《模块化自控原理》线性系统的根轨迹分析实验
自动控制原理第第四章 线性系统的根轨迹法

2
自动控制原理
§4.1 根轨迹的基本概念
例:开环传递函数
Gs
k1
ss
a
开环系统两个极点为:P1 0, P2 a R(s)
闭环传递函数为:
GB s
s2
k1 as
k1
-
k1
C(s)
ss a
闭环特征方程: s2 as k1 0
闭环特征根:s1,2
a 2
a 2
2
k1
(闭环极点)
3
自动控制原理
在p5附近取一实验点sd, 则∠sd-p5可以认为是p5点的出射角 Sd Z Sd P1 Sd P2 Sd P3 Sd P4 Sd P5 1800
近似为 P5 Z P5 P1 P5 P2 P5 P3 P5 P4 p 1800
p Sd P5 1800
法则4 实轴上存在根轨迹的条件——
这些段右边开环零极点个数之和为奇
数。
m
n
证明:根据相角条件 S Z j S Pi 18002q 1
j 1
i 1
p4
j s平面
例:sd为实验点
p3
z2 sd
p2 z1 p1
p5
① 实验点sd右侧实 轴上零极点提供 1800相角
③ 共轭复零点,复极点提供的相角和为 3600。
2
s1=-1.172,s2=-6.828
33
自动控制原理
法则6 开环复数极点处根轨迹出射角为
p 1800
开环复数零点处根轨迹入射角为:
Z 1800
其中 z p(不包括本点)
34
自动控制原理
j p5
p5
p3 p3
p2
根轨迹控制实验报告(3篇)

第1篇一、实验目的1. 理解并掌握根轨迹的概念及其在控制系统中的应用。
2. 学习使用MATLAB软件绘制系统的根轨迹。
3. 通过根轨迹分析,了解系统参数变化对系统性能的影响。
4. 熟悉根轨迹法在控制系统设计中的应用,如稳定性分析、参数整定等。
二、实验原理根轨迹是指系统的某一参数(如开环增益K)从零变到无穷大时,系统闭环特征根在复平面上变化轨迹。
通过根轨迹,可以直观地分析系统的稳定性、过渡过程和稳态误差等性能指标。
三、实验设备1. 计算机:安装MATLAB软件。
2. 控制系统实验箱。
四、实验步骤1. 建立系统模型根据实验要求,建立系统的传递函数模型。
例如,对于一个二阶系统,其传递函数可以表示为:$$G(s) = \frac{K}{(s+a)(s+b)}$$其中,a和b为系统的时间常数,K为开环增益。
2. 绘制根轨迹使用MATLAB软件中的rlocus函数绘制系统的根轨迹。
rlocus函数的调用格式如下:```matlabrlocus(num, den)```其中,num和den分别为系统的分子和分母多项式系数。
3. 分析根轨迹(1)观察根轨迹的起始点和终止点,判断系统的稳定性。
(2)分析根轨迹的形状,了解系统参数变化对系统性能的影响。
(3)确定系统临界增益和临界阻尼比。
4. 验证实验结果通过改变系统参数,观察根轨迹的变化,验证实验结果。
五、实验结果与分析1. 绘制根轨迹使用MATLAB软件绘制了给定二阶系统的根轨迹,如图1所示。
从图中可以看出,随着开环增益K的增加,系统闭环极点逐渐向左移动,系统稳定性提高。
2. 分析根轨迹(1)起始点和终止点:根轨迹的起始点为系统的开环极点,终止点为系统的开环零点。
(2)根轨迹形状:根轨迹呈对称形状,随着开环增益K的增加,根轨迹逐渐向左移动。
(3)临界增益和临界阻尼比:通过观察根轨迹,可以确定系统的临界增益和临界阻尼比。
线性系统的根轨迹分析法

