法 (7)4.2.1 表面接枝改性 (7)4.2.2 等离子体表面改性 (8)4.2.3 光化学固定法 (8)4.3 表面仿生化改性 (9)4.3.1 表面肝素化 (9)4.3.2 表面磷脂化 (9)4.3.3 表面内皮化——内皮细胞固定法 (9)5 总结与展望 (10)参考文献 (11)摘要由于其良好的生物相容性,医用高分子材料是现阶段最为安全的一类医用材料。

同时,合成加工的简便,来源的广泛,使得医用高分子材料的功能性越来越多,应用范围也越来越广泛。

但由于结构的限制,医用高分子材料在人体中的相容性还未达非常理想地到人们要求。

因此,也就产生了以表面改性为主的一系列增进其相容性的改性方法。

本文通过对医用高分子材料的定义、分类、性质以及表面改性方法的介绍,体现了医用高分子材料的优越和不足之处,同时也对医用高分子材料的未来进行了展望。

关键词:医用高分子;生物相容性;表面改性1 前言医用高分子材料(medical polymer)是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料,是生物医用材料的重要组成之一[1]。

医用高分子材料需长期与人体体表、血液、体液接触,有的甚至要求永久性植入体内。

因此,这类材料必须具有优良的生物体替代性(力学性能、功能性)和生物相容性[2]。

生物医用高分子材料需要满足的基本条件:在化学上是不活泼的,不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能,具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的复杂的形态[3]。

随着近代医学及材料科学的发展,对生物医用高分子材料的需求越来越大。

目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%-20%的速度增长。

以美国为例,每年有数以百万计的人患有各种组织、器官的丧失或功能障碍,需进行800万次手术进行修复,年耗资超过400亿美元,器官衰竭和组织缺损所需治疗费占整个医疗费用的一半[4]。

随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。

2 医用高分子材料的分类2.1 来源按照来源,可将医用高分子材料分为合成医用高分子材料和天然高分子材料。

常见的合成医用高分子材料包括PE(polyethylene,聚乙烯)、PP (polypropylene,聚丙烯)、PC(polycarbonate,聚碳酸酯)、PLA(polylactic acid,聚乳酸)及其衍生物、有机硅橡胶等。

其优点是工艺成熟,机械性能相对较好,加工性能较好,能够同时表现多种功能性[5]。

常见的天然医用高分子材料包括壳聚糖、明胶、海藻酸盐类、纤维素等。

天然医用高分子材料来源广泛,而且大多无毒无害,与人体的相容性相对较好,因此天然高分子材料逐渐成为医用高分子材料的首选,对其进行的研究也越来越深入[6]。

2.2 降解性按照降解性,可将医用高分子材料分为降解性和非降解性高分子材料。

降解性医用高分子大多为生物高分子材料,表1列举了常见的生物医用高分子及其应用。

同时也有不少合成的高分子材料,如聚乳酸及其衍生物,聚己内酯等具有可降解性。

可降解医用高分子在生物体中能够被降解,降解产物大多为水和二氧化碳,对人体无毒无害,是应用最为广泛的医用高分子材料[7]。

非降解性医用高分子材料则包括聚乙烯、聚丙烯、聚偏氯乙烯、有机硅橡胶等。

非降解性医用高分子材料多为合成材料,有着良好的相容性,同时因为是合成高分子,所以可以根据不同的需要得到不同的性能,加工性能相对更好。

一般来说,非降解性医用高分子的机械性能也较好,故常用于医疗器械或者组织填充物[8]。

表 1 常见的生物医用高分子及其应用聚合物特点应用蛋白质良好的血液相容性静脉注射类药物释放体系胶原良好的生物相容性,可消化吸收性对组织的恢复有促进作用,无异物反应可降解缝线,人造皮肤,伤口敷料,人造腱、血管,硬脑膜代用品,止血剂,眼科治疗装置,取代眼睛玻璃体及药物缓释体系明胶水溶性生物可降解材料药物的微胶囊化及包衣,人造皮肤,防止伤口体液流出和感染多糖优良的生物相容性和降解性手术缝合线,人工皮肤,核聚糖作用载体生物合成聚酯热塑性,良好组织相容性和物理性能骨科材料,药物控释体系2.3 应用方向根据应用方向的不同,医用高分子可以分为以下四类:2.3.1 人工脏器作为软组织材料的一个重要组成部分的人工器官,其应用前景已为人们所看好。

随着人工脏器性能的不断完善,其在临床上的应用必将越来越广泛。

表2列举了一些可以用于人工脏器的医用高分子材料[9]。

表2 用于人工脏器的部分医用高分子材料人工脏器医用高分子材料心脏嵌段聚醚氨酯弹性体、硅橡胶肾脏醋酸纤维,聚甲基丙烯酸甲酯,聚丙烯腈,聚碳酸酯,聚甲基丙烯酸-β-羟乙酯肝脏赛璐玢(cellophane),聚甲基丙烯酸-β-羟乙酯肺硅橡胶,聚丙烯中空纤维,聚烷砜血管聚酯纤维,聚四氟乙烯鼓膜硅橡胶腹膜硅酮,聚乙烯,聚酯纤维2.3.2 人工组织指用于口腔科、五官科、骨科、创伤外科和整型外科等用材料,主要包括:牙科材料(蛀牙填补用树脂和人工齿冠材料等),眼科材料(人工角膜、人工晶状体和人工眼球等),整形外科材料(人工乳房,人工鼻及鞍鼻整形)等。

2.3.3 护理和医疗用具相关的医用材料该分类包括一次性高分子用品(注射器、输血输液袋等)、高分子绷带材料(弹性绷带、高分子代用石膏绷带、防滑脱绷带)、医用缝合线、护理用高分子材料,如:吸水性树脂(尿不湿、卫生巾、弹性冰、防褥疮护理材料)等[10]。

