(北师大版)七年级数学下册期中考题精选
北师大版数学七年级下册《期中考试卷》含答案

北 师 大 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x + B .32x xC .3x xD .72x x -2.计算()2019201821.53⎛⎫-⨯ ⎪⎝⎭的结果是( ) A .32-B .32C .23-D .233.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x -- B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+ C .22(1)(1)x x -+=+D .22(1)(1)x x +=-7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += .12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 .13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .14.若2249x kxy y ++是一个完全平方式,则k 的值为 .15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 .17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . 三.解答题(共3小题,每小题6分,满分18分)18011(2(2)()|3-+-+--19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?四.解答题(共3小题,每小题8分,满分24分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.22.已知24a =,26b =,212c = (1)求证:1a b c +-=; (2)求22a b c +-的值.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?五.解答题(共2小题,每小题10分,满分18分) 24.观察下列关于自然数的等式: (1)223415-⨯= (1) (2)225429-⨯= (2) (3)2274313-⨯= (3) ⋯根据上述规律解决下列问题: (1)完成第五个等式:2114-⨯2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性. 25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由. 解:过点E 作直线//EF CD 2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ ) 1(B ∴∠=∠ ) 12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度. 方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠= 度.答案与解析一.选择题(共10小题,满分30分,每小题3分) 1.下列各式中计算结果为5x 的是( ) A .32x x +B .32x xC .3x xD .72x x -[解析]A .不是同类项不能合并,所以A 选项不符合题意; B .325x x x =.符合题意;C .34x x x =,不符合题意;D .不是同类项不能会并,不符合题意.故选:B .2.计算201820192( 1.5)()3-⨯的结果是( ) A .32-B .32C .23-D .23[解析]201820192( 1.5)()3-⨯2018201822(1.5)()33=⨯⨯2018322()233=⨯⨯ 2018213=⨯213=⨯23=. 故选:D .3.计算63a a ÷,正确的结果是( ) A .2B .3aC .2aD .3a[解析]由同底数幂除法法则:底数不变,指数相减知,63633a a a a -÷==.故选:D . 4.计算23(3)2x x -的结果是( ) A .65x -B .66x -C .55x -D .56x -[解析]23(3)2x x -56x =-,故选:D .5.下列多项式相乘,不能用平方差公式计算的是( ) A .(23)(32)x y y x --B .(23)(23)x y x y -+--C .(2)(2)x y y x -+D .(3)(3)x y x y +-[解析](23)(32)x y y x --不能利用平方差公式计算,故选:A . 6.下列等式成立的是( ) A .22(1)(1)x x --=- B .22(1)(1)x x --=+C .22(1)(1)x x -+=+D .22(1)(1)x x +=-[解析]A .22(1)(1)x x --=+,故本选项不合题意; B .22(1)(1)x x --=+,正确;C .22(1)(1)x x -+=-,故本选项不合题意;D .22(1)(1)x x +=+,故本选项不合题意.故选:B .7.计算3(42)2x x x -+÷的结果正确的是( ) A .221x -+B .221x +C .321x -+D .482x x -+[解析]3(42)2x x x -+÷3(4)222x x x x =-÷+÷221x =-+故选:A .8.下列各图中,1∠与2∠是对顶角的是( ) A .B .C .D .[解析]A 、1∠与2∠不是对顶角,故A 选项不符合题意; B 、1∠与2∠不是对顶角,故B 选项不符合题意;C 、1∠与2∠是对顶角,故C 选项符合题意;D 、1∠与2∠不是对顶角,故D 选项不符合题意.故选:C .9.