专题:椭圆的离心率解法大全

合集下载

《椭圆的离心率公式》专题

《椭圆的离心率公式》专题

《椭圆的离心率公式》专题椭圆的离心率公式专题简介本文档将重点介绍椭圆的离心率公式以及其应用。

椭圆是一种特殊的曲线,其形状在数学和物理学中具有重要的意义。

离心率是描述椭圆形状的一个关键参数,它决定了椭圆的偏心程度。

椭圆的定义椭圆是一个平面上的闭合曲线,其所有点到两个焦点的距离之和保持不变。

椭圆由两个主要的特性定义:焦点和长轴。

焦点是确定椭圆形状的关键点,长轴是连接两个焦点的直线段,通过椭圆的中心。

离心率的定义椭圆的离心率(eccentricity)是一个无单位的常数,通常用字母e表示。

离心率的值介于0和1之间,其中0表示圆形,1表示完全扁平的曲线。

离心率决定了椭圆的形状,离心率越大,椭圆越扁平。

离心率的计算公式椭圆的离心率可以使用以下公式计算:e = √(1 - (b^2 / a^2))其中,e表示离心率,a表示椭圆的长轴长度,b表示椭圆的短轴长度。

离心率的应用离心率是椭圆的一个重要参数,它在许多领域有广泛的应用。

以下是一些离心率的应用场景:- 天体轨道:离心率可以描述行星或其他天体的轨道形状,可用于确定行星与太阳的距离关系。

- 椭圆轨道:离心率可以描述卫星的轨道形状,对于卫星通信和导航系统设计非常重要。

- 工程设计:离心率可以用于设计椭圆形的建筑物或其他结构,以满足特定的视觉和功能要求。

- 数学研究:离心率是椭圆研究中的重要参数,涉及到许多数学定理和公式的推导。

总结椭圆的离心率是描述椭圆形状的一个重要参数,它决定了椭圆的偏心程度。

离心率可以使用特定公式计算,并在许多领域中有广泛的应用。

理解离心率的概念和计算方法,可以帮助我们更好地理解和应用椭圆相关的知识。

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。

一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。

二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。

三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。

四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。

[公开课优质课课件]详解椭圆曲线的离心率求解

[公开课优质课课件]详解椭圆曲线的离心率求解

[公开课优质课课件]详解椭圆曲线的离心
率求解
简介
本课程将详细解释椭圆曲线的离心率求解方法。

通过本课程,您将了解离心率的概念、计算方法,以及椭圆曲线上离心率的意义和应用。

椭圆曲线和离心率
椭圆曲线是平面上一组满足特定数学方程的点的集合。

离心率是描述椭圆曲线形状的一个重要参数,它衡量了椭圆曲线的扁平程度。

离心率的取值范围是0到1,离心率越接近0,椭圆曲线越接近圆形;离心率越接近1,椭圆曲线越扁平。

离心率的计算方法
离心率的计算方法可通过椭圆曲线的半长轴和半短轴长度进行求解。

我们可以使用以下公式计算离心率:
离心率 = sqrt(半长轴^2 - 半短轴^2) / 半长轴
其中,sqrt表示计算平方根。

离心率的结果是一个在0到1之间的实数。

离心率的意义和应用
离心率对于椭圆曲线的几何特征和性质具有重要影响。

离心率越大,曲线越扁平,其特征点和形状会有所改变。

离心率的值还可以用来判断椭圆曲线是否为圆形、椭圆或双曲线,并对密码学等领域的算法和保密性产生重要影响。

感谢您参加本次公开课,希望通过本课程的学习,您能更好地理解椭圆曲线的离心率求解方法及其应用。

椭圆离心率的三种求法、中点弦方程三种求法

椭圆离心率的三种求法、中点弦方程三种求法

椭圆离心率的三种求法:(1)若给定椭圆的方程,则根据焦点位置确定a 2,b 2,求a ,c 的值,利用公式e =c a 或利用221ab e -=直接求解. (2)求椭圆的离心率时,若不能直接求得c a的值,通常由已知寻求a ,b ,c 的关系式,再与a 2=b 2+c 2组成方程组,消去b 得只含a ,c 的方程,再化成关于e 的方程求解.(3)求离心率时要充分利用题设条件中的几何特征构建方程求解,从而达到简化运算的目的. 涉及椭圆离心率的范围问题要依据题设条件首先构建关于a ,b ,c 的不等式,消去b 后,转化为关于e 的不等式,从而求出e 的取值范围.1. 若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被点⎪⎭⎫ ⎝⎛0,2b 分成5∶3的两段,则此椭圆的离心率为( )A.1617B.41717C.45D.255解析 依题意,得c +b 2c -b 2=53,∴c =2b ,∴a =b 2+c 2=5b ,∴e =2b 5b=255. 答案D 点评 本题的解法是直接利用题目中的等量关系,列出条件求离心率.2. 设P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2是其左,右焦点.已知∠F 1PF 2=60°,求椭圆离心率的取值范围.分析 本题主要考查椭圆离心率取值范围的求法,建立不等关系是解答此类问题的关键. 解 方法一 根据椭圆的定义,有|PF 1|+|PF 2|=2a .①在△F 1PF 2中,由余弦定理,得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12, 即|PF 1|2+|PF 2|2-4c 2=|PF 1||PF 2|.②①式平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.③由②③,得|PF 1||PF 2|=4b 23.④ 由①和④运用基本不等式,得|PF 1||PF 2|≤2212||||⎪⎭⎫ ⎝⎛+PF PF ,即4b 23≤a 2. 由b 2=a 2-c 2,得43(a 2-c 2)≤a 2,解得e =c a ≥12. 又e <1,∴该椭圆的离心率的取值范围是[12,1). 方法二 如图,设椭圆与y 轴交于B 1,B 2两点,则当点P 位于B 1或B 2处时,点P 对两焦点的张角最大,故∠F 1B 2F 2≥∠F 1PF 2=60°,从而∠OB 2F 2≥30°.在Rt △OB 2F 2中,e =c a =sin ∠OB 2F 2≥sin 30°=12. 又e <1,∴12≤e <1. ∴该椭圆的离心率的取值范围是[12,1). 点评 在求椭圆离心率的取值范围时,常需建立不等关系,通过解不等式来求离心率的取值范围,建立不等关系的途径有:基本不等式,利用椭圆自身存在的不等关系(如基本量之间的大小关系或基本量的范围,点与椭圆的位置关系所对应的不等关系,椭圆上点的横、纵坐标的有界性等),判别式,极端情况等等.如上面方法二就应用了“当点P 运动到短轴的端点时,点P 对两焦点的张角最大”这一极端情况.(2016全国Ⅰ高考)直线l 经过椭圆的一个顶点和一个焦点,若椭圆的中心到的距离为短轴长的41,则该椭圆的离心率为( B ) A. 31 B. 21 C. 32 D.43 解:设椭圆是焦点在x 轴上的标准方程,上顶点与右焦点分别为)0,(),0(c F b B 、,则直线l 的方程为0=-+bc cy bx 。

