八年级数学1

合集下载

青岛版八年级数学上册第一章全等三角形1.2怎样判定三角形全等(第2课时)课件

青岛版八年级数学上册第一章全等三角形1.2怎样判定三角形全等(第2课时)课件
B C
O D
(2)如图,应填什么就有△AOC≌△BOD ∠A=∠B (已知) __C_O_=_D_O__ (已知) ∠C=∠D (已知) 所以△AOC≌△BOD(AAS )
(3)如图,应填什么就有△AOC≌△BOD ∠A=∠B(已知) __A_O_=_B_O_(已知) ∠C=∠D (已知) 所以△AOC≌△BOD( AAS )
A
B
CE
D
在△ABC和△DEF中, ∠C=1800 — ∠A —∠B,
∠F = 1800 — ∠D—∠E,
F ∵ ∠A =∠D, ∠B=∠E ∴ ∠C=∠F
在△ABC和△DEF中
∠B=∠E, ∵ BC=EF,
∠C=∠F,
∴ △ABC ≌△DEF (ASA)
自学探究2
如下图,在△ABC和△DEF中,∠A =∠D, ∠ B=∠E,
BC=EF, △ABC与△DEF全等吗?能利用角边角条件证
明你的结论吗?A
D
C
F
B
E
结论:两角分别相等且其中一组等角的对边也相等 的两个三角形全等.
这个判定方法可以简单地用“角角边” 或“ AAS” 来表示.
例题.如图,AB⊥BC, AD⊥DC, ∠1=∠2. 求证: AB=AD.
证明: ∵ AB⊥BC, AD⊥DC, ∴ ∠B=∠D=900,
青岛版八年级数学上册 第1章全等三角形
1.2怎样判定三角形全等第二课时
学习目标:
1.理解三角形全等“角边角”,“角角边” 的内容;
2.会运用“ASA”、“AAS”识别三角形全 等,为证明线段相等或角相等创造条件
3.通过观察、推理、归纳等过程,发展合 情推理能力。
1.什么是全等三角形? 能够完全重合的两个三角形叫做全等三角形. 2.你已经学过的判定两个三角形全等的方法?

八年级数学一元二次方程的应用(1)

八年级数学一元二次方程的应用(1)