如图,下列结论中错误的是( )A .1∠与2∠是同旁内角B .1∠与6∠是内错角C .2∠与5∠是内错角D .3∠与5∠是同位角[解析]A 、1∠与2∠是同旁内角,正确,不合题意;B 、1∠与6∠是内错角,正确,不合题意; C 、2∠与5∠是内错角,错误,符合题意;D 、3∠与5∠是同位角,正确,不合题意;故选:C .10.如图,//AB EF ,设90C ∠=︒,那么x 、y 和z 的关系是( )A .y x z =+B .90x y z +-=︒C .180x y z ++=︒D .90y z x +-=︒[解析]过C 作//CM AB ,延长CD 交EF 于N ,则CDE E CNE ∠=∠+∠,即CNE y z ∠=-//CM AB ,//AB EF ,////CM AB EF ∴,1ABC x ∴∠==∠,2CNE ∠=∠,90BCD ∠=︒,1290∴∠+∠=︒,90x y z ∴+-=︒.故选:B .二.填空题(共7小题,满分28分,每小题4分) 11.已知(1)(1)80m n m n +-++=,则m n += . [解析](1)(1)80m n m n +-++=,22()180m n +-=, 2()81m n +=,9m n +=±,故答案为:9±.12.在关系式31y x =-中,当x 由1变化到5时,y 由 变化到 . [解析]当1x =时,代入关系式31y x =-中,得312y =-=;当5x =时,代入关系式31y x =-中,得15114y =-=. 故答案为:2,14.13.已知,梯形的高为8cm ,下底是上底的3倍,设这个梯形的上底为xcm ,面积为2Scm ,这个问题中,常量是 ,变量是 .[解析]常量是梯形的高,变量是梯形的上下底和面积, 故答案为:梯形的高,梯形的上下底和面积.14.若2249x kxy y ++是一个完全平方式,则k 的值为 . [解析]2249x kxy y ++是一个完全平方式,12k ∴=±,故答案为:12±15.如图,在ABC ∆中,以点C 为顶点,在ABC ∆外画ACD A ∠=∠,且点A 与D 在直线BC 的同一侧,再延长BC 至点E ,在作的图形中,A ∠与 是内错角;B ∠与 是同位角;ACB ∠与 是同旁内角.[解析]如图所示,A ∠与ACD ∠、ACE ∠是内错角;B ∠与DCE ∠、ACE ∠是同位角;ACB ∠与A ∠、B ∠是同旁内角.故答案是:ACD ∠、ACE ∠;DCE ∠、ACE ∠;A ∠、B ∠.16.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为 . [解析]数字55000用科学记数法表示为45.510⨯. 故答案为:45.510⨯.17.已知,在同一平面内,50ABC ∠=︒,//AD BC ,BAD ∠的平分线交直线BC 于点E ,那么AEB ∠的度数为 . [解析]分两种情况:①当D 点在A 点左侧时,如图1所示,此时AE 交CB 延长线于E 点,//AD BC ,50DAB ABC ∴∠=∠=︒.AE 平分DAB ∠,1252EAB DAB ∴∠=∠=︒, 502525AEB ∴∠=︒-︒=︒;②当D 点在A 点右侧时,如图2所示,此时AE 交BC 于E 点,//AD BC ,180********DAB ABC ∴∠=︒-∠=︒-︒=︒. AE 平分DAB ∠,1652EAB DAB ∴∠=∠=︒, 180506565AEB ∴∠=︒-︒-︒=︒.综上所述,25AEB ∠=︒或65︒. 故答案为25︒或65︒.三.解答题(共3小题,满分18分,每小题6分)18011(2(2)()|3-+-+--[解析]原式34513=+-+-19.化简:222(23)(23)(3)x x y x y x y +-+----,其中2x =-,1y =-. [解析]原式2222224969x x y x xy y =+--+-225618x xy y =+-当2x =-,1y =-时,原式5462181=⨯+⨯-⨯ 14=.20.(1)如图,以B 为顶点,射线BC 为一边,用直尺和圆规作CBE ∠,使CBE CAD ∠=∠; (2)在所作图中,BE 与AD 平行吗?为什么?[解析](1)如图,CBE ∠即为所求;(2)CBE CAD ∠=∠,//BE AD ∴(同位角相等,两条直线平行).四.解答题(共3小题,满分28分,每小题8分)21.如图,在四边形ABCD 中,连接BD ,点E 、F 分别在AB 和CD 上,连接CE 、AF ,CE 与AF 分别交BD 于点N 、M .已知AMD BNC ∠=∠.(1)若110AFC ∠=︒,求ECD ∠的度数;(2)若ABD BDC ∠=∠,试判断ECD ∠与BAF ∠之间的数量关系,并说明理由.[解析](1)AMD BMF ∠=∠,AMD BNC ∠=∠, BMF BNC ∴∠=∠,//AF CE ∴,180AFC ECD ∴∠+∠=︒, 110AFC ∠=︒, 70ECD ∴∠=︒;(2)ECD ∠与BAF ∠相等,理由是:ABD BDC ∠=∠,//AB CD ∴,180AFC BAF ∴∠+∠=︒,180AFC ECD ∠+∠=︒,ECD BAF ∴∠=∠.22.已知24a =,26b =,212c =(1)求证:1a b c +-=;(2)求22a b c +-的值.[解析](1)证明:24a =,26b =,212c =,222462122a b c ∴⨯÷=⨯÷==,1a b c ∴+-=,即1a b c +-=;(2)解:24a =,26b =,212c =,222(2)22a b c a b c +-∴=⨯÷16612=⨯÷8=.23.如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分EAQ ∠,CD 平分ACN ∠,如果//PQ MN ,那么AB 与CD 平行吗?为什么?[解析]如果//PQ MN ,那么AB 与CD 平行.理由如下:如图,//PQ MN ,EAQ ACN ∴∠=∠.又AB 平分EAQ ∠,CD 平分ACN ∠,112EAQ ∴∠=∠,122ACN ∠=∠, 12∴∠=∠,//AB CD ∴,即AB 与CD 平行.五.