高三数学专题复习离心率的三种求法

高三数学专题复习离心率的三种求法

椭圆、双曲线离心率的三种求法椭圆的离心率 0 e 1 ,双曲线的离心率 e 1 ,抛物线的离心率e 1 .一、直接求出 a,c ,求解 e.已知圆锥曲线的标准方程或a ,c 易求时,可利用率心率公式ec来解决 .x2y2a→→例 1:已知 F 1(- 1,0),F 2(1 ,0)是椭圆 a 2+ b 2= 1 的两个焦点,若椭圆上一点 P 满足 |PF 1|+ |PF 2|= 4,则椭圆的离心率 e = ________.12变式练习 1:若椭圆经过原点,且焦点为F 1 1,0 , F 2 3,0 ,则其离心率为( ) CA .3B. 2C.1D.14324变式练习 2:如果双曲线的实半轴长为 2,焦距为 6,那么双曲线的离心率为() CA.3B.6C.3D.22 22二、构造 a,c 的齐次式,解出 e.根据题设条件,借助 a ,b ,c 之间的关系,构造 a ,c 的关系式(特别是齐次式),进而得到关于e 的方程,从而解得离心率 e.x 2 y 2例 2: (2012 ·江西 )椭圆 a 2+ b 2= 1(a>b>0)的左,右顶点分别是 A ,B ,左,右焦点分别是F 1, F 2,若 |AF 1|,5 |F 1F 2|, |F 1B|成等比数列,则此椭圆的离心率为________. 522变式练习 1:已知 F 1, F 2 是双曲线x2y 2 1( a 0,b 0 )的两焦点,以线段F 1 F 2 为边作正三角形 MF 1 F 2 ,ab若边 MF 1 的中点在双曲线上,则双曲线的离心率是() DA.423B.31C.31D.3 12变式练习 2:若双曲线虚轴的一个端点为M ,两个焦点为 FF, F MF21200,则双曲线的离心率为()B1, 2 1A.366D.3B.C.32322变式练习 3:设双曲线x2y 2 1( b a0 )的半焦距为 c ,直线 l 过 a,0, 0,b 两点 .已知原点到直线的距ab离为3 c ,则双曲线的离心率为 ( ) A4A. 2B. 3C. 223D. 3三、采用离心率的定义以及椭圆的定义求解例 3:设椭圆的两个焦点分别为F 1, F 2 ,过 F 2 作椭圆长轴的垂线交椭圆于点P ,若△ F 1PF 2 为等腰直角三角形,则椭圆的离心率是 ________. 21【跟踪训练】1.已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于() DA .13C .1D .3B .33222242.已知双曲线x y1的一条渐近线方程为 y x ,则双曲线的离心率为( )Aa 2b 23 54 C.5 3A. B. 4 D.3 3 2x 2 y 2 1 ( a 0,b 0 )的两个焦点, A 和 B 是以 O3.如图, F 1 和 F 2 分别是双曲线b 2 a 2y为圆心,以 OF 1 为半径的圆与该双曲线左支的两个交点,且△ F 2 AB 是等边三A角形,则双曲线的离心率为( )D F 1O F 2 xBA. 3B. 5C.5D.3 124.设 F 1 ,F 2 分别是双曲线x 2 y 2 1 的左、右焦点,若双曲线上存在点A ,使 F 1 AF 290 0 ,且 AF 13AF 2 ,22a b 则双曲线离心率为() B5B.10C.15D. 5A.222225.已知双曲线 xy 1( a 0,b0 )的右焦点为 F ,若过点 F 且倾斜角为600 的直线与双曲线的右支有且a 2b 2只有一个交点,则此双曲线离心率的取值范围是( ) CA. 1,2B. 1,2C. 2,D. 2,x 2y 21(a b 0) 的左顶点为 A ,左焦点为 F ,上顶点为 B ,若∠ BAO+∠ BFO=90 °,则6.已知椭圆 C : 22ab椭圆 C 的离心率是.5 12【走进高考】1. (2013 浙·江理 )如图 , F 1 , F 2 是椭圆 C 1 :x 2y 21与双曲线 C 2 的公共y4焦点,A,B分别是 C 1, C 2 在第二、四象限的公共点. 若四边形AAF 1 BF 2 为矩形 , 则 C 2 的离心率是 ( )D F 1OF 2xA. 2B . 3B(第 1 题图)C.3D . 6222.(2013 湖·南理 )设 F 1, F 2 是双曲线 C : x 2y 2 1(a 0,b0) 的两个焦点, P 是 C 上一点 ,若 PF 1PF 2 6a,a 2b 2且△ PF 1F 2 的最小内角为 30 , 则 C 的离心率为. 33.(2013 福·建理 )椭圆x 2y 21(a b 0) 的左、右焦点分别为F 1, F 2 ,焦距为2c,若直线 y3( xc) 与椭:22a b圆的一个交点 M 满足MF 1 F 2 2 MF 2 F 1 , 则该椭圆的离心率等于__________. 3 1x 2y 24.(2013 辽·宁理 ) 已知椭圆 C : a 2b 21(a b0) 的左焦点为F,C 与过原点的直线相交于A,B 两点 ,连接AF, BF, 若 AB10 , AF6 , cos ABF4 , 则 C 的离心率 e=______. 5575. (2014 江·西理 )过点 M (1,1) 作斜率为1的直线与椭圆 C : x 2y 21(a b0) 相交于 A, B ,若 M 是线段2 a 2 b 2AB 的中点,则椭圆C 的离心率为.226. (2014 浙·江理 )设直线 x 3 ym0(m 0)x 2 y 21( a b0 )两条渐近线分别交于点与双曲线b 2a 2A, B ,若点 P( m,0) 满足 PAPB , 则该双曲线的离心率是5__________.27. (2014 重·庆理 )设 F 1, F 2 分别为双曲线x 2y 21(a 0,b 0) 的左、右焦点,双曲线上存在一点P 使得a 2b2| PF 1 | |PF 2 | 3b, | PF 1 | | PF 2 9)B|ab ,则该双曲线的离心率为(4A.4B. 5C.9D.33348.(2015 新课标 II 理 )已知 A , B 为双曲线 E 的左,右顶点,点M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 () DA. 5B.2C. 3D. 2x 2y 2 1的一个焦点,若C 上存在点 P ,使线段 PF 的中点恰为其虚9.(2015 湖南理 )设 F 是双曲线 C :2b 2a轴的一个端点,则C 的离心率为. 5C 1:x2210.(2015 山东理 )平面直角坐标系xOy 中,双曲线 2y 2 1 a 0,b 0 的渐近线与抛物线C 2:abx 22 py p 0 交于点 O , A , B ,若△ OAB 的垂心为 C 2 的焦点,则 C 1 的离心率为. 322211.