如图所示,用一块长80cm,宽60cm 的薄钢片,在四个角上截去四个相 同的小正方形,然后做成底面积为 1500cm2的没有盖的长方体盒子.求 截去的小正方形的边长
解:设截去的小正方形的边长xcm.
则长和宽分别为(80-2x)cm、 (60-2x)cm
(80-2x)(60-2x)=1500
得x1=55,x2=15
检验:当x1=55时 长为80-2x=-30cm 宽为60-2x=-50cm.
想想,这符合题意吗? 不符合.舍去.
当x2=15时 长为80-2x=50cm 宽为60-2x=30cm.
符合题意
所以只能取x=15.
答:截取的小正方形的边长是15cm
列一元二次方程解应用题的步骤与 列一元一次方程解应用题的步骤类 似,即审、找、列、解、答.这里 要特别注意.在列一元二次方程解 应用题时,由于所得的根一般有两 个,所以要检验这两个根是否符合 实际问题的要求.
练习:一块长方形铁板,长是宽 的2倍,如果在4个角上截去边 长为5cm的小正方形, 然后把 四边折起来,做成一个没有盖 的盒子,盒子的容积是3000 cm3,求铁板的长和宽.
解:设铁板的宽为xcm,则有长为2xcm
5(2x-10)(x-10)=3000
一次方程组的应用(二)
例1、某农场用库存化肥给麦田施肥,若每亩施肥6千克,就 缺少化肥200千克;若每亩施肥5千克,又剩余300千克。问 该农场有多少麦田?库存化肥多少千克?
得x1=55,x2=15
3.列一元一次方程方程解应用题的步骤?
①审题, ②找等量关系 ③列方程, ④解方程, ⑤答。
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结,不讲科学、不讲技巧的蛮干。它也想开锁,只是采用的方式不正确,可见解决问题应追求合理的途径。参考拟题:开锁的启示、科学方法与科学 精神。 ? 25.阅读下面的文字,根据要求作文。 非洲加纳的库马西有一所寄宿学校。一天早上,一位老师走进教室,举起手里的一张画有一个黑点的白纸问学生:“同学们,你们看到什么了?”学生们齐声回答:“一个黑点。” 老师说:“不对!你们再看看,难道你们谁也没看到这是 一张白纸吗?”接着,老师语重心长地说:“在今后的生活中,你们可不要这样看人看事物啊!” 老师关于这张“白纸”的教导,一直铭刻在一个当时年仅17岁的学生的脑海深处。当年的这位学生就是现在的联合国秘书长科菲?安南。 请以“白纸与黑点”为话题写一篇文章。题目自拟, 文体自选,立意自定,不少于800字。 ? [写作提示]在这个硝烟不断,危机纷起,恐怖分子无孔不入,时刻都有意想不到的灾难发生的世界里,身为联合国秘书长的安南先生时时体味当年老师关于“白纸与黑点”的谆谆教诲,仍然乐观地看到这张虽有许多“黑点”的“白纸”的美丽。其 实,我们也常常遇到这样被染上了“黑点”的“白纸”。比如患过错误的同志,比如有许多毛病的同事……我们应该认真品味这位非洲老师的“黑点与白纸”的故事,从中领悟这样的道理:看人应当首先看“一张白纸”,即看人的主流,看人的优点,对别人的身上的“黑点”应当懂得宽 容、包涵,求同存异,不要只注意别人的“黑点”而刻意挑剔甚至吹毛求疵。 ? 26.阅读下面的文字,根据要求作文。 ? 比,是人人皆有的心态,所不同的是比的内容和方法因人而异:有的比吃比穿、比车比房,有的比成就、比贡献。比,又是我们认识事物的常用方法,拿中国古代的 文明和其他国家比,我们会比出自豪和勇气。拿我们现在的科技与发达国家比,我们比出了落后和清醒。但是,并不是人人都会正确运用比的。 请以“比”为话题,写一篇文章,文体自定,文题自拟,不少于800字。 ? [写作提示]这是一种提示性的话题作文,提示语中列举了一些常见 的“比”的内容和“比”的方法,目的是为了打开同学们的思路。你完全可以从中选择你熟悉的内容来写,但是也不必拘泥于提示的方面,还可以在更广阔的领域寻觅“比”的新鲜内容。但是值得注意的是:选择可比的事物必须是同一范畴的事物,要通过现象或形式异同的比较,概括出 可比点来;罗列差异不是目的,目的是通过差异来说明问题,所以,重点要放在对问题的分析上。 ? 27.阅读下面的文字,根据要求作文。 ? 一天,上帝带着一个教士来到地狱,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。虽然他们每人都有一把长柄勺子,但由于勺柄太长, 他们谁也无法将食物送到自己的嘴里去,只能挨饿。上帝又带着教士来到天堂,这里的人们看上去既快乐又满足,虽然他们也是围着一口大锅,每人手里也拿一把长柄勺子。上帝见教士迷惑不解,便对他说:“难道你没看出来这里的人都学会喂对方了吗?” 请以“合作”为话题,写一 篇作文,所写内容必须在这个话题范围之内。 立意自定,题目自拟,写一篇不少于800字的议。 [写作提示] “合作”即互相配合做某事或共同完成某项任务。随着科学技术的突飞猛进和信息社会的高度发展,合作显得越来越重要。因为科技越发达,分支科学越繁多,社会分工就越精细, 而个人的智力、知识面是有限的,因此,加强合作,取长补短,优势互补,已越来越成为时代的要求。论重点应放在“为什么要进行合作”上,用摆事实,讲道理的方法来明合作的必要,可以引用名言阐述合作的必要,也可以举例明合作带来的各种好处,还可以从反面明不合作带来的弊 端,要用辩的方法,分析要全面,理由要充足,最后还要指出解决问题的办法,即合作的途径。如写议,论角度有“合作是成功的土壤”“合作是人类生存的必需”“个人离不开集体”“团结互助才能由弱变强”“协作就是力量”“团队精神”“优势互补、共同发展”等。 ? 28.阅读下 面的文字,按要求作文。 水,滋润万物,是生命之源; 暴雨倾盆,江河泛滥,也会带来灾难。 水,看似柔弱,却能把坚石滴穿; 汇成洪流,更可穿峡破谷,一往无前。 水,演绎出多少可歌可泣的故事, 流淌着古往今来多少悲欢…… 请以“水的联想”为题,写一篇文章。除诗歌外, 文体自选,不少于800字。 [写作提示]本题主要考查学生的联想、想象能力。具体的写作思路有:根据作文材料的提示,写水既可滋润万物、孕育生命,也会吞噬生灵、造成灾难;或者由水“能把坚石滴穿”“更可穿峡破谷”,阐发水的力量及水的精神;或者由人不能没有水,自然不能 没有水发挥开来,呼唤保护水资源。联想水的其他特点,比如,自己活动,并能推动别人的,是水;经常探求自己方向的,是水;以自己的清洁洗净他人的污浊,有容清纳浊的度量的,是水;能蒸发为云,变成雨、雪、雾,或凝结成晶莹如镜的冰,但不论变化如何,仍不失其本性的,还 是水……然后找到人与水的相似点,构思成篇。 ? 29.阅读下面一则材料,按要求作文。 林语堂先生说:中国人的脸,不但可以洗,可以刮,还可以争,可以留,有时好像争面子是人生的第一要义,甚至可以倾家荡产而为之。对此,你或许也有一些认识或经历。请以“面子”为话题, 写一篇文章,不少于800字,题目自拟,文体自选。 ? [写作提示]中国人爱争面子,在国人看来,面子是人们身份的标志,有面子是才干的表现。面子关系着人的尊严、荣誉。但是,为了面子而不顾实际,为了形象而不顾人的死活,却是当前某些人的一种通病。 面子关乎人们的尊严、 荣辱,当然要讲,特别是在大是大非面前,要面子就是讲尊严。但是,面子不等于虚荣心,不能“死要面子活受罪”,更不能为了所谓的政绩而劳民伤财、弄虚作假。有时候,勇于暴露自己的缺点,恰恰是给自己争来了面子。我们要的是表里如一、形式内容相统一的面子。 30.阅读下面 一则材料,按要求作文。 “美国宗教精神病学基金会”创始人之一的伯兰特医生曾录下他与几位患有不同程度心理疾病的病人的谈话,通过研究,他发现这些人总在不停地重复这类话:“如果当时那样多好”“只要我再如何如何,就不会如何如何”。他由此告诫人们说:“这些想法就 像毒药,它们会使你患上心理疾病。你必须学会说‘下次再来’。因为这句话指向未来,指向新的一天,它会让你受伤的心痊愈,会带给你健康的心灵。” 请以“着眼未来”为话题写一篇文章,自拟题目,自定文体,不少于800字。 [写作提示]“着眼未来”这个话题是要人们学会正确 对待现实生活中的各种困境、挫折等问题,学会摆脱不良情绪,拥有健康快乐的人生。它其实是在倡导一种积极乐观的人生态度。考生可据此展开联想:或儒或道,或穷或达、或成或败……人生其实不外乎积极有为和消极避世两种,在考虑选材时不必受“心理疾病”这个概念束缚,这样 难度就会减小。如果选取的视角新颖,对社会现象、现实人生的评判独特,自然会写出不一般的文章来。 ? 31.阅读下面材料,请以“人的价值”为话题写作文,立意自定,文体自选,题目自拟。不少于800字。 一个年轻人对智者说:“老师,我觉得自己什么事也干不好。没有人看重我, 我该怎么办呢?” 智者从手指上脱下一枚戒指交给年轻人说:“你到集市上把这枚戒指卖了,无论如何不能少于1个金币。” 年轻人到了集市上,到处兜售戒指,但没人肯出1个金币。 年轻人说:“老师,对不起,我没能达到你的要求。也许我可以卖到两个或3个银币,但我觉得那不应 该是这枚戒指的真正价值。” “年轻朋友,你说得太对了。”智者笑着说,“你再去一趟珠宝店,问他能出多少钱,但不要真卖戒指,问完价格你再带戒指回来。” 珠宝商仔细看了看戒指后说:“告诉你的老师,如果他想卖戒指,我最多可以给他58个金币。” “58个金币!”年轻人 惊呼。“对。”珠宝商说,“如果不着急的话,我可以出70个金币……” 年轻人兴奋地跑回去,将发生的一切告诉智者。智者说:“你就像这枚戒指,珍贵、独一无二,只有专家才能真正判定你的价值。你怎能期望生活中随便一个人就能发现你真正的价值呢。”智者说着将戒指套回手 上,“我们所有人都像这枚戒指,珍贵,独一无二;不过,我们进入生活的市场后却希望毫无经验的人肯定我们的价值。” [写作提示]人们都希望自己的价值被肯定,但几乎也都希望被别人肯定,特别是由此自己的感情就被别人左右了,直到自己终生一事无成,这是可悲的。人首先应 该有自知之明,清楚自己的能力和努力方向;然后排除干扰,一往无前。有掌声的人生是美丽的;没有掌声的人生,只要自觉无悔,也是美丽的。 32.阅读下面材料,根据要求作文。 那是上世纪70年代的一场比赛。 在比赛进行到第14个回合时,拳王阿里已经筋疲力尽,濒临崩溃,到了 如有一片羽毛落在他身上也能让他轰然倒地的地步。但阿里仍竭力保持坚毅的表情和势不低头的气势。这时,拳坛另一猛将弗雷泽支持不住,放弃了。裁判当即宣布阿里获胜,阿里再次获得“拳王”的美誉。 获胜的阿里还没走到台中央,便眼前一黑,双腿无力地跪倒在地。弗雷泽见此 后悔莫及。 这次比赛的结果告诉我们:很多人的失败,不是败在技术、智力和能力,而是败在意志力的丧失和最后一刻的自我放弃。 瞬间的放弃,导致了心中永恒的伤痛,生活中这类事例或教训难道还少吗?请以“瞬间与永恒”为话题写一篇作文。立意自定,文体自选,题目自拟,不 少于800字。 [写作提示]这一话题可以从两方面理解:其一,瞬间可以成就永恒。例如,“神六”上天的瞬间,航天员庄重而灿烂的微笑留在了历史的永恒之中。其二,瞬间也可以毁灭永恒。如果弗雷泽最后一刻没有坚持住,将给人们留下永远的遗憾。作文时应

