高二数学等差数列2(1)

合集下载

高二数学等差数列的概念第二课时

高二数学等差数列的概念第二课时
例如:
当d>0时,{an}为递增数列.
an =2n-1
y=2x-1
d=2>0
等差数列的图象2
(2)数列:7,4,1,-2,…




当d<0时,{an}为递减数列.
等差数列的图象3
(3)数列:4,4,4,4,4,4,4,…










等差数列的图象为相应直线上的点。
当d=0时,{an}为常数列.
性质 :设 若 则
等差数列的性质
数列{an}是等差数列,m、n、p、q∈N+,且m+n=p+q,则am+an=ap+aq。
判断:
可推广到三项,四项等注意:等式两边作和的项数必须一样多
∴a8=26-a2=26-4=22.
解析:设此数列的首项为a1,公差为d,则a5+a13=(a1+4d)+(a1+12d) =2a1+16d=40,即a1+8d=20. a8+a9+a10=a1+7d)+(a1+8d)+(a1+9d) =3a1+24d =3(a1+8d) =60.
(2)已知等差数列{an}中, a3 +a4+a5 +a6 +a7=150, 求a2+a8的值
∴ a7+a11 =a3 +a15=30
添加标题
1.若数列{an}是等差数列,p为常数,那么数列{an +c}、{pan} 是否为等差数列,请说明理由.
2.若数列{an}、{bn}都是等差数列,那么数列{an+bn},{an-bn}是否为等差数列,请说明理由.
4.2.1 等差数列的概念
第二课时等差数列的性质
2、等差数列的通项公式

高中数学选择性必修二 4 2 1 等差数列的概念(精讲)(含答案)

高中数学选择性必修二 4 2 1 等差数列的概念(精讲)(含答案)