解答题(共3小题,满分27分,每小题9分)24.观察下列关于自然数的等式:(1)223415-⨯= (1)(2)225429-⨯= (2)(3)2274313-⨯= (3)⋯根据上述规律解决下列问题:(1)完成第五个等式:2114-⨯ 2= ;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.[解析](1)22114521-⨯=,故答案为:5;21;(2)第n 个等式为:22(21)441n n n +-=+,证明:2222(21)4441441n n n n n n +-=++-=+.25.感知与填空:如图①,直线//AB CD .求证:B D BED ∠+∠=∠.阅读下面的解答过程,井填上适当的理由.解:过点E 作直线//EF CD2(D ∴∠=∠ )//AB CD (已知),//EF CD ,//(AB EF ∴ )1(B ∴∠=∠ )12BED ∠+∠=∠,(B D BED ∴∠+∠=∠ )应用与拓展:如图②,直线//AB CD .若22B ∠=︒,35G ∠=︒,25D ∠=︒,则E F ∠+∠= 度.方法与实践:如图③,直线//AB CD .若60E B ∠=∠=︒,80F ∠=︒,则D ∠=度.[解析]感知与填空:过点E 作直线//EF CD ,2D ∴∠=∠(两直线平行,内错角相等),//AB CD (已知),//EF CD ,//AB EF ∴(两直线都和第三条直线平行,那么这两条直线也互相平行),1B ∴∠=∠(两直线平行,内错角相等),12BED ∠+∠=∠,B D BED ∴∠+∠=∠(等量代换),故答案为:两直线平行,内错角相等;两直线都和第三条直线平行,那么这两条直线也互相平行;两直线平行,内错角相等;等量代换.应用与拓展:过点G 作//GN AB ,则//GN CD ,如图②所示:由感知与填空得:E B EGN ∠=∠+∠,F D FGN ∠=∠+∠,22253582E F B EGN D FGN B D EGF ∴∠+∠=∠+∠+∠+∠=∠+∠+∠=︒+︒+︒=︒, 故答案为:82.方法与实践:设AB 交EF 于M ,如图③所示:180180806040AME FMB F B ∠=∠=︒-∠-∠=︒-︒-︒=︒,由感知与填空得:E D AME ∠=∠+∠,604020D E AME ∴∠=∠-∠=︒-︒=︒,故答案为:20.。
新北师大版七年级数学下册期中测试题

新北师大版七年级数学下册期中测试题北师大版七年级下册期中试卷班级。
姓名。
得分:一、选择题(本大题共10小题,每小题3分,共30分)1.在代数式x^2+5x+51,-1,x^2-3x,π,x^2+2中是整式的有()个。
A.3.B.4.C.5.D.62.两直线被第三条直线所截,则(。
)。
A.内错角相等B.同位角相等C.同旁内角互补D.以上结论都不对3.下列各式计算正确的是(。
)。
A.a÷a=aB.2a-a=2.C.a×a=aD.(a)^2=a4.下列说法正确是()。
A.4不是单项式B.负数的系数是XXX的次数是3.D.πr的次数是3.5.如图,AB∥CD,下列结论中错误的是()。
A.∠1=∠2B.∠2+∠5=180°C.∠3+∠4=180°D.∠2+∠3=180°6.2008年北京承办奥运会取得圆满成功。
据统计某日奥运会网站的访问人次为,用四舍五入法取近似值保留两个有效数字,得()。
A.2.0×10^5B.2.0×10^6C.2×10^5D.0.2×10^77.下列各题中的数据,哪个是精确值?A.客车在公路上的速度是60km/hB.我们学校大约有1000名学生C.XXX家离学校距离是3km。
D.从学校到火车站共有10个红灯路口8.下列各式中不能用平方差公式计算的是()。
A.(x-y)(-x+y)B.(-x+y)(-x-y)C.(-x-y)(x-y)D.(x+y)(-x+y)9.如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()。
A.30°B.60°C.90°D.120°10.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()。
A.1/4B.3/5C.1/5D.1/15二、填空题(本大题共6小题,每小题3分,共18分)11.计算:4×(-0.25)= 0.8.12.(x-3y)(x+3y)= x^2-9y^2.13.一个角的补角的余角等于65°,则这个角等于25°。
北师大版七年级下册数学《期中考试试题》及答案

所以DE∥BC()
所以∠B+∠BDE=180°()
因为∠DEF=∠B(已知)
所以∠DEF+∠BDE=180°()
所以___∥___()
所以∠1=∠2().
23.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.
(1)如图1,连接CE,
A. y=8.2xB. y=100-8.2xC. y=8.2x-100D. y=100+8.2x
8.如图,由∠1=∠2,则可得出()
A.AB∥CDB.AD∥BCC.A D∥BC且AB∥CDD.∠3=∠4
9.已知一个长方形的长为a,宽为b,它的面积为6,周长为10,则a2+b2的值为( )
A 37B. 30C. 25D. 13
10.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()
A B. C. D.
11.如图,AD是△ABC的中线,△ABC的面积为10cm2,则△ABD的面积是()cm2.
A.5B.6C.7D.8
12.如图①,在长方形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图像如图②所示,则当x=9时,点R应运动到( )
[详解]解:∵骆驼的体此题考查常量和变量问题,函数的定义:设x和y是两个变量,若对于每个值x的每个值,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,x是自变量.