八年级数学《矩形1》教案

八年级数学《矩形1》教案

19.2.1 矩形(一)用边启发、边分析、边推理,层层设疑,讲练结合的方法。

通过演示平行四边形模型,激发学生的学习兴趣。

教学时力求做到“三让”,即能让学生想的尽量让学生想,能让学生做的尽量让学生做,能让学生说的尽量说,使教师为主导,学生为主体,得到充分体现。

学生通过“想、做、说”的一系列活动,在掌握知识的同时,使其动脑、动手、动口,积极思维,进行“探究式学习”,使能力得到锻炼。

教学资源三角板,平行四边形模型,多媒体教学设备。

教学评价学生互评与教师点评相结合,教学目标评价与过程评价相结合教学流程活动流程活动内容及目的活动一:创设情境,导入新课由平行四边形到矩形活动二:诱导尝试,探究新知矩形的性质活动三:变式训练,巩固新知矩形的性质的运用活动四:全课小结,内化新知课堂小结活动五:推荐作业,延展新知巩固提高教学程序问题与情境师生互动媒体使用与教学评价创设情境,导入新课复习:平行四边形有哪些性质?导入:1.展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?2.思考:一个活动的平行四边形框架,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?(动画演示拉动过程如图)3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出矩形定义.【教师活动】1.师生交流,教师板书课题2.矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象。

3.操作课件出示问题情境4.演示矩形是特殊的平行四边形,引导学生总结矩形定义【学生活动】1.倾听教师讲解,思考教师提出的问题2.观察教师演示3.总结矩形定义:有一个角是直角的平行四边形叫做矩形(通【设计意图】激发学生的学习兴趣,其思维活跃,在教师的启发下,学生独立总结、归纳出矩形的定义。

利用的对比的方法使学生理解矩形与平行四边形的关系,突破难点。

八年级数学上册一二章练习题

八年级数学上册一二章练习题

第一章:勾股定理一、选择题1.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 22.一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为( ) (A ) 4 (B ) 8 (C ) 10 (D ) 123.如图,直角三边形三边上的半圆面积从小到大依次记为1S 、2S 、3S ,则1S 、2S 、3S 的关系是( )(A )321S S S =+ (B )232221S S S =+ (C )321S S S >+ (D ) 321S S S <+4. 若等边△ABC 的边长为2cm ,那么△ABC 的面积为( ).(A )3cm 2 (B )32cm 2 (C )33cm 2 (D )4cm 26. 在下列以线段a 、b 、c 的长为三边的三角形中,不能构成 直角三角形的是 ( )(A )a=9 、b=41 、c=40 (B )a=11 、b=12 、c=15 (C )a ∶b ∶c=3∶4∶5 (D ) a=b=5 、c=257、△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( ) A .42 B .32 C .42 或 32 D .37 或 33二、填空题1.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为____________。