(2016 浙江理 )已知椭圆 C 1 : x2 +y 2=1(m>1) 与双曲线 C 2: x2 –y 2=1( n>0) 的焦点重合, e 1,e 2 分别为 C 1,mn C 2 的离心率,则( ) AA .m>n 且 e 1e 2>1B . m>n 且 e 1e 2<1C . m<n 且 e 1 e 2>1D . m<n 且 e 1e 2<112.(2016 新课标Ⅲ文理 )已知 O 为坐标原点,x 2y 21(a b0) 的左焦点,分别为 C 的F是椭圆C :a 2b 2A, B左,右顶点 . P 为 C 上一点,且 PFx 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直A .1B.1C.2D.3 323413.( 2016 新课标Ⅱ理)已知F1, F2是双曲线 E : x222y2 1 的左,右焦点,点M 在 E 上,MF1与 x 轴垂直,a bsin MF2 F11,则 E 的离心率为() A 3(A)2(B)3(C)3(D)2 22–y214.( 2016 山东文理)已知双曲线E:x22 =1 ( a>0 , b>0).矩形 ABCD 的四个顶点在 E 上, AB, CDa b的中点为 E 的两个焦点,且2|AB|=3|BC|,则 E 的离心率是 _______. 2xOy F x2y2yb15.(2016 江苏 )如图,在平面直角坐标系中,是椭圆a 2b2 1(a>b>0) 的右焦点,直线 2 与椭圆交于 B,C 两点,且BFC90 ,则该椭圆的离心率是6 .316.(2017 新课标Ⅰ理15)已知双曲线 C:x2y21(a>0,b>0)的右顶点为A,以A为圆心,b为半径作a2b2圆 A,圆 A 与双曲线 C 的一条渐近线交于M、 N 两点 .若∠ MAN =60°,则 C 的离心率为 ________.2 3317.(2017 北京文 10)若双曲线x2y21的离心率为3,则实数 m=__________ . 2m18.(2017新课标Ⅱ理9)若双曲线C:221(a0 b0)的一条渐近线被圆x2y2 4 所截得x2y2,2a b的弦长为 2,则C的离心率为() AA .2B.3C.2 D .23319.(2017 新课标Ⅲ文11)已知椭圆 C:x2y21, ( a>b>0) 的左、右顶点分别为A1, A2,且以线段 A1A2 a2b2为直径的圆与直线bx ay2ab0 相切,则C的离心率为() AA .6B .321 33C.D.3320.(201814)x 2 y 2x 2y 2N北京理 已知椭圆M :a 2b 21(a b0),双曲线N :m 2n 2 1 .若双曲线 的两条渐近线与椭圆 M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________ ;双曲线 N 的离心率为 __________. 31221.(2018 江苏 8) 在平面直角坐标系 xOy 中,若双曲线x 2y 2 1(a0,b0)的右焦点 F (c,0) 到一条渐近线a 2b 2的距离为3 c ,则其离心率的值是. 2222.(2018 新课标Ⅱ理 12)已知 F 1, F 2 是椭圆 C:x 2y 2 1(a b 0) 的左、右焦点, A 是 C 的左顶点,点Pa 2b 2在过 A 且斜率为3的直线上,△ PF 1F 2 为等腰三角形,∠ F 1 2的离心率为 () D6F P=120 ,则 C21C .11A.B .3D .32423.(2018 新课标Ⅲ理 11)设 F 1,F 2 是双曲线 C:x 2y 21(a 0,b 0) 的左,右焦点, O 是坐标原点.过 F 2a 2b 2作 C 的一条渐近线的垂线,垂足为P .若 PF 1 6 OP ,则 C 的离心率为 ( ) CA . 5B . 2C . 3D . 2椭圆、双曲线离心率的三种求法椭圆的离心率 0 e 1 ,双曲线的离心率 e 1 ,抛物线的离心率e 1 .一、直接求出 a,c ,求解 e.已知圆锥曲线的标准方程或a ,c 易求时,可利用率心率公式ec来解决 .x2y2a→→例 1:已知 F 1(- 1,0),F 2(1 ,0)是椭圆 a 2+ b 2= 1 的两个焦点,若椭圆上一点 P 满足 |PF 1|+ |PF 2|= 4,则椭圆的离心率 e = ________.【答案】12→→1【解析】由椭圆定义及 |PF 1|+ |PF 2|= 4,得 2a = 4, a = 2, c = 1,e = .2变式练习 1:若椭圆经过原点,且焦点为F 1 1,0 , F 2 3,0 ,则其离心率为( )A .3B. 2C. 1D. 13424 【答案】 C【解析】由 F 1 1,0 , F 2 3,0 知2c 3 1 ,∴ c1 ,又∵椭圆过原点,∴ a c 1 , ac 3.∴ a2 , c 1 c 1,所以离心率 e.故选 C.a2变式练习 2:如果双曲线的实半轴长为 2,焦距为 6,那么双曲线的离心率为()A. 3B. 6C.3D.2222【答案】 C【解析】由题设a2 , 2c 6 ,则 c3 , e c3,因此选 C.a 2二、构造 a,c 的齐次式,解出 e.根据题设条件,借助 a ,b ,c 之间的关系,构造 a ,c 的关系式(特别是齐次式),进而得到关于 e 的方程,从而解得离心率 e.22例 2: (2012 ·江西 )椭圆 x2 y 2A ,B ,左,右焦点分别是, F ,若 |AF1|,a +b = 1(a>b>0)的左,右顶点分别是F 12|F 1F 2|, |F 1B|成等比数列,则此椭圆的离心率为 ________. 【答案】55【解析】由椭圆的定义知,|AF 1|= a - c , |F 1F 2 |= 2c , |BF 1 |= a + c.∵ |AF 1|, |F 1F 2|, |BF 1|成等比数列,因此4c 2=( a -c) ·(a + c),整理得 5c 2= a 2,两边同除以 a 2得 5e 2= 1,解得 e =5.522变式练习 1:已知 F 1 , F 2 是双曲线x2y2 1( a0, b 0 )的两焦点, 以线段 F 1F 2 为边作正三角形MF 1 F 2 ,ab若边 MF 1 的中点在双曲线上,则双曲线的离心率是( )A.423B.31C.31D.312【答案】 D【解析】如图,设 MF 1 的中点为 P ,∵ F 1(-c,0 ),M (0, 3c ),∴ P(c 3cc 2 3c 22,2 ).代入双曲线方程,得 4a 2 4b 2 1 .∴ c 4 8a 2c 2 4a 4 0 , e 4 8e 2 4 0 , e 24 2 3 ,∴ e 1 3 .故选 D.变式练习 2:若双曲线虚轴的一个端点为M ,两个焦点为 F 1 ,F 2 , F 1 MF 21200,则双曲线的离心率为 ()A. 3B. 6C. 6D.3323【答案】 B【解析】如图所示,不妨设 M 0,b , F 1c,0 , F 2 c,0 ,则 MF 1MF 2c 2 b 2 ,又 F 1 F 2 2c ,MF 1 2MF 222在 F 1MF 2 中, 由余弦定理,得 cosF 1 F 2,F 1MF 22 MF 1 MF 2222 22221cbcb4cc1 .