2.3.4 药用高分子药用高分子是医用高分子材料中研究最为广泛的一个分类。

根据药用方向的不同,又分为以下三个小类[11]:1)高分于缓释药物载体:时间控制缓释体系(如康泰克等,理想情形为零级释放)、部位控制缓释体系(脉冲释放方式);2)高分子药物(带有高分子链的药物和具有药效的高分子):抗癌高分子药物(非靶向、靶向)、用于心血管疾病的高分子药物(治疗动脉硬化、抗血栓、凝血)、抗菌和抗病毒高分子药物(抗菌、抗病毒)、抗辐射高分子药物、高分子止血剂;3)药物制剂和包装用高分子材料(这里的包装材料不涉及外包装材料,特指药物在制备过程中需要的高分子材料,它们往往对提高药效、方便药物起作用等方面有一定效果):药物制剂用高分子材料(液状制剂中的高分子增稠剂、稀释剂、分散剂和消泡剂;固体制剂中的高分子粘合剂、包衣剂、膏剂和涂膜剂)、微胶囊等。

3 医用高分子的性质3.1 生物功能性医用高分子的生物功能性是使用的依据,根据不同的使用环境和用途,医用高分子应展现不同的生物功能性。

例如:当羟基磷灰石作为骨组织工程材料时,机械强度是它的功能性[12];壳聚糖作为缓释药物时,缓释性是其生物功能,作为靶向修饰物时,靶向性又是其生物功能[13]。

3.2 生物相容性医用高分子材料的生物相容性包括2个方面:一是材料反应,主要包括材料在生物环境中被腐蚀、吸收、降解、磨损和失效等;二是宿主反应,包括局部和全身反应,如炎症、细胞毒性、凝血、过敏、致畸和免疫反应等。

对于非降解型医用高分子材料,稳定性和相容性是重要的,这些问题包括与细胞组织(包括血液)的相容、水解的稳定性,与药物和药物处理的反应,钙化作用,长期的功能,诱变的或致癌的作用以及无菌性。

对于生物降解型医用高分子材料,关键问题是可吸收性和它的测量及定义界限以及对细胞组织部位的效果,酶和其他活性物质对于高分子材料吸收性的作用,退化产品的吸收作用,消毒对于功能度和退化性能不稳定的释放媒介物渗到高分子材料行为的作用,以及材料对于伤口愈合的效果[14]。

4 医用高分子的表面改性方法材料与生物体的相互作用情况决定了材料组织相容性的程度。

材料对组织相容性的影响包含着两种特征尺度水平上的因素。

一是微观分子水平,这类影响主要表现为材料表面的化学组成、形态结构、电荷性质及其分布等等。

另一个是宏观尺度水平,这类影响包括材料的物理力学性质、材料的宏观形态尺寸等。

生物医用高分子材料与生物体接触时,可能会使生物体发生毒性、致敏、炎症、致癌、血栓等生物反应,材料表面与生物环境的相互作用是影响发生这些反应的最主要因素,而两者的相互作用与生物医用高分子材料表面的结构、成分、形貌、能量状态、亲疏水性、所带电荷、导电特征等有关。

通过物理、化学、生物等方法改善、优化材料的表面性质,可改善和促进材料表面与生物环境的相互作用,大幅度提高生物医用高分子材料与生物体的相容性[15]。

4.1 物理方法4.1.1 表面涂层当异体与血液相接触,其表面很快会吸附一层蛋白质,一些能促进血小板粘附的蛋白质及吸附在异体表面的血纤维蛋白原通过作用将会粘附和活化血小板,致使产生凝血现象。

通过在生物医用高分子材料表面增加抗凝血涂层,钝化敏感的生物材料表面,即血液不会直接接触材料表面,可有效提高生物医用高分子材料表面的抗凝血性。

Lewis[16]等合成了可交联的2-甲基丙烯酰氧基乙基磷酰胆碱、甲基丙烯酸月桂醇酯、甲基丙烯酸羟丙酯和甲基丙烯酸三甲氧基硅丙酯的共聚物抗凝血涂层。

这种涂层与基材表面的粘合力增强,可用于涂层易脱落或发生形变的医疗器件。

表面涂层技术是将生物活性物质涂抹在高分子材料表面,形成生物相容性涂层,涂层与基底材料之间的粘附作用主要依赖氢键、范德华力等物理作用来维系,这也导致涂层与基材表面的粘合力较弱,涂层稳定性较差,特别是一些易脱落、易变形的医疗器件,会使涂层从基材表面脱落。

尽管如此,表面涂层技术以其设备简单、易于操作、均一性好等其他方法所不具备的特点和优势,在生物材料表面改性过程中常被优先考虑[17]。

4.1.2 物理共混将少许的抗凝血添加剂与基材共混得到性能优良的抗凝血材料。

多为两亲性共聚物的抗凝血添加剂,进入基材本体后,为减少界面自由能,会富集在基材的表面。

Ishihara[18]等合成的2-甲基丙烯酰氧基乙基磷酰胆碱—甲基丙烯酸正十二烷基酯和2-甲基丙烯酰氧基乙基磷酰胆碱—甲基丙烯酸正丁酯的共聚物,将其共混于聚砜,可提高聚砜渗析膜的血液相容性。

4.2 化学方法——表面接枝法通过接枝亲水基团或疏水基团来改善血液相容性是提高材料抗凝血性的一个重要途径,通过这种方法获得的表面层与基材结合牢固,不会轻易脱落。

相关文档
最新文档