例 试分析右图所示 系统的闭环特征方程式的 根随系统开环增益K的变 化在S平面的分布情况。
k s(0.5s+1)
特征方程: S2+2s+2k=0
特征根:s1,2= -1±√1-2k
K=0时, s1=0,s2=-2 0<k<0.5 时,两个负实根 ;若s1=-0.25, s2=?
K=0.5时,s1=s2=-1
实轴上, s 0 点左侧的开环极点 P 4 和 开环零点z3构成的向量的夹角均为 零度,而 s 0 点右侧的开环零点 z 1 、 z 2 和开环零点p 1 构成的向量的夹角 均为180o 。若s0 为根轨迹上的点, 1 必满足 2 j - i =(2k + 1)π
j=1 i=1
p4
z2
3
结论:只有s0点右侧实轴上的 开环极点和开环零点的个数之和为 奇数时,才满足相角条件。
n
m
j
nm
2k 1 a n m
k 0,1,2,,n m 1
设开环传递函数为
K* G(s)H(s)= s(s + 2)
开环极点数n=2,开环零点数m=0,n-m=2,两条渐近线 在实轴上的交点位置为
p - z
i
n
m
j
σ a =
i=1
j=1
n-m
-2 = = -1 2
通常系统的开环零、极点是已知的,因此建立开环零、极点与 闭环零、极点之间的关系,有助于闭环系统根轨迹的绘制。
R(s) G(s) H(s) C(s)
G(s) φ(s)= 1 + G(s)H(s)
K G — 前向通路增益 K — 前向通路根轨迹增益 K H — 反馈通路增益 K* H — 反馈通路根轨迹增益
实验二 线性定常的系统根轨迹法和频域法

实验二 控制系统的根轨迹,频率特性与校正一、实验目的:1.利用计算机辅助设计软件Matlab 完成控制系统的根轨迹、Bode 图和Nyquist 图的作图,加深学生对控制理论中根轨迹法、开环频率特性分析方法的理解。
3.利用计算机辅助设计软件EWB 了解比例微分、比例积分、比例微积分校正在控制系统中的作用。
4.研究校正前后控制系统的时域、频域动态品质。
二、实验仪器:1、计算机2、Matlab 软件、Electronics Workbench (EWB )软件三、实验方法1.根轨迹(一) 方法:当系统中的开环增益k 从0到变化时,闭环特征方程的根在复平面上的一组曲线为根轨迹。
设系统的开环传函为:)()()(0s Q s N k s G =,则系统的闭环特征方程为:0)()(1)(10=+=+s Q s N k s G 根轨迹即是描述上面方程的根,随k 变化在复平面的分布。
(二) MATLAB 画根轨迹的函数常用格式:利用Matlab 绘制控制系统的根轨迹主要用pzmap ,rlocus ,rlocfind ,sgrid 函数。
(1).零极点图绘制❑ [p,z]=pzmap(a,b,c,d):返回状态空间描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
❑ [p,z]=pzmap(num,den):返回传递函数描述系统的极点矢量和零点矢量,而不在屏幕上绘制出零极点图。
❑ pzmap(a,b,c,d)或pzmap(num,den):不带输出参数项,则直接在s 复平面上绘制出系统对应的零极点位置,极点用×表示,零点用o 表示。
❑ pzmap(p,z):根据系统已知的零极点列向量或行向量直接在s 复平面上绘制出对应的零极点位置,极点用×表示,零点用o 表示。
(2).根轨迹图绘制❑ rlocus(a,b,c,d)或者rlocus(num,den):根据SISO 开环系统的状态空间描述模型和传递函数模型,直接在屏幕上绘制出系统的根轨迹图。
自动控制原理--控制系统的根轨迹分析及特殊根轨迹

j1
s0
j1
jk
s sk
j1
jk
单位阶跃响应为
n
y(t) A0 Akeskt k 1
m
m
Ks zi Kzi
A0
i1 n
s sj
i1 n
GB(0)
sj
j1
s0
j1
m
m
K s zi
Ak
i1 n
s sj
1 s
K sk zi
i1 n
sk sk sj
jk
1
s2
100 8s 100
4 3
os1
1.5
1.7
可求得 0.4, ,n 10
s3
所以 % e 1 2 100% 25%,ts (s3.)5 n 3.5 4 0.9
j
0
利用根轨迹分析控制系统的性能
例11 分析K的变化对系统稳定性的影响
K (s 3) G(s)H (s) s(s 5)(s 6)(s2 2s 2)
增加开环极点的影响 增加极点对根轨迹形状的影响
增加开环零点的影响 增加零点对根轨迹形状的影响
例9 已知某系统闭环传递函数
GB (s) 0.67s 1
1 0.01s2
0.08s 1
试计算在单位阶跃输入时的系统输出超调量 % 和调节时间t。s
解:该闭环系统有三个极点,s1 1.5, s2,3 零4 、j9.2极点 分布如右图。
系统稳定的K的范围为: 0<K<35
例12 分析K的变化对系统的影响。设负反馈系统的开环传递函数为
K s z G(s)H(s) ss p
z p
求系统闭环根轨迹,并分析 p 2, 时z系 统4 的动态性能。
自动控制原理Matlab实验3(系统根轨迹分析)