2. 已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 。

3.若正方形的面积为18cm 2,则正方形对角线长为__________cm 。

4. 一个直角三角形的两边长分别为3cm 和4cm,则第三边的长为 。

B6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .7. 如下图,已知OA =OB ,那么数轴上点A 所表示的数是____________.8. 若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 . 10.在△ABC 中,∠C =90°, AB =5,则2AB +2AC +2BC =_______.三、解答题4. 小东拿着一根长竹竿进一个宽为3米的城门,他先横着拿不进去,又竖起来拿,结果竹竿比城门高1米,当他把竹竿斜着时,两端刚好顶着城门的对角,问竹竿长多少米?7. 如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?8. 如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA =10km,CB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?第二章:实数一、填空题:(每题 3 分,共 36 分) 1、-2 的倒数是____。

八年级数学矩形1

八年级数学矩形1
澳门威尼斯人网址
[填空题]影响消费者期望的形成和强化的主要因素有:()、目标价值、()和可行性四个方面。 [问答题,简答题]何谓易燃货物? [单选]电力客户减容期满后,如确需继续办理减容或暂停的,减少或暂停部分容量的基本电费应按()计算收取。A.不收B.100%C.75%D.50% [单选,A1型题]既能消食和胃又能发散风寒的药物是()A.紫苏B.藿香C.山楂D.陈皮E.神曲 [填空题]往复活塞泵由()和()组成。 [单选]()不是MRP净需求量计算的依据。A.总需求量B.现有库存量C.在途库存量D.计划库存量 [填空题]文学作为语言艺术,最显著的特点是______________。 [单选]从()入手,立足当前,着眼长远,整体推进,突出重点,综合施策,标本兼治,全面提高质量管理水平,推动建设质量强国,促进经济社会又好又快发展。A.强化法治、落实责任、加强惩处、增强全社会质量意识;B.强化法制、落实责任、加强监督、增强全社会质量意识;C.强化法治、 [单选,A2型题,A1/A2型题]关于切线投影的叙述,错误的是()A.中心线从被检部位边缘通过,称切线投影B.此法可使相邻部分X线吸收差异减小C.某些病变于边缘凸出,可采用此法D.某些病变边缘凹陷,可采用此法E.某些病变表面病灶,可采用此法 [单选]客运专线预制梁混凝土拌和物入模前含气量应控制在()A、3.0~5.0%B、2.0~4.0%C、4.0~6.0% [填空题]中华人民共和国第一套航空邮票于1951年5月1日发行的()邮票。 [单选]对个人购买自用普通住房发放的按揭贷款最长不得超过()年。A.30B.35C.40D.45 [判断题]安消防要求,门禁系统必须断电开锁,门也一定要选外开式。A.正确B.错误 [单选]气体分馏装置四停事故中,()对装置威胁最大。A、停电B、停汽C、停水D、停风 [单选,A1型题]关于正常产褥的叙述,哪项是错误的()A.出汗较多,睡眠和初醒时更为明显B.产后约2周经腹部检查不易摸到子宫底C.子宫复旧主要是肌细胞数目减少及体积缩小D.浆液性恶露内含细菌E.一般在产后24小时内体温轻度升高,不超过38℃ [单选]下列哪一项不是Babinski征的等位征()A.Chaddock征B.Oppenheim征C.Gordon征D.Gonda征E.Romberg征 [单选,A1型题]国外引进猪品种的始配年龄是()A.8~12月龄B.10~12月龄C.8~10月龄D.8~14月龄E.6~12月龄 [单选]脑实质内出现局限性混合回声一般不见于下列哪个病变()。A.血肿或脓肿未完全液化B.实质性肿瘤合并出血坏死C.脑手术后D.脑积水E.脓肿穿刺后 [单选]下列图像最可能的诊断是()A.肝脓肿B.肝囊肿C.肝血管瘤D.原发性肝癌E.肝炎肝硬化 [单选]由于()耐磨性差,用于室内地面,可以采用表面结晶处理,提高表面耐磨性和耐酸腐蚀能力。A.瓷砖B.花岗岩C.微晶石D.大理石 [单选]下列关于乳痈威因的论述,哪项是正确的?()A.邪壅经络,郁闭不通B.气血两虚,邪毒内陷C.营卫不和,火毒内生D.肝气郁结,胃热壅滞E.以上都不是 [多选]有扬程无限高、流量与排出压力无关、具有自吸能力的特点的泵包括()。ABCD [单选,A1型题]湿热所致的腹泻、痢疾,胃热所致的呕吐均可选用的药物是()A.黄芩B.黄连C.黄柏D.大黄E.龙胆草 [问答题,简答题]什么是近交系动物? [单选]与鼻咽癌的描述不相符的是()A.颈淋巴结转移有时为首发症B.有时表现为分泌性中耳炎C.放射治疗为首选D.可引起较多颅神经症状E.病变局限者手术切除为首选 [单选,A1型题]下列哪项是正常产褥的表现()A.产后第l天,宫底平脐B.产后12小时体温可超过38℃C.产后10天为血性恶露D.产后脉搏一般偏快E.产褥早期白细胞即恢复正常 [多选]下面哪些协议是数据链路层协议()A.PPPB.HDLCC.IPXD.IEEE802.3 [填空题]晶片尺寸较小的探头发射的超声波束,其远场覆盖面积()。 [单选,A2型题,A1/A2型题]下列工具酶中不以NAD(P)H为辅酶的是().A.LDHB.MDHC.G-6-PDD.PODE.CLDH [单选,A1型题]《母婴保健法》规定的孕产期保健服务不包括()A.胎儿保健B.孕妇、产妇保健C.母婴保健指导D.胎儿性别诊断E.新生儿保健 [问答题]四项基本原则是什么? [单选,A2型题,A1/A2型题]急性腹膜炎时发生麻痹性肠梗阻,因呕吐致病人缺水,属于()。A.高渗性缺水B.低渗性缺水C.等渗性缺水D.原发性缺水E.继发性缺水 [单选]相同物质的量浓度的蔗糖溶液与氯化钠溶液,其蒸气压()。A.前者大于后者B.两者相同C.后者大于前者D.无法判定相对大小 [判断题]金属塑性一般受金属晶粒影响,晶粒大,塑性差。()A.正确B.错误 [多选]在人身保险合同法律关系中,涉及投保人、保险人、被保险人、受益人等主体,下列主体之中,可能为同一人的有()。A.投保人与受益人B.保险人与投保人C.投保人与被保险人D.投保人、被保险人和受益人E.保险人和受益人 [名词解释]MALT(mucosal-associatedlymphoidtissue) [单选]按照功用性对机械设备进行分类,造型与造芯设备属于()。A.切削设备B.锻压设备C.铸造设备D.煤气发生设备 [单选]1953年7月国际护士会议通过的关于护理的国际性伦理法则是()。A.国际护士守则B.护士伦理学国际法C.南丁格尔誓约D.护士职业行为法典E.国际医德守则 [单选,A2型题,A1/A2型题]右心衰竭心功能变化的指标是()ABCDE [问答题]患儿女,8小时,因气促5小时,面色青紫1小时入院。是第一胎第一产,孕30周自然分娩,Apgar评分8分。5小时前开始气促,逐渐加剧,1小时前出现面色青紫来我院。查体:T37℃,P160次/分,R80次/分,面色发绀,胸廓塌陷,呼吸困难,呼气性呻吟,心音强,律齐,未闻及杂音,双