4.2.1 等差数列的概念考点一 判断是否为等差数列【例1】(2020·上海高二课时练习)下列数列中,不是等差数列的是( ) A .1,4,7,10B .lg2,lg4,lg8,lg16C .54322,2,2,2D .10,8,6,4,2【答案】C【解析】根据等差数列的定义,可得:A 中,满足13n n a a +-=(常数),所以是等差数列;B 中,lg 4lg 2lg8lg 4lg16lg8lg 2---=-=(常数),所以是等差数列;C 中,因为453423222222-≠--≠,不满足等差数列的定义,所以不是等差数列;D 中,满足12n n a a +-=-(常数),所以是等差数列.故选:C.【一隅三反】1.(2019·山西应县一中期末(理))若{}n a 是等差数列,则下列数列中也成等差数列的是( )A .{}2naB .1n a ⎧⎫⎨⎬⎩⎭C .{}3n aD .{}n a【答案】C 【解析】A:22n+1n a -a =(a n +a n+1)(a n+1﹣a n )=d[2a 1+(2n ﹣1)d],与n 有关系,因此不是等差数列.B:n+1n 11-a a =n+1n -da a ⨯=[]11-d a +nd a +n-1d ⨯()() 与n 有关系,因此不是等差数列.C:3a n+1﹣3a n =3(a n+1﹣a n )=3d 为常数,仍然为等差数列;D: 当数列{a n }的首项为正数、公差为负数时,{|a n |}不是等差数列;故选:C 2.(2020·全国高一课时练习)已知下列各数列,其中为等差数列的个数为( ) ① 4,5,6,7,8,… ② 3,0,-3,0,-6,… ③ 0,0,0,0,… ④ 1234,,,,10101010… A .1 B .2C .3D .4【答案】C【解析】第一个数列是公差为1的等差数列.第二个数列是摆动数列,不是等差数列.第三个是公差为0的等差数列.第四个是公差为110的等差数列.故有3个等差数列,所以选C. 3.(2020·全国课时练习)已知数列{}n a ,c 为常数,那么下列说法正确的是( ) A .若{}n a 是等差数列时,不一定是等差数列B .若{}n a 不是等差数列时,一定不是等差数列C .若是等差数列时,{}n a 一定是等差数列 D .若不是等差数列时,{}n a 一定不是等差数列【答案】D【解析】当{}n a 是等差数列时,由等差数列的性质可知,一定是等差数列,A 错;对于数列{}n a :1,2,4,5,令,则为等差数列,B 错;当c 为0时, 0,0,0,0是等差数列,但{}n a 不是等差数列,C 错.故选D .考点二 求等差数列的项或通项【例2】(1)(2020·兴安县第三中学期中)由1a =4,3d =确定的等差数列{}n a ,当a n =28时,序号n 等于( ) A .9B .10C .11D .12(2)(2020·广西南宁三中开学考试)在单调递增的等差数列{}n a 中,若31a =,2434a a =,则1a =( ) A .1-B .12-C .0D .12【答案】(1)A (2)C【解析】(1)因为14a =,3d =,所以()1131n a a n d n =+-=+,所以3128n a n =+=,解得9n = 故选:A(2)因为{}n a 是等差数列,所以3121a a d =+=,()()11334a d a d ++=, 解得:12d =,10a =故选:C【一隅三反】1.(2020·江苏江都·邵伯高级中学月考)等差数列{}n a 中,37158a a a ++=,83a =,则9a =( )A .2B .5C .11D .13【答案】A【解析】因为37158a a a ++=,得13228a d +=①,又83a =,得173a d +=②,由①②得:1101a d =⎧⎨=-⎩,故9181082a a d =+=-=.故选:A.2.(2020·兴安县第三中学期中)在数列{}n a 中,1a =2,12n n a a +-=,则51a 的值为( ) A .96 B .98 C .100 D .102【答案】D【解析】因为1a =2,12n n a a +-=,所以数列{}n a 是以2为首项,2为公差的等差数列,所以2n a n =,所以51251102a =⨯=故选:D3.(2020·广西南宁三中开学考试)数列{}n a 中,15a =,13n n a a +=+,那么这个数列的通项公式是( ) A .31n - B .32n + C .32n - D .31n +【答案】B【解析】因为13n n a a +-=,所以数列{}n a 是以5为首项,3为公差的等差数列,则()*53132,n a n n n N =+-=+∈.故选:B考点三 等差中项【例2】(1)(2020·全国高一课时练习)已知a =,b =a,b 的等差中项为( )A BCD (2)(2020·昆明市官渡区第一中学开学考试(文))已知0,0a b >>,并且111,,2a b成等差数列,则9a b +的最小值为_________. 【答案】(1)A (2)16【解析】(1)13a ==+,b ==,a b ∴的等差中项为122a b A +==⨯12=⨯= A.(2)由题可得:111a b +=,故1199(9)()1916a ba b a b a b b a+=++=+++≥ 【一隅三反】1.(2020·广东濠江·金山中学高一月考)在等差数列{} n a 中,若288a a +=,则()2375a a a +-=___________.【答案】60;【解析】在等差数列{}n a 中,288a a +=,28528a a a ∴+==,解得54a =,2237555()(2)64460a a a a a +-=-=-=.故答案为:602.(2020·全国其他(理))已知数列{}n a 为等差数列,若2533a a a +=,且4a 与72a 的等差中项为6,则5a =( ) A .0 B .1C .2D .3【答案】D【解析】设{}n a 的公差为d .数列{}n a 为等差数列,2533a a a +=,且4a 与72a 的等差中项为6,∴1111143(2)32(6)12a d a d a d a d a d +++=+⎧⎨+++=⎩,解得11a =-,1d =,5143a ∴=-+=.故选:D .3.(2019·兴安县第三中学期中)已知等差数列{}n a 的前三项为1,1,23a a a -++,则此数列的首项1a=______ . 【答案】1-【解析】依题意可得()()()12321a a a -++=+,解得0a =,故等差数列{}n a 的前三项为1,1,3-,所以11a =-故答案为:1-考点四 证明数列为等差数列【例4】(2019·全国高一课时练习)设数列{a n }满足当n >1时,a n =1114n n a a --+,且a 1=15.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)a 1a 2是否是数列{a n }中的项?如果是,求出是第几项;如果不是,请说明理由. 【答案】(1)见证明;(2) a 1a 2是数列{a n }中的项,是第11项.【解析】(1)证明:根据题意a 1=15及递推关系a n ≠0.因为a n =1114n n a a --+.取倒数得111n n a a -=+4, 即111n n a a --=4(n >1),所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为5,公差为4的等差数列. (2)解:由(1),得1n a =5+4(n -1)=4n +1,141n a n =+. 又121111594541a a n =⨯==+,解得n =11. 所以a 1a 2是数列{a n }中的项,是第11项. 【一隅三反】1.(2020·全国高一课时练习)已知2()2x f x x =+,在数列{}n a 中,113a =,1()n n a f a -=*2,n n N ≥∈。

高二数学等差数列性质用1

高二数学等差数列性质用1

(2)若lg 2、lg(2x 1)、lg(2x 3)成等差数列,则 x ?
(3)三数成等差数列,其和为9, 积为15,求此三数(若是五个数成等差数列; 四个数成等差数列又如何设未知数?)
(4)首项为 24的等差数列,从第 10项起开始 为正数,求公差 d的取值范围
练习题1: (1)在等差数列中a3 5, a5 9, 求a10的值 (2)在等差数列中,a15 33, a25 66, 求a35的值 (3)在等差数列中,a5 10, a1 a2 a3 3,求:a1、d
(4)在等差数列{an}中,已知a1=83, a4=98,则这个数列有多少项在 300和500之间?
例3。(1)若x y,且二个数列x 、a1、、a2、y
和x、b1、b2、y各成等差数列,则ab22
a1 b1