3.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()
6.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()
北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)

北师大版初中数学七年级下册期中测试卷(较易)(含答案解析)考试范围:第一.二.三单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:−3xy(4y−2x−1)=−12xy2+6x2y+▫,▫的地方被钢笔水弄污了,你认为▫内应为( )A. 3xyB. −3xyC. −1D. 12. 下列计算中正确的是( )A. (−a n)2=a n+2B. (−a3)4=(−a4)3C. (a4)4=a4⋅a4D. (a4)4=(a2)83. 如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧4. 如图,∠1=120°,要使a//b,则∠2的大小是( )A. 60°B. 80°C. 100°D. 120°5. 如图所示,已知AB//EF,那么∠BAC+∠ACE+∠CEF=( )A. 180°B. 270°C. 360°D. 540°6. 变量x与y之间的关系是y=−1x2+1,当自变量x=2时,因变量y的值是( )2A. −2B. −1C. 1D. 27. 如图是某市一天的温度变化曲线图,通过该图可知,下列说法错误的是( )A. 这天15点时的温度最高B. 这天3点时的温度最低C. 这天最高温度与最低温度的差是13℃D. 这天21点时的温度是30℃8. 甲、乙两人在100米赛跑中,路程s(m)与时间t(s)的关系如图所示,根据图象,下列结论错误的是( )A. 甲比乙先到达终点B. 甲、乙速度相差2m/sC. 甲的速度为10m/sD. 乙跑完全程需12s9. 计算x2⋅x3结果是( )A. 2x5B. x5C. x6D. x810. 在等式x2⋅(−x)⋅=x11中,括号内的代数式为( )A. x8B. (−x)8C. −x9D. −x811. 如图,DE//BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为( )A. 20°B. 35°C. 55°D. 70°12. 下图是统计一位病人的体温变化图,则这位病人在16时的体温约是( )A. 37.8℃B. 38℃C. 38.7℃D. 39.1℃第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 一个长方体的长,宽,高分别是3x−4,2x和x,则它的表面积是.14. 已知直线m//n,将一块含30°角的直角三角板ABC,按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=18°,则∠2的度数为______15. 如图,已知直线AB与直线CD相交于点O,EO⊥CD,垂足为O.若∠AOC=35°,则∠BOE 的度数为____ ∘.16. 小颖画了一个边长为5cm的正方形,如果将正方形的边长增加x(cm),那么面积的增加值y(cm2)与边长的增加值x(cm)之间的关系式为.三、解答题(本大题共9小题,共72.0分。
北师大版七年级下册数学期中考试卷(加答案)

北师大版七年级下册数学期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c2.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为()A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5 4.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)5.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB6.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118°B.119°C.120°D.121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b10.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4+x x -有意义,+1x =___________.5.若264a =,则3a =________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩2.解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩并在数轴上表示出不等式组的解集.3.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.4.如图,已知∠1,∠2互为补角,且∠3=∠B ,(1)求证:∠AFE=∠ACB(2)若CE 平分∠ACB ,且∠1=80°,∠3=45°,求∠AFE 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、A4、C5、C6、C7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、03、15°4、15、±26、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、-1≤x<23、(1)证明见解析;(2)75.4、(1)详略;(2)70°.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、安排25人加工甲部件,则安排60人加工乙部件,共加工200套.。
北师大版数学七年级下册《期中考试卷》(含答案解析)

【答案】B
【解析】
【分析】
直接利用矩形周长和面积公式得出a+b,ab,进而利用提取公因式法分解因式得出答案.
【详解】∵边长分别为a、b的长方形的周长为10,面积6,
∴2(a+b)=10,ab=6,
则a+b=5,
故ab2+a2b=ab(b+a)
=6×5
=30.
故选:B.
②BE+BD=;
(2)如图2,若AP=1,请计算BE+BD的值.
答案与解析
一、选择题(每题3分,共36分)
1.以下是各种交通标志指示牌,其中不是轴对称图形的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.
【详解】A、是轴对称图形,故本选项不符合题意;
A.AB=AEB.BC=EDC.∠C=∠DD.∠B=∠E
10.如图,直线a、b被直线c所截,下列条件中,不能判断直线a、b平行的是( )
A.
B.
C.
D.
11.一个蓄水池有15 m3的水,以每分钟0.5 m3的速度向池中注水,蓄水池中的水量Q(m3)与注水时间t(分)间的函数表达式为(C)