即 2 c 2 b 2,∴ b2b 2c 22∵ b2c2a 2,∴2ca21,∴3a22c 2 ,∴ e 23 ,∴ e 6 ,故选 B.2 a 2222变式练习 3:设双曲线x 2y 2 1( b a0 )的半焦距为 c ,直线 l 过 a,0, 0,b 两点 .已知原点到直线的距a 2b 2离为3c ,则双曲线的离心率为 ()4A. 2B. 3C. 22 3D. 3【答案】 A【解析】由已知,直线l 的方程为 bx ayab0 ,由点到直线的距离公式,得ab 3 c .a 2b 24又 c 2 a 2 b 2 , ∴ 4ab 3c 2 ,两边平方,得 16a 2 c 2 a 23c 4 ,整理得 3e 416e 2 16 0 ,得 e 24或 e 24 .又 0 a b 2c 2 a 2 b 2 1 b 2 2 ,∴ e 2 4e 2,故选 A.3,∴ e a 2 a 2a 2,∴三、采用离心率的定义以及椭圆的定义求解例 3:设椭圆的两个焦点分别为 F 1, F 2 ,过 F 2 作椭圆长轴的垂线交椭圆于点P ,若△ F 1PF 2 为等腰直角三【答案】21c2c2c 2c 1 2 1 .【解析】 e2 2c 2ca 2a PF 1 PF 22 1【跟踪训练】1.已知椭圆的长轴长是短轴长的2 倍,则椭圆的离心率等于() A . 13C .1D .3B .2332答案: D解析: ∵椭圆的长轴长是短轴长的2 倍,∴ a=2b ,椭圆的离心率 c3 ,选 D.e2a224x ,则双曲线的离心率为(2.已知双曲线 xy 1的一条渐近线方程为y)a 2b 23A.5B.4C.5D.333 42答案: A解析: 双曲线焦点在 x 轴,由渐近线方程可得b 4,可得 ec 32425,故选 A.a3a33x2y21 ( a 0,b0 )的两个焦点, A 和 B 是以 O3.如图, F 1 和 F 2 分别是双曲线b 2a 2y为圆心,以 OF 1 为半径的圆与该双曲线左支的两个交点,且△ F 2 AB 是等边三A角形,则双曲线的离心率为( )F 1O F 2 xBA.3B.55 D. 3 1C.2答案: D解析: 连接 AF 1,∵ F 2 AB 是等边三角形,∴∠ AF 2F 1=30°,∠ F 1AF 2=90°.∴ |AF 1|=c , |AF 2|=3 c ,∴ 2a=( 3 - 1)c ,双曲线的离心率为 1+3 ,故选 D.4.设 F 1 ,F 2 分别是双曲线 x 2 y 21 的左、右焦点,若双曲线上存在点 A ,使 F 1 AF2 900 ,且 AF 13 AF 2 ,a 2b 2则双曲线离心率为( )A.5B. 10C. 15D. 5222答案: B解析:设 F ,F 分别是双曲线x 2 y 2 1的左、右焦点 .若双曲线上存在点 A ,使∠ F 1AF 2=90o ,且|AF 1|=3|AF 2 |, a 2 b 212设 |AF 2|=1, |AF 1|=3,在双曲线中 2a=|AF 1|- |AF 2 |=2, 2c= 22= 10 10AF 1AF 2 ,∴离心率 e=.25.已知双曲线x 2 y 2 1( a 0,b0 )的右焦点为 F ,若过点 F 且倾斜角为 600 的直线与双曲线的右支有且a 2b 2A. 1,2B. 1,2C. 2,D. 2,答案: C解析: 双曲线x 2y 2 1 ( a 0,b 0 )的右焦点为 F ,若过点 F 且倾斜角为60 0 的直线与双曲线的右支有且a 2b 2222只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b ,∴ b3 ,离心率 e 2= c2a2b ≥aaaa4,∴ e ≥ 2,故选 C.6.已知椭圆x 2 y 2的左顶点为 A ,左焦点为 F ,上顶点为 B ,若∠ BAO+∠ BFO=90 °,则C :a 2b 21(ab 0)椭圆 C 的离心率是 .答案:5 12解析: ∵∠ BAO+∠ BFO=90 °,∴ sin ∠ BAO =cos ∠ BFO ,∴b b 2c,∴ e23 5 ,e 235(舍去 ).a 2 a22∴ e5 1 .2【走进高考】1. (2013 浙·江理 )如图 , F 1 , F 2 是椭圆 C 1 :x 2y 21与双曲线 C 2 的公共y4焦点 , A, B 分别是 C 1, C 2 在第二、四象限的公共点. 若四边形AAF 1 BF 2 为矩形 , 则 C 2 的离心率是 ()F 1OF 2xA.2B . 3B(第 1 题图)C.3D . 6 22【答案】 D2.(2013 湖·南理 )设 F 1, F 2 是双曲线x 2 y 2的两个焦点, P 是 C 上一点 ,若 PF 1PF 26a,C : a 2 b 21(a 0,b0)且△ PF 1F 2 的最小内角为 30 , 则 C 的离心率为 .【答案】33.(2013 福·建理 )椭圆x 2y 21(ab 0) 的左、右焦点分别为F 1, F 2 ,焦距为 2c,若直线 y3( xc) 与椭:22a b圆的一个交点 M 满足MF 1 F 22 MF 2 F 1 , 则该椭圆的离心率等于 __________.【答案】3 14.(2013 辽·宁理 ) 已知椭圆 C :x 2y 21(a b 0) 的左焦点为F,C 与过原点的直线相交于A,B 两点 ,连接a 2b 2AF, BF, 若 AB10 , AF6 , cos ABF4, 则 C 的离心率 e=______.【答案】571x 225. (2014 江·西理 )过点 M (1,1) 作斜率为的直线与椭圆C : y1(a b 0) 相交于 A, B ,若 M 是线段 2a 2b 2AB 的中点,则椭圆 C 的离心率为.6. (2014 浙·江理 )设直线 x 3 y m 0(m 0)x 2 y 2 1( a b 0 )两条渐近线分别交于点与双曲线b 2a 2A, B ,若点 P(m,0) 满足 PA PB , 则该双曲线的离心率是 __________.7. (2014 重·庆理 )设 F 1, F 2 分别为双曲线x 2 y 2 的左、右焦点,双曲线上存在一点P 使得a 2b 21(a 0,b 0)| PF 1 | | PF 2 | 3b, | PF 1 | |PF 2 | 9ab ,则该双曲线的离心率为()A.4B.5C.9D.33 3 48.(2015 新课标 II 理 )已知 A , B 为双曲线 E 的左,右顶点,点 M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 ( )A. 5B.2C. 3D. 2【答案】 D9.(2015 湖南理 )设 F 是双曲线 C :x 2y 2 1的一个焦点,若 C 上存在点 P ,使线段 PF 的中点恰为其虚a 2b 2轴的一个端点,则C 的离心率为.