八年级数学上册第1课时练习题及答案

八年级数学上册第1课时练习题及答案

【导语】数学练习积累越多,掌握越熟练,下⾯是为您整理的⼋年级数学上册第1课时练习题及答案,仅供⼤家学习参考。

⼀.选择题(共8⼩题) 1.如图,⼀个等边三⾓形纸⽚,剪去⼀个⾓后得到⼀个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300° 2.下列说法正确的是() A.等腰三⾓形的两条⾼相等C.有⼀个⾓是60°的锐⾓三⾓形是等边三⾓形 B.等腰三⾓形⼀定是锐⾓三⾓形D.三⾓形三条⾓平分线的交点到三边的距离相等 3.在△ABC中,①若AB=BC=CA,则△ABC为等边三⾓形;②若∠A=∠B=∠C,则△ABC为等边三⾓形;③有两个⾓都是60°的三⾓形是等边三⾓形;④⼀个⾓为60°的等腰三⾓形是等边三⾓形.上述结论中正确的有()A.1个B.2个C.3个D.4个 4.如图,CD是Rt△ABC斜边AB上的⾼,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于()A.25°B.30°C.45°D.60° 5.如图,已知D、E、F分别是等边△ABC的边AB、BC、AC上的点, 且DE⊥BC、EF⊥AC、FD⊥AB,则下列结论不成⽴的是()A.△DEF是等边三⾓形B.△ADF≌△BED≌△CFEC.DE=ABD.S△ABC=3S△DEF 6.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是()A.30°B.45°C.120°D.15° 7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为()A.4cmB.3cmC.2cmD.1cm 第1题第4题第5题第7题 8.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三⾓形是()A.直⾓三⾓形B.钝⾓三⾓形C.等腰三⾓形D.等边三⾓形 ⼆.填空题(共10⼩题) 9.已知等腰△ABC中,AB=AC,∠B=60°,则∠A=_________度. 10.△ABC中,∠A=∠B=60°,且AB=10cm,则BC=_________cm. 11.在△ABC中,∠A=∠B=∠C,则△ABC是_________三⾓形. 12.如图,将两个完全相同的含有30°⾓的三⾓板拼接在⼀起,则拼接后的△ABD的形状是_________. 13.如图,M、N是△ABC的边BC上的两点,且BM=MN=NC=AM=AN.则∠BAN=_________. 第13题第14题第15题 14.如图,⽤圆规以直⾓顶点O为圆⼼,以适当半径画⼀条弧交两直⾓边于A、B两点,若再以A为圆⼼,以OA为半径画弧,与弧AB交于点C,则∠AOC等于_________. 15.如图,将边长为6cm的等边三⾓形△ABC沿BC⽅向向右平移后得△DEF,DE、AC相交于点G,若线段CF=4cm,则△GEC的周长是_________cm. 16.如图,在等边△ABC中,D、E分别是AB、AC上的点,且AD=CE,则∠BCD+∠CBE=_________度. 第16题第17题第18题 17.三个等边三⾓形的位置如图所⽰,若∠3=50°,则∠1+∠2=_______°. 18.如图,△ABD与△AEC都是等边三⾓形,AB≠AC.下列结论中,正确的是_________. ①BE=CD;②∠BOD=60°;③∠BDO=∠CEO. 三.解答题(共5⼩题) 19.如图,已知△ABC为等边三⾓形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F. (1)求证:△ABE≌△CAD; (2)求∠BFD的度数. 20.如图,D是等边△ABC的边AB上的⼀动点,以CD为⼀边向上作等边△EDC,连接AE,找出图中的⼀组全等三⾓形,并说明理由. 21.已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三⾓形.求证: (1)△AEF≌△CDE; (2)△ABC为等边三⾓形. 22.已知:如图,在△ABC中,AB=BC,∠ABC=120°,BE⊥AC于点D,且DE=DB,试判断△CEB的形状,并说明理由. 23.已知:如图1,点C为线段AB上⼀点,△ACM,△CBN都是等边三⾓形,AN交MC于点E,BM交CN于点F. (1)求证:AN=BM; (2)求证:△CEF为等边三⾓形; (3)将△ACM绕点C按逆时针⽅向旋转90°,其他条件不变,在图2中补出符合要求的图形,并判断第(1)、(2)两⼩题的结论是否仍然成⽴(不要求证明). 答案 ⼀、CDDBDCCD ⼆、9、60;10、10;11、等边;12、等边三⾓形;13、90度;14、60度;15、6; 16、60;17、130;18、①② 三、19、(1)证明:∵△ABC为等边三⾓形, ∴∠BAC=∠C=60°,AB=CA,即∠BAE=∠C=60°, 在△ABE和△CAD中,, ∴△ABE≌△CAD(SAS). (2)解:∵∠BFD=∠ABE+∠BAD, ⼜∵△ABE≌△CAD, ∴∠ABE=∠CAD. ∴∠BFD=∠CAD+∠BAD=∠BAC=60°. 20、解答:解:△BDC≌△AEC.理由如下: ∵△ABC、△EDC均为等边三⾓形, ∴BC=AC,DC=EC,∠BCA=∠ECD=60°. 从⽽∠BCD=∠ACE. 在△BDC和△AEC中,, ∴△BDC≌△AEC(SAS). 21、解答:证明:(1)∵BF=AC,AB=AE(已知) ∴FA=EC(等量加等量和相等).(1分) ∵△DEF是等边三⾓形(已知), ∴EF=DE(等边三⾓形的性质).(2分) ⼜∵AE=CD(已知), ∴△AEF≌△CDE(SSS).(4分) (2)由△AEF≌△CDE,得∠FEA=∠EDC(对应⾓相等), ∵∠BCA=∠EDC+∠DEC=∠FEA+∠DEC=∠DEF(等量代换), △DEF是等边三⾓形(已知), ∴∠DEF=60°(等边三⾓形的性质), ∴∠BCA=60°(等量代换), 由△AEF≌△CDE,得∠EFA=∠DEC, ∵∠DEC+∠FEC=60°, ∴∠EFA+∠FEC=60°, ⼜∠BAC是△AEF的外⾓, ∴∠BAC=∠EFA+∠FEC=60°, ∴△ABC中,AB=BC(等⾓对等边).(6分) ∴△ABC是等边三⾓形(等边三⾓形的判定).(7分) 22、解答:解:△CEB是等边三⾓形.(1分) 证明:∵AB=BC,∠ABC=120°,BE⊥AC, ∴∠CBE=∠ABE=60°.(3分) ⼜DE=DB,BE⊥AC, ∴CB=CE.(5分) ∴△CEB是等边三⾓形.(7分) 23、(1)证明:∵△ACM,△CBN是等边三⾓形, ∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°, ∴∠ACM+∠MCN=∠NCB+∠MCN, 即:∠ACN=∠MCB, 在△ACN和△MCB中, AC=MC,∠ACN=∠MCB,NC=BC, ∴△ACN≌△MCB(SAS). ∴AN=BM. (2)证明:∵△ACN≌△MCB, ∴∠CAN=∠CMB. ⼜∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°, ∴∠MCF=∠ACE. 在△CAE和△CMF中 ∠CAE=∠CMF,CA=CM,∠ACE=∠MCF, ∴△CAE≌△CMF(ASA). ∴CE=CF. ∴△CEF为等腰三⾓形. ⼜∵∠ECF=60°, ∴△CEF为等边三⾓形. (3)解:如右图, ∵△CMA和△NCB都为等边三⾓形, ∴MC=CA,CN=CB,∠MCA=∠BCN=60°, ∴∠MCA+∠ACB=∠BCN+∠ACB,即∠MCB=∠ACN, ∴△CMB≌△CAN, ∴AN=MB, 结论1成⽴,结论2不成⽴.。