A.Q=0.5tB.Q=15tC.Q=15+0.5tD.Q=15-0.5t
故选:A.
【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)= .
5.下列说法正确的是( )
A. 如果两个角相等,那么这两个角是对顶角
B. 内错角相等
C. 过直线外一点有且只有一条直线与已知直线平行
北师大版七年级下册数学期中试卷及答案
北师大版七年级下册数学期中试卷及答案一、选择题:细心选一选(每题3分,共30分)1、对于下列式子:①ab;②x2-xy;③x2+2x+1;④m+n,其中多项式有()个。
A、2B、3C、1D、42、下列各式计算准确的是()A、(2a3)2=4a6;B、a2a4=a8;C、c6÷c=c6 ;D、(x+2)2=x2+43、已知:如图AB∥CD,CE平分∠ACD,∠A=120°,则∠ECD等于()A、120°B、30°C、55°D、35°4、下列说法不准确的是:()A、内错角相等,两直线平行;B、两直线平行,同旁内角互补;C、同角的补角相等;D、相等的角是对顶角5、下列计算结果准确的是()A、(a+3)(a-4)=a2-12B、(2x-3y) 2= 4x2-9y2C、(-3x2y)3=-9x6y3D、(x+2y)(2y-x)=4y2-x26、下列不能用平方差公式计算的是()A(x-y)(-x+y) B、(-x+y)(-x-y)C、(-x-y)(x-y)D、(x+y)(-x+y)7、如果一个角的补角是150°,那么这个角的余角的度数是()A、30°;B、60°;C、90°;D、120°8、当老师讲到“肥皂泡的厚度是0.00000007m时,小明举手说‘老师我能够用科学记数法表示它的厚度。
’”同学们你不妨也试试。
请选择()A、0.7×10-7mB、0.7×10-8mC、7×10-8mD、7×10-7m9、两整式乘积结果为a2+7a+12的是()A、(a+3)(a-4)B、(a+3)(a+4)C、(a+6)(a-2)D、(a-6)(a+2)10、如图,不能推出∥ 的条件是()A.、∠1=∠3 B、∠2=∠4C 、∠2 =∠3. D.、∠2+∠3=180°二、填空题,耐心填一填(每空2分,共30分)11、代数式5abc,-7x2+1,-5x,中,单项式有个,多项式共有12、单项式-7a2bx的系数是,次数是;13、计算:(-3)5×(-3)7= 5m÷5n=(23)m= (a2b)m=14、用分数表示下列各数:6×6-2= 3-2×()0=15、0.00001023表示成科学记数法为16、∠1与∠2互余,∠2与∠3互补,且∠1=63°,那么∠3=17、如图,AB∥DC,∠B=60°,那么∠DCE的度数是18、A=2x2-3x+1,B=-3x2+5x-7,则A-2B=______________19、小颖看小明是北偏东30°,那么小明看小颖时,它的方向是三、解答题,认真做一做20、计算:(每题5分,共30分)(1)(y3)2÷y6 (2)( a2b3)(-15a2b2)(3)-(10x3+2xy2+y3)+(10x3+3xy2-8y3)(4)(2x+y)(x-y)(5)用乘法公式计算:(3x+9)(3x-9)(6)化简求值:b(a+b)+(a-b)2-a2-2b2其中a= ,b=321、完成下列推理(5分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G,(1)完成下面的证明:∵ MG平分∠BMN(),∴ ∠GMN=∠BMN(),同理∠GNM=∠DNM.∵ AB∥CD(),∴ ∠BMN+∠DNM=________().∴ ∠GMN+∠GNM=________.∵ ∠GMN+∠GNM+∠G=________(),∴ ∠G= ________.∴ MG与NG的位置关系是________.22、(5分)作图:已知∠1,∠2如图所示,用尺规作图画出∠AOB=∠1+∠2保留作图痕迹23、(5分)如图,AB∥CD,∠1=∠2,∠BDF与∠EFC相等吗?为什么?24、(5分)如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,•规划部门计划将阴影部分实行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?•并求出当a=3,b=2时的绿化面积.25、(5分)图为一位旅行者在早晨8时从城市出发到郊外所走的路程S(单位:千米)与时间t(单位:时)的变量关系的图象。
北师大版七年级下学期期中考试数学试卷(带答案)
七年级下学期期中考试数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第三章《变量之间的关系》班级姓名得分卷Ⅰ一、选择题(本大题共15小题,每小题3分,共45.0分。
在每小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.某学习小组做了一个试验:从一幢100m高的楼顶随手放下一只苹果(此试验在安全的环境下进行),测得有关数据如下:下落时间t(s)1234下落高度ℎ(m)5204580则下列说法错误的是()A. 苹果每秒下落的高度不变B. 苹果每秒下落的高度越来越长C. 苹果下落的速度越来越快D. 可以推测,苹果落到地面的时间不超过5秒2.下列图形中,∠1与∠2是同旁内角的是()A. B.C. D.3.x n−1⋅()=x n+1,括号内应填的代数式是()A. x n+1B. x n−1C. x2D. x4.冠状病毒的直径约为80∼120纳米,1纳米=1.0×10−9米.若用科学记数法表示110纳米,则正确的结果是()A. 1.1×10−9米B. 1.1×10−8米C. 1.1×10−7米D. 1.1×10−6米5.如果x2+kx+4恰好是另一个整式的平方,那么k的值为()A. 2B. 4C. −4D. ±46.如图,已知两直线l1与l2被第三条直线l3所截,下列等式一定成立的是()A. ∠1=∠2B. ∠2=∠3C. ∠2+∠4=180∘D. ∠1+∠4=180∘7.一跳远运动员跳落沙坑时的痕迹如图所示,则表示运动员成绩的是()A. 线段AP1的长B. 线段BP1的长C. 线段CP2的长D. 线段CP3的长8.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的关系为()A. y=20xB. y=40xC. y=10+30xD. y=10x+309.张大伯出去散步,从家走了20min,到了一个离家900m的阅报亭,看了10min报纸后,用了15min返回到家,如图图象中能表示张大伯离家时间与距离之间关系的是()A. B.C. D.10.在一条笔直的航道上依次有甲、乙、丙三个港口,一艘船从甲出发,沿直线匀速行驶经过乙港驶向丙港,最终达到丙港,设行驶x(ℎ)后,与乙港的距离为y(km),y与x的关系如图所示,则下列说法正确的是()A. 甲港与丙港的距离是90kmB. 船在中途休息了0.5ℎC. 船的行驶速度是45km/ℎD. 