【答案】510.(2015 山东理 )平面直角坐标系xOy 中,双曲线C 1:x 2 y 2 1 a 0,b 0 的渐近线与抛物线 C 2:a2b2x 22 py p 0 交于点 O , A , B ,若△ OAB 的垂心为 C 2 的焦点,则 C 1 的离心率为.答案:32x2y21(a 0,b 0) 的渐近线为 解析:C 1:2b 2aC 2 : x22 py( p0) 的焦点 F (0, p) ,则 k AF2b 2 pb 2 pb 2 ), B(yx ,则 A( , 2 a a a 2pb 2pb 25c 2a 2 2 a ,即 , 2pb b a 2 4 a 2a2 pb 2pb 2, ) . a a 2a 2b 29 c 3a 2 ,ea .4211.(2016 浙江理 )已知椭圆 C 1: x 2+y 2=1(m>1) 与双曲线 C 2: x2 –y 2=1( n>0) 的焦点重合, e 1,e 2 分别为 C 1,m 2n 2C 2 的离心率,则()A . m>n 且 e 1e 2>1B . m>n 且 e 1e 2<1C . m<n 且 e 1e 2>1D . m<n 且 e 1e 2<1【答案】 A考点: 1、椭圆的简单几何性质; 2、双曲线的简单几何性质.【易错点睛】 计算椭圆 C 1 的焦点时, 要注意 c 2 a 2b 2 ;计算双曲线 C 2 的焦点时,要注意c 2 a 2 b 2 .否则很容易出现错误.2212.(2016 新课标Ⅲ文理 )已知 O 为坐标原点, F 是椭圆 C :x2y2 1(a b 0) 的左焦点, A, B 分别为 C 的a b左,右顶点 . P 为 C 上一点,且 PF x 轴 .过点 A 的直线 l 与线段 PF 交于点 M ,与 y 轴交于点 E .若直线 BM经过 OE 的中点,则 C 的离心率为( )A .1B.1C.2D.33234【答案】 A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:( 1)直接求得 a ,c 的值,进而求得e 的值;( 2)建立 a,b, c 的齐次 等式,求得 b或转化为关于 e 的等式求解; (3) 通过特殊值或特殊位置,求出e .a13.( 2016 新课标Ⅱ理)已知x 2 y 2M 在E 上,与 x 轴垂直,F 1, F 2 是双曲线 E :a 2b 2 1 的左,右焦点,点MF 1sin MF 2F 11 ,则 E 的离心率为( )3(A ) 2(B )3(C ) 3(D )22【答案】 A考点:双曲线的性质 .离心率 .【名师点睛】区分双曲线中a ,b ,c 的关系与椭圆中 a , b ,c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中 c 2=a 2+ b 2.双曲线的离心率 e ∈ (1,+ ∞),而椭圆的离心率 e ∈ (0, 1).x 2 y 214.( 2016 山东文理)已知双曲线 E :–=1 ( a>0 , b>0).矩形 ABCD 的四个顶点在 E 上, AB , CDa 2b 2的中点为 E 的两个焦点,且2|AB|=3|BC|,则 E 的离心率是 _______.【答案】 2【解析】依题意,不妨设AB 6, AD 4 ,作出图象如下图所示 .则 2c 4,c 2;2a DF2DF1532,a 1, 故离心率c2 2 . a115.(2016 江苏 )如图,在平面直角坐标系xOy 中,F 是椭圆 x2y2的右焦点,直线yb 与椭a 2b21(a>b>0)2圆交于 B,C 两点,且BFC90,则该椭圆的离心率是.【答案】63考点:椭圆离心率【名师点睛】椭圆离心率的考查,一般分两个层次,一是由离心率的定义,只需分别求出a, c ,这注重考查椭圆标准方程中量的含义,二是整体考查,求 a,c的比值,这注重于列式,即需根据条件列出关于a,c 的一个齐次等量关系,通过解方程得到离心率的值.16.(2017 新课标Ⅰ理 15)已知双曲线 C:x2y2 1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作a2b2圆 A,圆 A 与双曲线 C 的一条渐近线交于M、 N 两点 .若∠ MAN=60°,则 C 的离心率为 ________.【答案】2 33【考点】双曲线的简单性质.【名师点睛】双曲线渐近线是其独有的性质,所以有关渐近线问题受到出题者的青睐.做好这一类问题要抓住以下重点:①求解渐近线,直接把双曲线后面的 1 换成 0 即可;②双曲线的焦点到渐近线的距离是 b ;③双曲线的顶点到渐近线的距离是ab. c17.(2017 北京文 10)若双曲线x2y21的离心率为3,则实数 m=__________ .m【答案】 29)若双曲线C:x2y2218.(2017 新课标Ⅱ理1(a 0,b0 )的一条渐近线被圆x 2 4 所y2a2b2截得的弦长为2,则C的离心率为()A . 2B.3C.223 D.3【答案】 Ax2y2为直径的圆与直线bx ay 2ab 0 相切,则 C 的离心率为()A .63C .213B .3D .33【答案】 A【解析】以线段A 1 A 2 为直径的圆是 x 2 y 2 a 2 ,直线 bx ay2ab 0 与圆相切,所以圆心到直线的距离d2aba ,整理为 a 23b 2 ,即 a 23 a2c22a23c 2 ,即 c 22 , ec6,故选 A.a 2b 2a 23a32222x yxy20.(2018 北京理14)已知椭圆 M :a 2b 2 1(ab0),双曲线N :m 2n 21 .若双曲线 N 的两条渐近线与椭圆 M 的四个交点及椭圆 M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________ ;双曲线 N 的离心率为 __________.【答案】3 1 22221.(2018 江苏 8) 在平面直角坐标系 xOy 中,若双曲线xy1(a0,b 0) 的右焦点 F (c,0) 到一条渐近线a 2b 2的距离为3c ,则其离心率的值是.2【答案】 22222.(2018 新课标Ⅱ理12)已知 F 1, F 2 是椭圆 C:x2y 2 1(a b 0) 的左、右焦点, A 是 C 的左顶点,点 Pab在过 A 且斜率为3的直线上,△ PF 1F 2 为等腰三角形,∠ F 1F 2P= 120,则 C 的离心率为 ()6A.2B .1C .1D .13 234【答案】 D2223.(2018 新课标Ⅲ理11)设 F 1,F 2 是双曲线 C:x2y 2 1(a 0,b 0) 的左,右焦点, O 是坐标原点.过 F 2ab作 C 的一条渐近线的垂线,垂足为 P .若PF 16 OP ,则 C 的离心率为 ()A . 5B . 2C . 3D . 2【答案】 C。