苏科版八年级(上)数学 第1章 全等三角形 单元测试卷(含答案)

八年级数学上册《第1章全等三角形》单元测试卷一.选择题(共10小题)1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.下列说法不正确的是()A.如果两个图形全等,那么它们的形状和大小一定相同B.面积相等的两个图形是全等图形C.图形全等,只与形状、大小有关,而与它们的位置无关D.全等三角形的对应边相等,对应角相等3.平移前后两个图形是全等图形,对应点连线()A.平行但不相等B.不平行也不相等C.平行且相等D.不相等4.如图,△ABC≌△A′B′C,∠A′CA=20°,若A′C⊥AB,则∠B′A′C的度数为()A.45°B.60°C.70°D.90°5.如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF 的长是()A.2B.3C.5D.76.如图,若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件()A.∠BAC=∠BAD B.AC=ADC.∠ABC=∠ABD D.以上都不正确7.如图,两个Rt△ABC≌Rt△CDE,且B、C、D三点在一条直线上,则线段AC和线段CE的关系是()A.既不相等也不互相垂直B.相等但不互相垂直C.互相垂直但不相等D.相等且互相垂直8.如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是()A.∠A=∠E B.BA=BE C.∠C=∠D D.AC=DE9.如图,在△ABC中,AC=BC,过点B作射线BF,在射线BF上取一点E,使得∠CBF=∠CAE,过点C作射线BF的垂线,垂足为点D,连接AE,若DE=1,AE=4,则BD 的长度为()A.6B.5C.4D.310.一块三角形的玻璃碎成了如图的三块,小明决定只带上其中的一块去划玻璃的门店配上一块完整一样的玻璃,则他应带上()A.①B.②C.③D.都不行二.填空题(共10小题)11.已知:如图,AE=DF,∠A=∠D,欲证△ACE≌△DBF,需要添加条件,证明全等的理由是;或添加条件,证明全等的理由是;也可以添加条件,证明全等的理由是.12.如图,四边形ABCD≌四边形A'B'C'D',则∠A的大小是.13.如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.14.若△ABC≌△ADE,则∠B的对应角为.15.已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x﹣2,2x+1,若这两个三角形全等,则x的值为.16.直角三角形是特殊的三角形,所以不仅可以应用一般三角形判定全等的方法,还有直角三角形特殊的判定方法,即公理.17.如图所示,AD⊥BC,D为BC的中点,若∠B=52°,则∠DAC=.18.初一(1)班的篮球拉拉队,为了在明天的比赛中给同学加油助威,每个人都提前制作了一面同一规格的三角形彩旗.小明放学回家后,发现自己的彩旗破损了一角,他想用彩纸重新制作一面彩旗(如图所示).于是小明挑选了其中的一块,准备用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形,你认为他作图的根据是.(只要填写两个三角形全等的一个条件:SSS、SAS、AAS、ASA、HL)19.如图,图中由实线围成的图形与①是全等形的有.(填番号)20.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为.三.解答题(共6小题)21.支撑高压电线的铁塔如图,其中AM=AN,∠DAB=∠EAC,AB=AC,问AD与AE能相等吗?为什么?22.找出七巧板中(如图)全等的图形.23.如图,已知△ABC.(1)按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连接AD,CD;(2)求证:△ABC≌△ADC.24.如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.25.如图,△ADE≌△CBF,AD=BC,求证:AE∥CF.26.如图,AB与CD相交于点O,且AO=BO,CO=DO.求证:(1)△AOD≌△BOC;(2)AD∥BC.参考答案与试题解析一.选择题(共10小题)1.解:A、两个图形属于全等形,故此选项符合题意;B、两个图形不属于全等形,故此选项不符合题意;C、两个图形不属于全等形,故此选项不符合题意;D、两个图形不属于全等形,故此选项不符合题意;故选:A.2.解:A、如果两个图形全等,那么它们的形状和大小一定相同,正确,不合题意;B、面积相等的两个图形是全等图形,错误,符合题意;C、图形全等,只与形状、大小有关,而与它们的位置无关,正确,不合题意;D、全等三角形的对应边相等,对应角相等,正确,不合题意;故选:B.3.解:平移前后两个图形是全等图形,对应点连线平行且相等.故选:C.4.解:设A′C与AB交于点D,∵A′C⊥AB,∴∠ADC=90°,∴∠A=90°﹣∠A′CA=90°﹣20°=70°,∵△ABC≌△A′B′C,∴∠B′A′C=∠A=70°,故选:C.5.解:∵△ABC≌△DEF,∴BC=EF=8,∴EC=5,∴CF=8﹣5=3,故选:B.6.解:若要用“HL”证明Rt△ABC≌Rt△ABD,则还需补充条件AC=AD或BC=BD,故选:B.7.解:∵Rt△ABC≌Rt△CDE,∴AC=CE,∠A=∠ECD,∠B=∠D,∠ACB=∠E.∵△ABC是直角三角形,∠A+∠ACB=90°,∴∠ACB+∠ECD=∠ACB+∠A=90°,∴∠ACE=180°﹣90°=90°,∴AC⊥CE,∴AC和CE相等且互相垂直故选:D.8.解:∵∠ABC=∠EBD,BC=BD,∴当添加BA=BE时,可根据“SAS”判断△ABC≌△EBD;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△EBD;当添加∠A=∠E时,可根据“AAS”判断△ABC≌△EBD.故选:D.9.解:如图,连接CE,过点C作CM⊥AE交AE于M.∵CD⊥BF,CM⊥AM,∴∠CDB=∠M=90°,在△CDB△CMA中,,∴△CDB≌△CMA(AAS),∴CM=CD,BD=AM,在Rt△CED和Rt△CEM,,∴Rt△CED≌Rt△CEM(HL),∴DE=EM=1,∴BD=AM=AE+EM=AE+DE=1+4=5,故选:B.10.解:根据三角形全等判定方法,因为只有图③包括了两角和它们的夹边.根据角边角可确定一个全等三角形,知道应该选择图③.故选:C.二.填空题(共10小题)11.解:∵AE=DF,∠A=∠D,∴可添加AC=BD,利用SAS可证明△ACE≌△DBF;也可添加∠E=∠F,利用ASA可证明△ACE≌△DBF;也可添加∠1=∠2,利用AAS可证明△ACE≌△DBF;故答案为:AC=BD;SAS;∠E=∠F;ASA;∠1=∠2;AAS.12.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.13.解:如图所示:由题意可得:△ACB≌△ECD,则∠1=∠DEC,∵∠2+∠DEC=90°,∴∠1+∠2=90°.故答案为:90°.14.解:∵△ABC≌△ADE,∴∠B的对应角是∠D,故答案为:∠D.15.解:∵两个三角形全等,∴3+3x﹣2+2x+1=3+4+5,解得,x=2,故答案为:2.16.解:直角三角形是特殊的三角形,所以不仅可以应用一般三角形判定全等的方法,还有直角三角形特殊的判定方法,即斜边直角边公理.17.解:∵D为BC的中点,∴BD=CD,∵AD⊥BC,∠B=52°,∴∠ADB=∠ADC=90°,∠BAD=38°,在△ADB和△ADC中,,∴△ABD≌△ACD(SAS),∴∠DAC=∠BAD=38°,故答案为:38°.18.解:如图所示:根据已知两角和它们的夹边相等得出全等三角形,故答案为:ASA.19.解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.20.解:∵△ABC≌△DEF,AB=2,AC=4,∴DE=AB=2,DF=AC=4,∵△DEF的周长为奇数,∴EF的长为奇数,当EF=3或5时,符合EF的长为奇数和三角形的三边关系定理,故答案为:3或5.三.解答题(共6小题)21.证明:AD=AE.理由如下:在△ABN和△ACM中,,∴△ABN≌△ACM(SAS),∴∠B=∠C,∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠BAE=∠CAD,在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE.22.解:由图知:△ADE与△DEC,△EHK与△CJF,△ADC与△ABC,四边形AGKE与四边形CFKE,四边形AGKD与四边形CFKD是重合的,即是全等的图形.23.解:(1)如图,(2)由图可知,AB=AD,CB=CD,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),24.解:∵AD是△ABC的高,且AD平分∠BAC,∴∠ADB=∠ADC,∠BAD=∠CAD.∵AD=AD,∴△ABD≌△ACD.∴∠B=∠C.25.解:∵△ADE≌△CBF,AD=BC,∴∠AED=∠F,∴AE∥CF.26.证明:(1)在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);(2)由(1)得:△AOD≌△BOC,∴∠D=∠C,∴AD∥BC.。