从乙港到达丙港共花了1.5ℎ11.如图,2条直线相交最多有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,...,按照此规律,n条直线相交最多有()个交点.A. n(n−1)2B. n(n+1)2C. (n−1)(n+1)2D. 无法确定12.若(−2x+a)(x−1)展开后的结果中不含x的一次项,则()A. a=1B. a=−1C. a=−2D. a=213.a表示两个相邻整数的平均数的平方,b表示这两个相邻整数平方的平均数,那么a与b的大小关系是()A. a>bB. a≥bC. a≤bD. a<b14.如图所示,同位角共有()A. 6对B. 8对C. 10对D. 12对15.一辆汽车由韶关匀速驶往广州,下列图象中大致能反映汽车距离广州的路程S(千米)和行驶时间t(小时)的关系的是()A. B. C. D.卷Ⅱ二、填空题(本大题共5小题,共25.0分)16.鸡蛋每个0.8元,那么所付款y(元)与所买鸡蛋个数x(个)之间的函数解析式是______.17.如图,点O在直线l上,当∠1与∠2满足条件时,OA⊥OB.18.用科学记数法表示0.0000109为__________________.19.观察下列图形,2条直线相交,有1个交点,3条直线相交最多有3个交点,4条直线相交最多有6个交点,…,像这样,10条直线相交最多有______个交点.20.根据图中的程序,当输入x=3时,输出的结果y=.三、解答题(本大题共7小题,共80.0分)a),其中a、b21.(8分)先化简,再求值:[(a−b)2+(2a+b)(1−b)−b]÷(−12满足|a+1|+(2b−1)2=0.22.(8分)如图,已知∠AOB=50°,OC平分∠AOB.(1)请在图中∠AOB的外部画出它的一个余角∠BOD;(2)求∠COD的度数.23.(10分)王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?24.(12分)已知a x⋅a y=a5,a x÷a y=a.(1)求x+y和x−y的值;(2)求x2+y2的值.25.(12分)如图所示,l1,l2,l3相交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.26.(14分)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订立月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1与y2分别与x之间的数量关系图象(两条射线)如图所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租个体车主的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租哪家的车合算27.(16分)如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD.(1)图中∠AOF的余角是;(把符合条件的角都填出来)(2)图中除直角相等外,还有相等的角,请写出三对: ①; ②; ③;(3) ①如果∠AOD=160∘,那么根据可得∠BOC=; ②如果∠AOD=4∠EOF,求∠EOF的度数.答案1.A2.C3.C4.C5.D6.D7.B8.D9.C10.D11.A12.C13.D14.C15.B16.y=0.8x17.∠1+∠2=90∘18.1.09×10−519.4520.2a),21.解:原式=(a2−2ab+b2+2a−2ab+b−b2−b)÷(−12a),=(a2−4ab+2a)÷(−12=−2a+8b−4,∵|a+1|+(2b−1)2=0,又∵|a+1|≥0,(2b−1)2≥0,∴a=−1.b=1,2∴原式=2+4−4=2.22.解:(1)如图:(2)∵∠AOB=50°,OC平分∠AOB,∴∠AOC=∠BOC=25°,又∵∠AOB与∠BOD互余,∴∠AOB+∠BOD=90°,∴∠BOD=90°−50°=40°,∴∠COD=∠COB+∠BOD=25°+40°=65°.故答案为:65°.23.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.24.解:(1)x+y=5,x−y=1.(2)x2+y2=13.25.解:设∠1=∠2=x∘,则∠3=8x∘.由∠1+∠2+∠3=180∘,得10x=180.解得x=18.所以∠1=∠2=18∘.所以∠4=∠1+∠2=36∘.26.解:(1)每月行驶的路程小于1500千米时,租个体车主的车合算.(2)每月行驶的路程等于1500千米时,两家车的费用相同.(3)由2300>1500可知,如果这个单位估计每月行驶的路程为2300千米,那么这个单位租出租车公司的车合算.27.解:(1)∠EOF,∠BOD,∠AOC(2)(答案不唯一) ①∠AOC=∠EOF ②∠AOC=∠BOD ③∠DOE=∠AOF(3) ①对顶角相等160∘ ②因为∠AOC=∠EOF,所以∠AOD=4∠EOF=4∠AOC.又因为∠AOC+∠AOD=180∘,所以5∠AOC=180∘.所以∠EOF=∠AOC=36∘.。
【北师大版】七年级数学下册期中考试试题卷汇总(精选、)
北师大版七年级第二学期数学期中试题一、慧眼识金:(每小题2分,共15小题,30分)1在代数式22221,5,,3,1,35xx x x x x +--+π中是整式的有( )个 A 、3 B 、4 C 、5 D 62、下列说法错误的是 ( )A、内错角相等,两直线平行. B、两直线平行,同旁内角互补. C、同角的补角相等. D、相等的角是对顶角.3、下列计算正确的是 ( )A 、 623a a a =⋅B 、 a a a =-23C 、 32)()(a a a -=-⋅-D 、326a a a =÷4、如图,已知:∠1=∠2,那么下列结论正确的是______A .∠C=∠DB .AD ∥BCC .AB ∥CD D .∠3=∠45、下列各题中的数据,哪个是精确值?______A .客车在公路上的速度是60km/hB .我们学校大约有1000名学生C .小明家离学校距离是3kmD .从学校到火车站共有10个红灯路口6、如图,1∠与2∠是对顶角的是 ( )A. B. C. D.7、下列各式中不能用平方差公式计算的是( )A 、))((y x y x +--B 、))((y x y x --+-C 、))((y x y x ---D 、))((y x y x +-+8、下列说法正确的是 ( )A 、相等的角是对顶角B 、两条直线相交所成的角是对顶角C 、对顶角相等D 、有公共顶点且又相等的角是对顶角9、如果一个角的补角是150°,那么这个角的余角的度数是( )A 、30°B 、60°C 、90°D 、12010、下列说法正确的是………………………………..( )A 、31012.3⨯精确到百分位。
B 、312000精确到千位。
C 、3.12万精确到百位。
D 、0.010230有四个有效数字。