《自动控制原理》课程实验报告实验名称系统根轨迹分析专业班级 ********************学号姓名**指导教师李离学院名称电气信息学院2012 年 12 月 15 日一、实验目的1、掌握利用MATLAB 精确绘制闭环系统根轨迹的方法;2、了解系统参数或零极点位置变化对系统根轨迹的影响;二、实验设备1、硬件:个人计算机2、软件:MATLAB 仿真软件(版本6.5或以上)三、实验内容和步骤 1.根轨迹的绘制利用Matlab 绘制跟轨迹的步骤如下:1) 将系统特征方程改成为如下形式:1 + KG ( s ) = 1 + K )()(s q s p =0, 其中,K 为我们所关心的参数。
2) 调用函数 r locus 生成根轨迹。
关于函数 rlocus 的说明见图 3.1。
不使用左边的选项也能画出根轨迹,使用左边的选项时,能 返回分别以矩阵和向量形式表征的特征根的值及与之对应的增益值。
图3.1 函数rlocus 的调用例如,图 3.2 所示系统特征根的根轨迹及其绘制程序见图 3.3。
图3.2 闭环系统一图3.3 闭环系统一的根轨迹及其绘制程序图 3.4 函数 rlocfind 的使用方法注意:在这里,构成系统 s ys 时,K 不包括在其中,且要使分子和分母中 s 最高次幂项的系数为1。
当系统开环传达函数为零、极点形式时,可调用函数 z pk 构成系统 s ys : sys = zpk([zero],[pole],1);当系统开环传达函数无零点时,[zero]写成空集[]。
对于图 3.2 所示系统,G(s)H(s)=)2()1(++s s s K *11+s =)3)(2()1(+++s s s s K . 可如下式调用函数 z pk 构成系统 s ys :sys=zpk([-1],[0 -2 -3],1)若想得到根轨迹上某个特征根及其对应的 K 的值,一种方法是在调用了函数 rlocus 并得到了根 轨迹后调用函数 rlocfind 。
自动控制理论第四章 线性系统的根轨迹分析

q 0,2, 1 … , G(S ) H (S ) 180(2q 1), 以上条件是判断复平面上某点是否在系统根 轨迹上的充要条件。
一、绘制 根轨迹的 条件
• 系统开环传递函数通常可以写成两种因子形式,即 时间常数表达式和零极点表达式。 (1)时间常数表达式: (2)零极点表达式:
jω ∞
如果系统的开环增益K(根轨迹
增益K1)从0向变化时,系统闭环 曲线,如图所示。 这样获得的曲线称为K1从0向变
K=0 × 特征根在复平面上的变化情况绘制为 -1
K K=0.25 K=0 × K ∞ σ
化时系统的根轨迹。
定义:当系统中某一参数(一般以增益为变化
参数)发生变化时,系统闭环特征根在s平面上描
nm
当q=0时,求得的渐进线倾角最小,q增大,倾角值将重 复出现,而独立的渐进线只有(n-m)条.
(2)渐近线与实轴的交点坐标为:
a
p
i 1
n
i
zj
j 1
m
nm
在计算时,考 虑到共轭复数极点、 零点的虚部总是相 互抵消,只须把开 环零、极点的实部 代入即可.
K1 【例4-3】设系统的开环传递函数为:G(S ) H (S ) S (S 1)(S 2)
幅值条件改写
jω ∞
j )
(s z (s
i 1 j 1 n
m
K
pi )
1 K1
K=0 × -1 K
K=0.25 K=0 ×
σ
当 K1 0 ,必有S= 当 K1 ,必有S=
pi ,即起点是开环极点。∞
zj
,即终点是开环零点。
但在控制系统中,总有n>m,所以根轨迹从n个开环极点处 起始,到m个开环零点处终止,剩下的n-m条根轨迹将趋 于无穷远处。
线性系统的根轨迹法