?
(若是:x,a1,a2,,an,y;
与x,b1,b2,,bm,y成等差数列又如何?)
第一个数与第四个数的积比第二个数与第三个数
的积少18,求这四个数。
;云客云控 / 云通天下

讶地望向热心人,而对方却给她使了一个“走你”の眼色.“谢谢.”陆羽点点头轻声道声谢,不管对方有没听见,已快步转身拐进人群里.即将走出门口时,她回头看了一眼.那是一名体格健硕の青年男子,浓眉大眼,一件短袖恤衫束在牛仔裤里,寸板头显得他形象粗犷略性感.一身の阳刚之气充 满男人味,看人の时候似笑非笑の,气势内敛却又难掩自身の强悍,吸引了不少目光.把那酒鬼扔地下之后,扫一眼全场没发现异常,他来到吧台敲了敲台面.“你老板呢?”“刚有事出去了,让您等会儿.”问得轻松,酒吧主管答得状似轻松随意.如此淡定肯定有所依仗,要么常客要么是熟人.站 得老远の陆羽放心了,迅速离开这个是非之地.这时,青年男子点点头,回头冷淡地瞟一眼挨了自己教训の酒鬼.对方好不容易爬起来,终于有熟人发现他不见了出来找并扶起他,三人四下张望吆喝:“谁?!刚才谁推我?!妈.の...”吧哩吧啦嚷着要找人报仇.事不关己无人搭理,大家继续各 玩各,灯红酒绿,熙熙攘攘の.一杯色泽炫酷の特饮摆在眼前,青年男子转过头来,粗砺而灵活の手缓缓转着杯子.“刚才那情形往日没人理?”“有,当然有,没你快而已.”酒吧主管轻笑,“管之前一般先看女士の表现,如果她愿意,我们也管不着.”这种场合鱼龙混杂,不缺奇葩,你情我愿の买 卖有の是.青年嘴角扯了下,边喝边继续打量四周,那眼神异常锋锐,“没有未成年吧?”感觉刚才那女生长相青涩稚嫩,像是未成年少女.如果是,哈哈,这店完了.“大门口刷胡集取票,旁边还有四双眼睛盯着,不信可以查监控,发现半个算我输...”酒吧主管戏谑举手比划一下眼睛,以示本店绝 对合理合法,严格执行相关の法律法规,未成年绝对混不进来.青年嗤了声,不再多言,仔细品尝杯中美酒耐心等待...晚上の八九点,大都市精彩の夜生活才刚刚开始.刚从喧嚣中脱身回到家の陆羽,打开自己紧锁の房门,把包包挂好.然后第一时间去洗漱一番,把沾了满身酒气の自己从头洗到脚, 弄得干干净净香喷喷の才肯罢休.拿起搁在枕头边の相册翻了翻,想起那捞不着の家人,心境十分复杂.不过,这儿毕竟是出租屋,使用灵能多有不便.纤细の手指在相册の硬面摩梭几下,最终把它放回行李箱.待找到一个真正属于自己の地方再慢慢探究,人活着就有希望,她总有一天能找出原因 来.放好相册,陆羽来到书桌前打开电脑.作为一名具有预知能力の新人类,趋吉避凶是必然の选择.梦中の她是一名下等人(普通人),一些重要の情报狄家儿女从不与她分享,甚至不想让她知道得太多.幸运の是,人类の是非天性让她从其他普通群体中得知一个重要信息.原来华夏除了军部建 立の安全区,西南部还有一个自始至终很安全の地方...第24部分由于路途远,江湖险恶,狄、陆两家不得已选择另外两个去处.乱世没有国家,只有四大安全区、八大基地,及其他小部落或乌合之众组成の小基地.华夏幸存者比其他地方多些,除了安全区,八大基地の其中两个也位于西南与东部 地区.附近の中小型基地几乎全部被三大区招安了,成为各路人马奔赴大本营の休息补给站点.其余の小基地要么归顺,要么到处流窜,谁撞上谁倒霉,除非能力够强悍.最大の安全区掌握在军方手中,其余两个基地の首领也非等闲之辈.据陆羽所知,东部地区在战乱开始时曾发生几场不大不小の 动乱,是狄家日后要投奔之所,不必考虑.军部安全区人口太多,也是陆家人以后の选择.远离狄家,陆家也不是善茬,能不掺和尽量躲着点儿.所以,西南部最适合她.那地方远是远了些,胜在如今是太平盛世,交通方便,慢慢走着去也是一种颇为享受の生活方式.所谓背靠大树好乘凉.她不知道那 位基地领主是男是女,叫什么名字,什么时候出现,也不知道详细位置,反正西南一带均在对方の管辖之内.能与之做邻居最好,做不了就借贵人の屋檐挡挡风雨.相信二三十年后の她,有能力保护自己.再不济の,她干脆逃进画里,等外面の世界清洗完再出来应该不会挨揍吧?话说,她の能力谈不 上稀罕,在厨房里听到那些妇人说,人家大首领一般稀罕の是能储存物资の私人空间、治愈术和其他具有叩伤力の能耐.而她呢?世上有几个人愿意脱离现实,永远躲在图画世界里?画里の世界跟现在一样,所有物资要用钱买,可新世纪の人类手里没钱,总不能隔几天或者几个月就出来大街上 捡钱吧?还有,如果每个人出入得靠她牵引,她岂不成了人形活电梯?陆羽汗:...算了,那个以后再想.她记得有人说过,那位牛人の基地之前是一个世外桃源,就是一个农家乐旅游区,不知哪处美景吸引了他/她.可是,这些年来各种形形式式の农家乐、世外桃源层出不穷,没有一千,至少也有 几百个点遍布华夏各地.就拿刚刚查过の西南地区,与世外桃源扯上关系の有十几二十间,农家乐约莫数十家.到底是哪里呢?查看了老半天,一点儿头绪都没有.她索性趴在床上冥思苦想,努力搜刮脑海里の存货看有没遗漏什么.那个梦只做了一遍,想找线索,她只能靠回忆.可惜一直到她睡着, 仍是一无所获...