11、一只口袋里共有3只红球,2只黑球,1只黄球,现在小明任意摸出一个球,则摸出一只黑球的概率是( )A 、41B 、61C 、21 D 、31 12、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( ) A 、154 B 、31 C 、51 D 、152 13、当老师讲到“肥皂泡的厚度为0.00000007m 时,小明立刻举手说‘老师,我可以用科学记数法表示它的厚度。
北师大版数学七年级下册期中考试试卷及答案
北师大版数学七年级下册期中考试试题(本试卷满分120分 时间100分钟)一、选择题(每小题3分,共36分,每小题只有唯一正确答案)1.纳米是长度单位,纳米技术已广泛应用于各个领域,已知1纳米=0.000000001米,某原子的直径大约是2纳米,用科学记数法表示该原子的直径约为( )A.米9102.0-⨯B.米8102-⨯C.米9102-⨯D.米10102-⨯2.下列原式中结果正确的是A.3332x x x =⋅B.422523x x x =+C.()632x x = D.()222y x y x -=- 3.如图,∠1与∠2不能构成同位角的图形的是4.已知,如图,AB ∥CD ,∠ACD=55°,则∠BAC=A.125°B.35°C.135°D.55°5.下列说法:(1)两条直线被第三条直线所截,内错角相等;(2)相等的角是对顶角;(3)互余的两个角一定都是直角;(4)互补的两个角一定有钝角,其中正确的有A.0个B.1个C.2个D.3个6.下列式子正确的是( )A.()()22y x y x y x -=+--B.()()ab b a b a 422+-=+ C.()63244m m -=- D.y y x y x 3319323-=⎪⎭⎫ ⎝⎛-÷ 7.已知多项式6422+-kx x 是完全平方式,则k 的值为( )A.8B.8±C.16D.16±8.下列算式能用平方差公式计算的是A.()()a b b a -+22B.⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+121121x x C.()()b a b a --+- D.()()y x y x +--339.已知:,,23=-=n m a a 则=+n m aA.-1 B=-5 C.6 D.-610.如图,在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°,现A 、B 两地要同时开工,若干天后公路准确对接,则B 地所修公路的走向应该是A.东偏南52°B.北偏西52°C.西偏北52°D.北偏西38°11.()()12322---x x x mx 乘积中不含3x 项,则m 的值是A.-2B.-1.5C.3D.2.512.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC ∥DE ,则∠BAD(0°<∠BAD <180°)其它所有可能符合条件的度数为A.60°和135°B.75°和105°C.30°和45°D.以上都有可能二、填空题(本题共4小题,每小题3分,共12分,只需将正确结果写在横线上)13.计算:()=÷532x x ________.14.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2=______°.15.如下图,任意输入一个非零数,则输出数是________.16.如图,A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中1l 和2l 分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法: ①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、解答题
17、计算:
(1)计算
(-1) +(- )-2-(3.14-π)0
(2) (3)
18已知一个角的补角等于这个角的余角的4倍,求这个角的度数。
19、化简求值:
已知 ,求 的值。
20、解方程:
20、下图是明明作的一周的零用钱开支的统计图(单位:元)
北师版七年级下数学期中考试模拟题(四)
一、选择题(第1~8题为B层次题目,每小题3分,共24分)
1、单项式 的系数和次数分别为【】
A、- ,2B、- ,3C、 ,2D、 ,3
2、用科学计数法表示0.0000907,并保留两个有效数字得【】
A、 B、 C、 D、
3、下列计算正确的是【】
A、 B、 C、 D、
A、1 B、2 C、3 D、4
10、有一道四选一的数学题,小强同学全靠猜,那么他猜中的概率是()
A、 B、 C、 D、
二、填空(每题3分,共3 0分)
11、单项式 的系数为,次数为,写一个他的同类项。
12、计算:3x-5x=, =, 。
13、计算: , =, =。
14、 ()2—()2=。
15、如图,已知直线a,b交于点O,∠1+∠2=218°,则∠1=,∠2=,
= ……………………1分
= ……………………1分
=4……………………1分
18、解:设这个角为x度。根据题意列方程
180-x=4(90-x)……………………2分
3x=180
x=60
答:这个角的度数为60度……………………2分
19、解:
= ……2分
= …………………2分
……2分
A、0.7×10-7m B、0.7×10-8m C、7×10-8m D、7×10-7m
14、下列事件,你认为是必然事件的是( )
A、2004年2月有30天B、如果今天是星期三,明天一定是星期四
C、明天会下雨D、小彬明天的考试将得满分
15、 ,则 等于()
A、1 B、 C、 D、
二、无空不入(每题2分,共计20分)
∠3=。
15题16题17题
16、如图,直线l1∥l2,AB⊥l1,垂足为O,BC与l2相交与点E,若∠1=43°,则∠2=度.
17、如图,一转盘被均匀分成8部分,随意转动转盘一次,指针指向阴影部分的概率是。
北师大版七年级数学期中试题
一、(每小题2分,共15小题,30分)1在代数式 中是整式的有()个
A、3 B、4 C、5 D 6
2、下列说法错误的是( )
A、内错角相等,两直线平行. B、两直线平行,同旁内角互补.
C、同角的补角相等.D、相等的角是对顶角.
3、下列计算正确的是()
A、 B、 C、 D、
4、如图,已知:∠1=∠2,那么下列结论正确的是______
(3)以点A、B、C、E为顶点的图形是一个怎样的图形?
。
四、完成下面推理过程(4分)
如图:∵∠2=∠3
∴____∥_____ ( )
又∵EF∥GH
∴____=______ ( )
∴∠1=∠3
五、(1)下面是我国几个城市今年三月份的平均降水量。(本题6分)
地区
昆明
广州
海口
上海
降水量(毫升)
11
33
22
, .
3、吸管吸易拉罐内的饮料时,如图,
∠1=110°,则∠2=°
(易拉罐的上下底面互相平行)
4、有一单项式的系数是2,次数为3,且只含有 ,则这个单项式可能是
5、如果直线 // ,且直线 ,则直线 与 的位置关系(填“平行”或“垂直”).