法则7. 根轨迹与虚轴的交点
交点和临界根轨迹增益的求法:
解: 方法一
例8.
,试求根轨迹与虚轴的交点。
K*=0 w =0 舍去(根轨迹的起点)
与虚轴的交点:
闭环系统的特征方程为:
s=jw
劳斯表:
01
s2的辅助方程:
02
K* =30
03
当s1行等于0时,特征方程可能出现纯虚根。
04
等效的开环传递函数为:
参数根轨迹簇
二、附加开环零、极点的作用
试验点s1点
例1.设系统的开环传递函数为: 试求实轴上的根轨迹。
解:
零极点分布如下:
p1=0,p2=-3,p3=-4,z1=-1,z2=-2
实轴上根轨迹为:[-1,0]、[-3,-2]和 (- ∞ ,-4]
jw
-2
-1
1
2
-1
-2
s
.
.
.
.
.
.
.
.
三、闭环零极点与开环零极点的关系
反馈通路传函:
前向通路传函:
典型闭环系统结构图
KG*--前向通路根轨迹增益 KH*--反馈通路根轨迹增益
K*--开环系统根轨迹增益
1
闭环传递函数:
2
开环传递函数:
01
04
02
03
闭环系统根轨迹增益,等于开环系统前向通路根轨迹增益。 对于单位反馈系统,闭环系统根轨迹增益等于开环系统根轨迹益。
(5)用(s-s1)去除Q(s),得到余数R2 ;
(6)计算s2 =s1-R1/R2 ;
(7)将s2 作为新的试探点重复步骤(4)~(6)。
例4.试用牛顿余数定理法确定例3的分离点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模块化自控原理》线性系统的根轨迹分析实验
模块化自控原理中的线性系统的根轨迹分析实验是探究线性系统的稳定性和动态特性的一种常用方法,通过实验观测和分析系统的根轨迹,可以得到系统的传递函数以及系统的稳定性等重要信息。
下面是对该实验的详细说明和分析。
1.实验目的
1.1理解线性系统的根轨迹概念及其重要性;
1.2学习使用根轨迹法进行系统的稳定性和动态特性分析;
1.3掌握根轨迹分析实验的具体步骤;
1.4提高实验操作和数据处理的能力。
2.实验原理
2.1根轨迹的概念
根轨迹是以参数变化为基础的线性系统稳定性和动态特性的分析方法之一、根轨迹是指在参数变化的范围内,系统传递函数极点的轨迹,可以用来判断系统的稳定性、响应特性和动态响应快慢等重要指标。
2.2根轨迹的画法
根轨迹的画法需要先确定系统的开环传递函数,然后通过对传递函数进行拆项和配平,求解极点的位置。
根轨迹的位置可以通过极点的实部和虚部来表示,根据虚轴对称性和极点与零点的关系,可以画出根轨迹的大致形状和方向。
2.3根轨迹分析的应用
根据根轨迹的形状、分布和方向可以判断系统的稳定性和动态特性:-根轨迹在左半平面则系统稳定;
-根轨迹与虚轴交点奇数个则系统不稳定;
-根轨迹的分布越往左上角或右上角,系统的动态特性越好。
3.实验装置和器材
3.1实验装置
数字控制系统实验台、计算机、示波器、信号发生器、数模转换器等。
3.2实验器材
电脑、电源线、连接线、示波器探头等。
4.实验步骤
4.1连接实验装置
将数字控制系统实验台与计算机、示波器、信号发生器和数模转换器
等设备进行连接。
4.2系统参数调整
设置合适的实验参数,包括采样频率、控制周期、信号幅值等。
4.3系统根轨迹绘制
在计算机上运行相应的根轨迹绘制软件,根据实验所给的开环传递函
数和稳定域范围,绘制系统的根轨迹。
4.4根轨迹分析
根据根轨迹的形状、位置和分布等信息,分析系统的稳定性和动态特性,并给出相应的结论和解释。
4.5记录实验数据
记录实验中所绘制的根轨迹和分析结果,包括根轨迹的形状、交点、分布等重要特征。
5.实验结果与分析
通过实验观察和分析,得出根轨迹的形状、分布和方向。
根据根轨迹的变化规律,可以得出系统的传递函数和稳定性等重要信息。
同时,根轨迹的形状和位置可以反映系统的动态特性和响应速度。
6.实验总结
本实验主要介绍了线性系统的根轨迹分析方法以及相应实验步骤和操作。
通过观察和分析根轨迹的形状、分布和方向,我们可以得到系统的传递函数和稳定性等重要信息。
同时,根轨迹的变化规律可以反映系统的动态特性和响应速度。
这对于掌握模块化自控原理中线性系统的特性研究和工程应用具有重要意义。
以上是对《模块化自控原理》线性系统的根轨迹分析实验的详细介绍和分析,希望能对读者了解该实验的目的、原理和步骤有所帮助。