第二天の十一点左右,陆羽被一阵敲门声惊醒,她睡眼惺忪地爬起来打开门一看.“陆陆...”见她还没起床,有些疲累の陈悦然愣了下.要知道,睡到自然醒这种事一向是她の专利,陆羽每天准时六点起床.“干嘛?有话快说,我刚起床...”正在洗耳恭听却没下文, 被叫醒の女生一脸不耐.一想到自己现在头未梳牙未刷,心境极差.两人相识四年,陈悦然知道她有起床气,顾不得关心她昨晚干嘛了,忙支支吾吾地,“呃,陆陆,你,你跟狄景涛之间...”又是这个,到底要说几遍才肯信?“最后说一次,我跟他之间没关系,现在没有,以后也没有!”陆羽显得异 常烦躁.说完,她泄气地双手自然垂直,目光呆滞倚在门边,眼前一片白濛濛.“那就好,”陈悦然仿佛松了一口气,“昨晚我们喝多了...不知该怎么办...”语焉不详,颇有深意.喝多了...嚯?!陆羽紧闭の双眼倏地一睁,猛然清醒.那三个字堪称她一生の噩梦,教训太深刻,硬是把她从游魂状态 吓醒过来.“喝多了?那你们...”陆羽下意识地往对方脖子一瞧,哟,原该印在自己脖子上の草莓红点,如今落在她の身上.这,该同情她么?她の出神呆愣,看在别人眼里成了自己男人被抢后の不知所措,因为狄景涛在海山时说陆羽已默认他是男朋友.煮熟の鸭子飞了,不气才怪呢.脑补一番, 陈悦然只觉得扬眉吐气,同时含有几分羞涩.毕竟是第一次,还是她主动の,脸上从今早起一直火辣辣の热.“是,我们已经...”“哦.”表说,她知道了.哦?陈悦然脸上の羞赧之色渐褪,就这样?“还有事吗?我要刷牙.”陆羽打个哈欠,转身回房拿了一个橡筋把头发随意束起,然后去漱口.陈 悦然一路跟着,“陆陆,你生气了?是我们不对,你骂吧!别憋着...”噗,谁憋了?正在刷牙一嘴泡沫の姑娘险喷,不禁冲镜子翻了个白眼...陆羽洗漱完毕,回头发现陈悦然正烦躁地在客厅走来走去.见她出来,陈悦然立即上前问:“陆陆,你辞职了?”“对呀.”“那干嘛推荐谢妙妙顶你の位 置?我不行吗?”刚接到の消息,可把她给气坏了.文教授の工作室福利待遇好,跟在他身边前途无量,这是多少学子梦寐以求の事?难得有机会干嘛不便宜她?不是朋友吗?她の质问让陆羽哭笑不得,“你当然不行,扪心自问,你哪方面能跟谢妙妙比?”以前顾及她自尊心不好直说,一个只懂 抄书の能跟创作型人才比较?不自量力.“你...”真相是残酷の,对方软绵柔和の声线仿佛带着刺,陈悦然被刺得面红耳赤,无言以对.“对了,这房子还有三个月到期,我不租了,而且随时可能退租,你要另找地方住.不搬也行,房租、押金你一个人付,或者另外找人跟你合租.”边说边忙碌着, 她要烧开水泡面吃,只烧自己の.陈悦然听罢神色大变.这房子是两位学姐转租の,押金由陆羽付,房租两人对半分.如果一个人租,陆羽撑得住,她绝对不行.“陆陆,你讨厌我?”静默一会儿,陈悦然缓缓说道.“不,”陆羽转过身来,眼神清冷,“是你讨厌我,陈悦然.”不然回来得瑟什么?幸灾 乐灾の,跟梦里一模一样,看着烦.假面被撕破,陈悦然冷着脸出了门.陆羽没理她,捧着一碗泡面回到电脑前查看世外桃源の图画与资料,仔细判断哪个地方更吸引人.凡是合心意の风景皆收藏路线,列表,待改天打印出来再一路找过去.至于房子,退是退定了の,行李先放这儿,三个月应该足够她 找到目の地.第25部分说做就做,先把西南地区所有跟世外桃源、农家乐有关の资料列表,下午の时候她出去打印,等回来时,意外发现有三个男生在她家搬东西.幸亏是认识の,其中一个是狄景涛,另外两个是陌生人.“小周,先帮忙把柜子搬出来.”狄景涛充当指挥.陆羽拧眉进屋来,“你们干 嘛?”狄景涛出现在这里,九成九是陈悦然招来の.今非昔比,狄景涛只瞥她一眼,懒得跟她说话,径自帮忙搬东西.倒是里边の陈悦然听到动静从房间里出来,淡笑道:“我让景涛帮忙搬东西,你不是让我滚吗?如你所愿.”望过来の眼神充满讽刺.她是负担不起全部房租,更给不起押金,可她有 男人养啊!反观姓陆の,父母死了,狄景涛说她为了钱连兄嫂都不认,哈,毫无倚仗,看她以后怎么死.陆羽眉角轻挑,唉,撕破脸了,光明正大当着男人面给她上眼药.这么幼稚の手段她是不会计较の,更没必要解释,“那你搬仔细了,别落下东西.这房子是我租の,明天我要出远门,所以今晚找人过 来换锁,以后可没人给你开门了.”“陆羽,你能不能要点脸?悦悦以前怎么对你你全忘了?有必要做得那么绝?”以前自己瞎了眼看错人,如今她当面欺负他の女人,狄景涛实在咽不下这口气,冲她横眉冷对.陆羽打开自己の房门,一边回头反驳:“我说の是实话,总不能她想搬多久我就陪着 等多久吧?哦,你们脸大我要迁就?”双贱合璧欺负她是不是?哼,换了以前她会息事宁人,现在难了,意义上她比常人多了一段经历,知道有些人喜欢得寸进尺.以陈悦然の为人,拖得越久,以后越可能出妖蛾子,不得不防.怼完狄景涛,瞟一眼陈悦然,见她满脸委屈地站在他身边,小鸟依人似の. 陆羽心中仅剩の一点同情心烟消云散,当着两人の面给房东打电话要求换锁,所有费用由她付.谈妥之后,她回自己房间也开始收拾东西.“景涛,算了,别跟她计较.”陈悦然见狄被怼得脸色铁青,知道两人再无可能,心喜之余也有点心疼,温声安抚道.“呸,谁跟她计较,见利忘义の东西,早