【高考】二轮复习椭圆中离心率问题ppt课件

【高考】二轮复习椭圆中离心率问题ppt课件

建立关于a,c的齐次等式或不等式.
椭圆的第三定义
解法提炼
求椭圆离心率的值: (1)解题方向:建立关于a,c的齐次等式. (2)实现策略
几何转化:利用椭圆的定义寻找线段之间的等量关系. 方程思想:利用点在椭圆上,将点的坐标代入椭圆方程.
典例剖析
2)要正确理解对外开放和独立自主的含义,对外开放并不等于一切依靠外援,甚至依赖外国实现现代化;独立自主也决不是闭关自守,盲目排外; 16、为了求恋爱成功而尽量隐藏自己的缺点的人,其实是愚蠢的。——傅雷 40、忙碌是一种幸福,让我们没时间体会痛苦;奔波是一种快乐,让我们真实地感受生活;疲惫是一种享受,让我们无暇空虚。 8.正路并不一定就是一条平平坦坦的直路,难免有些曲折和崎岖险阻,要绕一些弯,甚至难免误入歧途。 78、什么时候,雨水把眼泪悄悄覆盖,回忆在心里开始残落。 17、我一个人的力量。能去闯,就算要飞越海洋,也不能住当我对梦的渴望! 55、自由,我离开前送你的最好的礼物。你对我的习惯,便是你给我的最好的回报。 15.志向和热爱是伟大行为的双翼。 6. 坚强的信念能赢得强者的心,并使他们变得更坚强。 ——白哲特 自己对自己负责的意义:“只有对自己负责的人,才能享有真正的自尊,也才有资格、有自信、有能力承担起对他人、对社会的责任”; 20.古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。
1、学会求椭圆离心率的值或范围: 根据直角三角形中斜边与直角边的不等关系,得到关于a,c的齐次不等式. 建立关于a,c的齐次等式或不等式. 方程思想:利用点在椭圆上,将点的坐标代入椭圆方程. 根据椭圆的范围(点坐标分量的有界性),得到关于a,c的齐次不等式. 转化思想,方程思想,函数思想等. 根据曲线的范围,得到关于e的不等式. 根据椭圆的范围(点坐标分量的有界性),得到关于a,c的齐次不等式. 2、体悟数学思想方法的运用: 根据直角三角形中斜边与直角边的不等关系,得到关于a,c的齐次不等式. (1)解题方向:建立关于a,c的齐次等式. 椭圆的第一定义和第二定义 建立关于a,c的齐次等式或不等式. 方程思想:利用点在椭圆上,将点的坐标代入椭圆方程. (1)解题方向:建立关于a,c的齐次等式. 几何转化:利用椭圆的定义寻找线段之间的等量关系. 离心率是圆锥曲线的一个重要知识点,同时也是圆锥曲线的重要几何性质.纵观近几年江苏高考,求离心率的值或范围的题目屡见不鲜.这节课以椭圆为例,复习求椭圆离心率的 值或范围的一些方法.