6、若x2+mx+4是关于x的完全平方式,则m = _____
23、图a是一个长为2 m、宽为2 n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形。(1)、你认为图b中的阴影部分的正方形的边长等于多少?
(2)、请用两种不同的方法求图b中阴影部分的面积。
方法1:
方法2:
(3)、观察图b你能写出下列三个
代数式之间的等量关系吗?
代数式:
44
你能制作形象的统计图表示这几个地区三月份的平均降水量吗?
(2)甲、乙两人打赌,甲说,往图中的区域掷石子,它一定会落在阴影部分上,乙说决不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.
六、附加题(20分)
1、乘法公式的探究及应用.
(1)如左图,可以求出阴影部分的面积是(写成两数平方差的形式);
∴∠A =∠ACD(两直线平行,内错角相等)
又∵∠A =∠D(已知)
∴∠ACD=∠D(等量代换)
∴AC∥DE(内错角相等,两直线平行)
六、探索题(本大题共1题,共9分)
24、(1)图b中的阴影部分的面积为 ;
(2)方法一:
方法二:
(3)代数式 , , 之间的关系为;
=
(4)当 ,
=
=
七年级下册期中测试卷
五、推理说明题
22、已知:如图,AB∥CD,∠A =∠D,试说明AC∥DE成立的理由。
下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵AB∥CD(已知)
∴∠A =(两直线平行,内错角相等)
又∵∠A =∠D()
∴∠=∠(等量代换)
∴AC∥DE()
六、探索题(选A层次的做(1)、(2)题,共8分;选B层次的,本大题9分)
班级:姓名:成绩:
一、选择题(每题3分,共30分)
1、在代数式 中,单项式有( )
A、1个 B、2个 C、3个 D、4个
2、下列计算正确的是( )
A、 B、 C、 D、
3、计算(x-y)3·(y-x)=( )
A、(x-y)4B、(y-x)4C、-(x-y)4D、(x+y)4
4、下列运算中能用平方差公式的是( )
4、如果两个不相等的角互为补角,那么这两个角【】
A、都是锐角B、都是钝角C、一个锐角,一个钝角D、以上答案都不对
5、两整式相乘的结果为 的是【】
A、 B、 C、 D、
6、有一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是【】
A、 B、
C、 D、
7、数学课上老师给出了下面的数据,请问哪一个数据是精确的。【】
(1) (2)
(3) (4)
(5)化简求值 ,其中
2、动手做一做(5分)
2.如图,已知:∠1=120°,∠C=60°。说明AB∥CD的理由。
3、开心画一画(在原图作图,保留作图痕迹)(8分)
在下列图形中,补充作图:
(1)在AD的右侧作∠DCP=∠DAB;
(2)在射线CP上取一点E,使CE=AB,
连接BE。
分析上图,试回答以下问题:
(1)、星期几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?
答:;
(2)、哪几天他花的零用钱是一样的?分别为多少?
答:;
(3)、请你能帮明明算一算他一周平均每天花的零用钱。
答:。
四、作图题
21、已知:∠ 。请你用直尺和圆规画一个∠BAC,使∠BAC=∠ 。
(要求:要保留作图痕迹。)
A、(2a-b)(2a+3b) B、(2a-b)(2a+b) C、(a-b)(b-a)D、(a+b)(a+b)
5、下列说法中正确的有()
①一个角的余角一定比这个角大②同角的余角相等③若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补④对顶角相等
A、1个B、2个C、3个D、4个
6、如图1,下列条件中,不能判断直线l1∥l2的是()
A、2003年美国发动的伊拉克战争每月耗费约40亿美元
B、地球上煤储量为5万亿吨左右
C、人的大脑约有1×1010个细胞
D、某次期中考试中小颖的数学成绩是98分
8、某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地
复习老师在课堂上所讲的内容,她突然发现一道题目:
(2a2+3ab-b2)-(-3a2+ab+5b2)=5a2-6b2,
C、3.12万精确到百位。D、0.010230有四个有效数字。
11、一只口袋里共有3只红球,2只黑球,1只黄球,现在小明任意摸出一个球,则摸出一只黑球的概率是()
A、 B、 C、 D、
12、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()
A、 B、
C、 D、
13、当老师讲到“肥皂泡的厚度为0.00000007m时,小明立刻举手说‘老师,我可以用科学记数法表示它的厚度。”同学们,你们不妨也试一试,请选择()
7、用科学记数法表示:0.0000035=.
8、近似数0.305精确到位,有个有效数字.
9、单项选择题是数学试题的重要组成部分,当你遇到不懂做的情况时,如果你随便选一个答案(假设每个题目有4个备选答案),那么你答对的可能性为.
10、甲看乙在北偏东46度,那么乙看甲的方向为
三、巧算妙解(共50分)
1、用心算一算(1,2,3,4,每题4分,5题6分,共22分)
则小明未被选中的概率P= ________。
12、已知:如图2,直线 、 与直线 相交于 、 ,且 // 。若 ,
则 度。
13、观察:
你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来。。
14、已知 ,那么a =。
15、在生活中人们常用“细如发丝”来形容物体非常非常微小,自从扫描隧道显微镜发明以后,世界上便诞生了一门新学科,这就是“纳米技术”。纳米是一种长度单位,1纳米是1米的亿分之一,即1纳米=10-9米。VCD光碟是一个圆形薄片,它的两面有用激光刻成的小凹坑,坑的宽度只有0.4微米。则0.4微米=纳米。