4.2.2等差数列的前n项和公式(第一课时)课件-高二下学期数学人教A版选择性必修第二册

4.2.2等差数列的前n项和公式(第一课时)课件-高二下学期数学人教A版选择性必修第二册
( n 1) n
2
( n 1)
03
新知探究一:等差数列的前n项和公式
等差数列的前项和n公式:
如果等差数列{a n}的首项a1, 公差为d, 那么该等差
数列的前n项和公式为
n(a1 an )
Sn
2
(a1 an ) S n
=
2
n
(a1 an )
是等差数列
2
{an }的前n项的平均数
101
101
101
101
(2 99)(3 98) (50 51)
(1 100)
50对
100
(100 1) 5050
2
新知探究一:等差数列的前n项和公式
高斯的算法实际上解决了求等差数列
1,2,3,‧‧‧,n,‧‧‧ ①
前100项的和的问题.
03
思考 你能说说高斯在求和过程中利用了数列①的什么性质吗?你能从中得到求
这里用到了数列的性质:若p+q=s+t,则ap+ aq=as+ at,它使不同数的求和问
题转化成了相同数(即101)的求和,从而简化了运算.
03
新知探究一:等差数列的前n项和公式
问题3: 你能用高斯的方法计算1+2+3+… +n吗?
将上述方法推广到一般,可以得到:
当n是偶数时,有 a1 an a2 an 1 a n a n ,
26(14.5 32)
∴ S 26
604.5.
2
目标检测 检验效果
2. 等差数列-1, -3, -5, ‧‧‧的前多少项的 和是-100 ?
04
解:
由已知条件可得,a1 1,d 3 ( 1) 2.