椭圆双曲线的离心率专题

2.一般来说,求椭圆(或双曲线)的离心率,只需 要由条件得到一个关于基本量a,b,c,e的一个 方程,就可以从中求出离心率.
3.一般来说,求椭圆(或双曲线)的离心率的取值 范围,通常可以从两个方面来研究:一是考虑几 何的大小,例如线段的长度、角的大小等;二是 利用椭圆(或双曲线)本身的范围,列出不等式.
x
e c
1

a sin cos
2
1
sin(


)

2 2
B2
4
从而可得 2 e 1 2
思路4:利用二次方程有实根
由椭圆定义知
| PF1|| PF2 | 2a | PF1|2 | PF2 |2 2| PF1|| PF2 | 4a 2
又由F1PF2 90,知 | PF1 |2 | PF2 |2 | F1F2 |2 4c2 则可得 | PF1 || PF2 | 2(a2 c2 )这样,| PF1 | 与 | PF2 | 是 方程u2 2au 2(a2 c2 ) 0的两个实根,因此


4a2
8(a2
c2) 0
e2

c2 a2

1 2

e

2 2
因此e [ 2 ,1) 2
题型二:求离心率的取值范围: 练习、已知椭圆xa22+by22=1(a>b>0)的焦点分别为 F1,F2,
若该椭圆上存在一点 P,使得∠F1PF2=60°,则椭
圆离心率的取值范围是

y
B1 P
1、根据条件先求出 a,c,利用 e=ac求解
练习、已知双曲线 y2 3x2 3,求双曲线 的离心率的值。
解析:先化成标准方程 x2 y2 1

椭圆离心率总结

关于椭圆离心率设椭圆x a y ba b 222210+=>>()的左、右焦点分别为F F 12、,如果椭圆上存在点P ,使∠=︒F PF 1290,求离心率e 的取值范围。

解法1:利用曲线范围设P (x ,y ),又知F c F c 1200(,),(,)-,则F P x c y F P x c y F PF F P F P F P F P x c x c y x y c 1212121222229000→→→→→→=+=-∠=︒⊥⋅=+-+=+=()()()(),,,由,知,则,即得将这个方程与椭圆方程联立,消去y ,可解得x a c a b a b F PF x aa c ab a b a2222222122222222229000=--∠=︒≤<≤--<但由椭圆范围及知即可得,即,且从而得,且所以,)c b c a c c a e c a e c a e 2222222221221≥≥-<=≥=<∈[解法2:利用二次方程有实根由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=又由,知则可得这样,与是方程的两个实根,因此∠=︒+===--+-=F PF PF PF F F c PF PF a c PF PF u au a c 12122212221222122229042220||||||||||()||||()∆=--≥⇒=≥⇒≥4801222222222a a c e c a e ()因此,e ∈[)221 解法3:利用三角函数有界性记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin ||sin ||sin ||||sin sin ||||||||sin sin sincoscosPF PF F F PF PF F F PF PF a F F c e c a 121212121212902211222122βααβαβαβαβαβ==︒⇒++=+====+=+-=-又,,则有而知从而可得09002452221221≤-<︒≤-<︒<-≤≤<||||cos αβαβαβe解法4:利用焦半径 由焦半径公式得||||||||||PF a ex PF a ex PF PF F F a cx e x a cx e x ca e x c x c a e P x y x a x a 12122212222222222222222222224220=+=-+=+++-+=+==-≠±≤<,又由,所以有即,又点(,)在椭圆上,且,则知,即022212222≤-<∈c a e ae 得,)[解法5:利用基本不等式由椭圆定义,有212a PF PF =+|||| 平方后得42228212221212221222a PF PF PF PF PF PF F F c =++⋅≤+==||||||||(||||)||得c a2212≥ 所以有,)e ∈[221 解法6:巧用图形的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。

椭圆离心率求法

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ac e =来解决。

例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为()A.23 B. 23 C. 26D.332 解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为()A. 43B. 32C. 21D. 41解:由()0,11F 、()0,32F 知132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C. 变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为()A.23B. 26C. 23 D 2解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为()A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c ca 解得3=a ,1=c ,则33==a c e ,故选A 二、构造a 、c 的齐次式,解出e 根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。

椭圆离心率的解法

椭圆离心率的解法一、 运用几何图形中线段的几何意义。

题目1:椭圆x 2a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?思路:A 点在椭圆外,找a 、b 、c 的关系应借助椭圆,所以取AF 2 的中点B ,连接BF 1 ,把已知条件放在椭圆内,构造△F 1BF 2分析三角形的各边长及关系。

解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3cc+3c=2a ∴e= ca= 3-1变形1:椭圆x 2a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率?解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1变形2: 椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1 ⊥X 轴,PF 2 ∥AB,求椭圆离心率? 解:∵|PF 1|= b 2a |F 2 F 1|=2c |OB |=b |OA |=aPF 2 ∥AB ∴|PF 1| |F 2 F 1|= b a 又 ∵b= a 2-c 2∴a 2=5c 2e=55点评:以上题目,构造焦点三角形,通过各边的几何意义及关系,推导有关a 与c 的 方程式,推导离心率。

二、运用正余弦定理解决图形中的三角形 题目2:椭圆x 2a 2 +y 2b 2 =1(a>b >0),A 是左顶点,F是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a 2+b 2a 2+b 2+a 2 =(a+c)2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以a 2e 2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变形:椭圆x 2a 2 +y 2b 2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

; ’. 专题:椭圆的离心率

一,利用定义求椭圆的离心率(ace 或 221abe) 1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率e 32 2,椭圆1422myx的离心率为21,则m [解析]当焦点在x轴上时,32124mm; 当焦点在y轴上时,316214mmm, 综上316m或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是53

4,已知m,n,m+n成等差数列,m,n,mn成等比数列,则椭圆122nymx的离心率为 [解析]由02222mnnmnnmn42nm,椭圆122nymx的离心率为2

2

5,已知)0.0(121nmnm则当mn取得最小值时,椭圆12222nymx的的离心率为23 6,设椭圆2222byax=1(a>b>0)的右焦点为F1,右准线为l1,若过F1且垂直于x轴的弦的长等于点F1到l1的距离,则椭圆的离心率是21。

二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e 1,在RtABC中,90A,1ACAB,如果一个椭圆过A、B两点,它的一个焦点为C,另一个焦点在

AB上,求这个椭圆的离心率 36e 2, 如图所示,椭圆中心在原点,F是左焦点,直线1AB与BF交于D,且901BDB,则椭圆的离心率为( )