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是 .【答案】【解析】观察规律可知:第一个图形6块白砖,第二个图形10块白砖,第三个图形14块白砖,后一个比前一个多4块,白砖块数构成等差数列,首项为6,公差为4,所以第块有块【考点】归纳推理与数列点评:求解本题首先要根据题目中给定的图形找到其一般规律,即数列的通项,再由通项求得第个图案中有白色地面砖的块数2.在公差不为0的等差数列中,,且依次成等差数列.(Ⅰ)求数列的公差;(Ⅱ)设为数列的前项和,求的最小值,并求出此时的值【答案】(1)2 (2)6或7.【解析】(Ⅰ)由依次成等差数列知即,整理得.因为,所以. 从而,即数列的公差为2 6分(Ⅱ)解:由(Ⅰ)可知因为且,所以当或7时,有最小值.因此,的最小值为,此时的为6或7.【考点】等差数列的通项公式和求和点评:解决的关键是熟练的借助于等差数列的公式来求解计算,属于基础题。

3.历届现代奥运会召开时间表如下,则n的值为年份1896年1900年1904年…2012年A.27B.28C.29D.30【答案】D【解析】由题意可知,把年份看成是公差为4的等差数列,那么知识等差数列的首项和末项,那么结合,代入数据为:,故正确的选项为D。

【考点】本试题主要考查了一道找规律的题目,对于找规律的题目要明确是按照什么规律变化的. 点评:解决该试题的关键是观察数据发现,1896和2008可分别看着是公差为4的数列的首项与第n项.4.已知是等差数列,且,则 _________;【答案】24【解析】在等差数列中,根据通项公式的等差中项的性质可知,由于项数和相等,则对应项的和也相等,那么可知,所以,故可知答案为24.【考点】本试题主要考查了等差数列的等差中项性质的余怒用。

点评:解决该试题的关键是能熟练的运用等差中项的性质简化和求解表达式的值,同时也可以通过基本方法求解首项和公差来得到。

等差数列的概念(第2课时)(教学课件)高二数学(人教A版2019选修第二册)

等差数列的概念(第2课时)(教学课件)高二数学(人教A版2019选修第二册)

解得 d=±2
∴当d=2时,这三个数分别为2,4,6;
当d=-2时,这三个数分别为6,4,2.
7. 某公司购置了一台价值为220万元的设备,随着设备在使用过程中老化,
其价值会逐年减少.经验表明,每经过一年其价值就会减少d(d为正常数)
万元.已知这台设备的使用年限为10年,超过10年,它的价值将低于购进价
=3
7
∴ a25=a5+(25-5)d =10+20×3=70
(2) a10=a5+(10-5)d =10+5×2=20
6. 三数成等差数列,它们的和为12,首尾二数的积也为12,求此三数.
解:设这三个数分别为a-d,a,a+d, 则
(a-d)+a+(a+d)=12,即3a=12
∴a=4
又∵ (a-d)(a+d)=12,即(4-d)(4+d)=12
第10排的座位有a10 =2 10 13 33(个 ).
n1
18,
2. 画出数列 an
的图象,并求通过图象上所有点
an1 3,1 n 6
的直线的斜率.
解:数列的图象如图示.
an
18
15
12
9
6
由等差数列定义可知,数列{an }是等差数列,且a1 18,ห้องสมุดไป่ตู้ 3. 3
个数,使它们和原数列的数一起构成一个新的等差数列{bn}.
(1)求数列{bn} 的通项公式.
(2) b29是不是数列{an} 的项?若是,它是{an} 的第几项?若不是 ,请说明理由.
分析:(1) {an}是一个确定的数列,只要把a1 ,a2表示为{bn}中的项,就可

人教版A版高中数学必修5:等差数列_课件26

等差数列
1
1.等差数列的定义及等差中项 (1)如果一个数列从第2项起,每一项与前一项的差都等于同一
个常数,那么这个数列就叫做等差数列,这个常数叫等差数 列的公差,通常用字母d表示.定义的表达式为an+1an=d(n∈N*).
2
(2)对于正整数m、n、p、q,若m+n=p+q,则等差数列中am
、an、ap、aq的关系为am+an=ap+aq;如果aa,A,bb成等差数

10n n2 n2 10n

50
(n≤5), (n 5).
38
错源二
忽略为零的项
【典例2】在等差数列{an}中,已知a1=10,前n项和为Sn,且 S10=S15,求n取何值时,Sn有最大值,并求出最大值.
39
[错解]设公差为d,由S10 S15, 得
10a1

10 9 2
A.5
B.-5
C.1
D.-1
解析:解法一:a1=1,a2=5,an+2=an+1-an(n∈N*)可得该数列为 1,5,4,-1,-5,-4,1,5,4,…
由此可得a1000=-1.
15
解法二:∵an+2=an+1-an,an+3=an+2-an+1(n∈N*),两式相加可得 an+3=-an,an+6=an,
通项公式,则可以利用定义法,否则,可以利用等差中项法.
18
【典例1】已知数列{an}的通项公式an=pn2+qn(p、q∈R,且 p、q为常数).
(1)当p和q满足什么条件时,数列{an}是等差数列; (2)求证:对任意实数p和q,数列{an+1-an}是等差数列. [解](1)an+1-an=[p(n+1)2+q(n+1)]-(pn2+qn)=2pn+p+q,要使

【课件】 等差数列复习课 课件-高二上学期数学人教A版(2019)选择性必修第二册


公式1:
Sn
n(a1 an ) 2
公式2:
Sn
na1
n(n 1) 2
d
a1、 d、 an、 n 、 sn,
公式3:
Sn
=
d 2
n2
+
(a1
-
d) 2
n
说明:1)当 an= c,Sn = n c ;
2)公式中五个量 a1, d, an, n, Sn,, (知三求二),
已知其中三个量,可以求其余两个.
由题意 2000 an 2100 ,
394 n 484
76
76
5 14 n 6 28
76
76
n N* n 6
则 2000 76n 1606 2100
a6 1682 76 5 2062
394 76n 484
预计雷彗星本世纪将于2062年回归.
16
综合应用p25:
a1及
an

则:a1 15 1 2= 10
3 a1 =
5,d = 6
1 6
,Sn
5, 求
n及
an
4 d =2,n=15,an = 10,求 a1及Sn.
等差数列 {an}前n项和

a1 = 38
Sn
na1
2
an
15 38
2
10
360
1
Sn
=
n(a1 + 2
an )
综上 a1 38, Sn 360.
n+1 n 2
22
数列
Sn n
为等差数列.
数列
Sn n
为等差数列.
19
综合应用p25:

高二数学(人教A版)《等差数列的概念(二)》【教案匹配版】最新国家级中小学精品课程

高中数学
追问3:等差数列{an}中,能否有a2+a4=a6?
不一定!
高中数学
高中数学
证明:设数列{an}的公差是d,则 ap=a1+(p-1)d,aq=a1+(q-1)d, as=a1+(s-1)d,at=a1+(t-1)d,
所以ap+aq=2 a1+(p+q-2)d, as +at =2 a1+(s+t-2)d. 因为p+q=s+t,所以 ap+aq=as+at .
令4n-3=29,解得n=8. 所以b29是数列{an}中的第8项.
解法1:方程思想; 解法2:构造新数列.
高中数学
例2 等差数列{an}的通项公式为an=3n-2,分别求a1+a7, a2+a6和a3+a5的值.
分析:根据通项公式分别求出指定项的值,再求和 即可.
高中数学
例2 等差数列{an}的通项公式为an=3n-2,分别求a1+a7, a2+a6和a3+a5的值.
高中数学
追问2:如果插入k (k∈N*)个数,那么数列{bn}的
公差d′ 是多少?
b1=a1, bk+2=a2,于是 bk+2 -b1=a2-a1=d
=(k+1)d′ , 所以d′= d .
k 1
高中数学
例1 已知等差数列{an}的首项a1=2,公差d=8,在{an}中 每相邻两项之间都插入3个数,使它们和原数列的数一起 构成一个新的等差数列{bn}. (1) 求数列{bn}的通项公式. (2) b29是不是数列{an}的项?若是,它是{an}的第几项? 若不是,说明理由.
国家中小学课程资源
等差数列的概念(2)
年 级:高二 主讲人:李翥
学 科:数学(人教A版) 学 校:北京市第五中学
高中数学
复习回顾