[解析] eaccacbab221)(2

15

3,以椭圆的右焦点F2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M、N两点,椭圆的左焦点为F1,直线; ’. MF1与圆相切,则椭圆的离心率是13 变式(1):以椭圆的一个焦点F为圆心作一个圆,使该圆过椭圆的中心O并且与椭圆交于M、N两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13

4,椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,以F1F2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e? 解:∵|F1F2|=2c |BF1|=c |BF2|=3c c+3c=2a ∴e= c a = 3-1

变式(1):椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,点P在椭圆上,使△OPF1 为正三角形,求椭圆离心率? 解:连接PF2 ,则|OF2|=|OF1|=|OP|,∠F1PF2 =90°图形如上图,e=3-1 变式(2) 椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 、F2 ,AB为椭圆的顶点,P是椭圆上一点,且PF1 ⊥X轴,PF2 ∥AB,求椭圆离心率? 解:∵|PF1|= b2 a |F2 F1|=2c |OB|=b |OA|=a PF2 ∥AB ∴|PF1| |F2 F1|= ba 又 ∵b= a2-c2

∴a2=5c2 e=55 变式(3):将上题中的条件“PF2 ∥AB”变换为“PO∥AB(O为坐标原点)”

相似题:椭圆x2 a2 +y2 b2 =1(a>b >0),A是左顶点,F是右焦点,B是短轴的一个顶点,∠ABF=90°,求e? 解:|AO|=a |OF|=c |BF|=a |AB|=a2+b2 a2+b2+a2 =(a+c)2 =a2+2ac+c2 a2-c2-ac=0 两边同除以a2 e2+e-1=0 e=-1+5 2 e=-1-52(舍去)

变式(1):椭圆x2 a2 +y2 b2 =1(a>b >0),e=-1+5 2, A是左顶点,F是右焦点,B是短轴的一个顶点,求∠ABF? 点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。答案:90° 引申:此类e=5-12的椭圆为优美椭圆。 性质:(1)∠ABF=90° (2)假设下端点为B1 ,则ABFB1 四点共圆。 (3)焦点与相应准线之间的距离等于长半轴长。

变式(2): 椭圆12222byax(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则

椭圆的离心率e = 215 . 提示:内切圆的圆心即原点,半径等于c,又等于直角三角形AOB斜边上的高,∴由面积得:22barab,但cr

4,设椭圆)(0ba1byax2222的左、右焦点分别为21FF、,如果椭圆上存在点P,使90PFF21,求离心率e的取值范围。 解:设0,cF,0,cF,y,xP21 法1:利用椭圆范围。 ; ’. 由PFPF21得222cyx,将这个方程与椭圆方程联立,消去y,可解得2222222babacax2222)(eaca。

由椭圆的性质知22ax0,得),以122[e。 附:还可以用参数的方法也能求出离心率的范围(与法1类似) 法2:判别式法。 由椭圆定义知||||||||||||PFPFaPFPFPFPFa121222122224,又因为9021PFF, 可得222122214||||||cFFPFPF,则)(2||||2221caPFPF22b,

1PF,2PF是方程02222bazz的两个根,则22210)(84222222eacecaa

解法3:正弦定理 设记PFFPFF1221,,由正弦定理有 ||sinsin||||90sin||sin||sin||21212121FFPFPFFFPFPF 又因为cFFaPFPF2||2||||2121,,且90 则

)4sin(21cossin1sinsin1ace

20 4344 则1)4sin(22,2)4sin(21



所以122e 解法5:利用基本不等式由椭圆定义,有212aPFPF||||平方后得 42228212221212221222aPFPFPFPFPFPFFFc||||||||(||||)||

得ca2212所以有,)e[221

解法6:巧用图形的几何特性 由FPF1290,知点P在以||FFc122为直径的圆上。 又点P在椭圆上,因此该圆与椭圆有公共点P,故有cbcbac2222 变式(1):圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 (-c,0)、F2 (c,0),P是以|F1F2|为直径的圆与椭圆的一个交点,且∠PF1F2 =5∠PF2F1 ,求椭圆的离心率e 分析:此题有角的值,可以考虑正弦定理的应用。

解:由正弦定理:|F1F2|sin F1PF2 = |F1P|sin F1F2P 212sinFPFPF 根据和比性质: ; ’. x

y

A1 B2 A2 O T

M

|F1F2|sin F1PF2 = |F1P|+|PF2| sinF1F2P+sin PF1F2 变形得: |F1F2| |PF2|+|F1P| =sin F1PF2 sin F1F2P +sin PF1F2 ac2

2=e

∠PF1F2 =75°∠PF2F1 =15° e= sin90° sin75°+sin15° =63 点评:在焦点三角形中,使用第一定义和正弦定理可知e=sin F1PF2 sin F1F2P +sin PF1F2 变式(2):椭圆x2 a2 +y2 b2 =1(a>b >0)的两焦点为F1 (-c,0)、F2 (c,0),P是椭圆上一点,且∠F1PF2 =60°,求椭圆离心率e的取值范围? 分析:上题公式直接应用。

解:设∠F1F2P=α,则∠F2F1P=120°-α e=sin F1PF2 sin F1F2P +sin PF1F2 = sin60° sinα+sin(120°-α) = 1 2sin(α+30°)≥12 ∴12≤e<1

变式(3):过椭圆22221xyab(0ab)的左焦点1F作x轴的垂线交椭圆于点P,2F为右焦点,若1260FPF,则椭圆的离心率e的值

解析:因为2(,)bPca,再由1260FPF有232,baa从而得33cea 变式(4):若BA,为椭圆)0(12222babyax的长轴两端点,Q为椭圆上一点,使0120AQB,求此椭圆离心率的最小值。{136e} 变式(5):8、椭圆012222babyax上一点A关于原点的对称点为B,F为其右焦点,若BFAF,设ABF

,且4,12,则椭圆的离心率的取值范围为

解析:设F为椭圆左焦点,因为对角线互相平分,所以四边形FAFB为平行四边形且为矩形,cAB2,cos2,sin2cBFcAF

,acc2cos2sin2,所以4sin21cossin1ace,由



4,

12

得3622e。

6,如图,在平面直角坐标系xoy中,1212,,,AABB为椭圆22221(0)xyabab的四个顶点,F为其右焦点,直线12AB与直线1BF相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为 .

相关文档
最新文档