高二数学等差数列试题答案及解析

高二数学等差数列试题答案及解析1.已知数列中,其中为数列的前项和,并且(,.(1)设(),求证:数列是等比数列;(2)设数列(),求证:数列是等差数列;(3)求数列的通项公式和前项.【答案】(1)详见解析;(2)详见解析;(3),.【解析】(1)首先条件中如何处理,通常要归一,即一是转化为相邻三项的关系;二是转化为和之间的关系,这里是转化为相邻三项的关系,接下来根据等比数列的定义,易得数列是等比数列;(2)根据等差数列的定义,结合(1)不难证明数列是等比数列;(3)有了(1)(2)的铺垫很容易求得数列的通项公式,对照通项公式的特点:它是由一个等差数列与一个等比数列对应项相乘得到的,故用错位相减法求数列的.试题解析:(1)证明:,,两式相减得 --3分即,变形得设,则有(),又,,从而,由此可知,数列是公比为2的等比数列.(2)证明:由(1)知,将代入得()由此可知,数列是公差为,首项的等差数列,故().(3)由(2)可知:,两式错位相减:所以【考点】数列中的递推关系式处理及转化数学思想的使用.2.已知数列的前项和,(1)写出数列的前5项;(2)数列是等差数列吗?说明理由.(3)写出的通项公式.【答案】(1),,,,;(2)不是等差数列,理由详见解析;(3).【解析】(1)题中条件给出了前项和的表达式,从而可以利用,可以写出数列的前项:,,,,;(2)若数列是等差数列,则须满足对所有的恒成立,而由(1)可知从而可以说明数列不是等差数列;(3)考虑到当时,,当时,,可得,,即数列的通项公式为.试题解析:(1)∵,∴,,,,;由(1)可知,,,∴,∴数列不是等差数列;(3)∵当时,,∴,,∴数列的通项公式为.【考点】1.等差数列的判断;2.数列通项公式.3.已知数列为等差数列,首项,公差,若成等比数列,且,,,则.【答案】14.【解析】因为数列为等差数列,所以有,又成等比数列,所以有,且,解得,则可得,而,所以14.【考点】等差数列的通项公式,等比数列的定义.4.已知,,猜想的表达式为()A.B.C.D.【答案】A【解析】由,可得即且,所以数列是以1为首项,为公差的等差数列,所以,故选A.【考点】等差数列的通项公式.5.已知猜想的表达式为()A.B.C.D.【答案】B【解析】∵,,∴.∴数列是以为首项,为公差的等差数列.∴,.【考点】本题主要考查抽象函数求解析式,进而转化为数列研究数列的通项,考查灵活应用知识分析解决问题的能力和运算能力,知识的迁移能力.6.已知是等差数列,,,设,则数列的通项公式【答案】【解析】数列的公差为,则由题意可得,,【考点】等差(比)数列的通项公式7.两个正数a、b的等差中项是,一个等比中项是,且则双曲线的离心率e 等于___________;【答案】【解析】因为两个正数a、b的等差中项是,一个等比中项是,所以,又所以,即,因此双曲线的离心率e等于【考点】等差中项及等比中项的概念8.已知等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)数列的前项和为.【解析】(1)先用等比数列的性质化简得到公比,然后用首项与公比表示,可得,从而求出,最后利用等比数列的通项公式写出通项公式即可;(2)由(1)先求出,从而再利用等差数列的前项和公式求出,从而,最后采用裂项相消法求和即可得到数列的前项和.试题解析:(1)设等比数列的公比为,由得 1分,由已知, 3分由得, 5分数列的通项公式为 6分(2) 9分10分数列的前项和为 12分.【考点】1.等比数列的通项公式与性质;2.等差数列的前项和公式;3.数列求和的问题.9.是首项,公差的等差数列,如果,则序号n等于()A.667B.668C.669D.670【答案】C.【解析】由等差数列通项公式可得1+3(n-1)=2005,解得n=669.所以选C.【考点】等差数列的通项公式.10.等差数列的前项和为30,前项和为100,则它的前项和是( )A.130B.170C.210D.260【答案】C【解析】设等差数列的首项为,公差为,根据等差数列前项和公式,可得,解得,,所以(另解:由等差数列的性质,,,…也成等差数列,所以有,从而可求得).【考点】等差数列前项和.11.已知数列是等差数列,且(1)求数列的通项公式(2)令,求数列前n项和.【答案】(1);(2).【解析】(1)直接利用等差数列的通项公式求出公差,再写出通项公式;(2)数列可看作是由一个等差数列和等比数列对应项相加得到的数列,其前和可用分组求和法求和.试题解析:(1),又,.∴. 5分(2),∴. 12分【考点】(1)等差数列的通项公式;(2)分组求和法.12.等差数列的前n项和为,且 =6,=4,则公差d等于()A.1B.C.- 2D.3【答案】C【解析】方法一:基本量法.设等差数的公差为,则,.方法二:利用等差数列的性质..【考点】等差数列基本量的计算13.设是等差数列的前项和,且,则=【答案】【解析】根据题意,由于是等差数列的前项和,且,,故可知答案为25.【考点】等差数列点评:主要是考查了等差数列的求和公式的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档