人教版八年级下册数学第1课时 勾股定理教案

第十七章勾股定理17.1勾股定理第1课时勾股定理教学设计课题二次根式的混合运算授课人素养目标1.了解勾股定理,探索勾股定理的证明过程,学会利用几何图形的截、割、补证明勾股定理.2.述勾股定理,并能应用它进行简单的计算.3.过拼图活动,体会数形结合的思想方法,培养学生的动手实践和创新能力.教学重点运用割补、拼图的方法证明勾股定理的正确性,并能进行简单计算.教学难点“数形结合”思想方法的理解和应用.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图介绍我国古代数学成就,激发学生的学习兴趣.【情境导入】国际数学家大会是全球性的数学科学学术会议,被誉为数学界的“奥运会”.2002年在北京召开过第24届国际数学家大会,如图是该届大会会徽的图案.你见过这个图案吗?它由哪些我们学过的基本图形组成?这个图案有什么特别的意义?【教学建议】简单介绍“赵爽弦图”的背景与组成图形.活动二:问题引入,自主探究设计意图引导学生探索、发现、证明勾股定理.探究点勾股定理的认识与证明1.特殊直角三角形中勾股定理的探究毕达哥拉斯是古希腊著名的数学家.相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面图案反映了直角三角形三边的某种数量关系,如图①所示.(1)你能说出图①中正方形A ,B ,C 的面积之间的关系吗?答:正方形A ,B 的面积之和等于正方形C 的面积.(S A +S B =S C )(2)正方形A ,B ,C 所围成的等腰直角三角形的三边之间有什么特殊关系?答:等腰直角三角形的两直角边的平方和等于斜边的平方.2.一般直角三角形中勾股定理的探究等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也满足“两直角边的平方和等于斜边的平方”呢?观察图②,其中每个小方格的面积均为1.(1)请你分别计算出图②中正方形A ,B ,C ,A′,B′,C′的面积.答:A 的面积=4,B 的面积=9,C 的面积=13,A′的面积=9,B′的【教学建议】(1)可提示学生通过数等腰直角三角形的个数得到图①中正方形A,B,C 的面积的数量关系,再引导学生由正方形的面积等于边长的平方得出等腰直角三角形的三边之间的关系;(2)可提示学生利用割补法计算图②中正方形C,C′的面积教学步骤师生活动面积=25,C′的面积=34.(2)正方形A,B,C的面积之间有什么关系?正方形A′,B′,C′的面积之间有什么关系?答:A的面积+B的面积=C的面积,A′的面积+B′的面积=C′的面积.(S A+S B=S C,S A′+S B′=S C′)(3)直角三角形三边之间的关系用命题形式怎么表述?答:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.3.勾股定理的证明阅读教材P23,24,了解赵爽是如何利用拼图的方法来证明上述命题的,我国把这个命题称为勾股定理,感兴趣的同学可以自己用拼图试一试.(等于某个正方形的面积减去4个直角三角形的面积),再引导学生得到命题;(3)可以让学生拿一张长方活动三:知识运用,典例讲练设计意图帮助学生巩固对勾股定理的认识.例1请你补全下列证明勾股定理的一种方法.已知:在△ABC中,∠ACB=90°,∠BAC,∠ABC,∠ACB的对边分别为a,b,c.求证:a2+b2=c2.证明:整个图形可以看作是边长为c的大正方形,它的面积为c2;也可以看作由四个全等的直角三角形和一个边长为b-a的小正方形组成,其面积为4×12ab+(b-a)2.所以可以得到等式:4×12ab+(b-a)2=c2.化简,得a2+b2=c2.例2在Rt△ABC中,∠A,∠B,∠C的对边长分别为a,b,c,∠C=90°.(1)已知a=3,b=4,求c;(2)已知c=17,b=15,求a;(3)已知c=14,a=6,求b.解:(1)c=a2+b2=32+42=25=5.(2)a=c2-b2=172-152=64=8.(3)b=c2-a2=142-62=160=410.【对应训练】1~2.教材P24练习.3.如图是传说中毕达哥拉斯的证法,利用这两个图形证明勾股定理.提示:图①中拼成的正方形与图②中拼成的正方形面积相等.证明:从图上可以看到,这两个大正方形的边长都是a+b,所以面积相等.所以a2+b2+4×12ab=c2+4×12ab,化简整理得a2+b2=c2.【教学建议】(1)告诉学生用拼图方法证明勾股定理通常有两种情况:①一个图形就利用它的两种不同面积表示方法列等式;②两个图形就利用它们的面积相等列等式.(2)提醒学生牢记直角所对的边是斜边,并要掌握勾股定理公式的其他变形(直角边为a,b,斜边为c时的情况):a2=c2-b2,b2=c2-a2,c=a2+b2,a=c2-b2,b=c2-a2.教学步骤师生活动活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:什么是勾股定理?你知道几种证明它的方法?1.勾股定理的证明方法例1以a ,b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积都等于12ab ,把这两个直角三角形拼成如图所示的形状,使A ,E ,B 三点在一条直线上.求证:a 2+b 2=c 2.证明:∵Rt △EAD ≌Rt △CBE ,∴∠ADE =∠BEC.∵∠AED +∠ADE =90°,∴∠AED +∠BEC =90°.∴∠DEC =180°-90°=90°.∴△DEC 是一个等腰直角三角形,它的面积等于12c 2.又∠DAE +∠EBC =90°+90°=180°,∴AD ∥BC.∴四边形ABCD 是一个直角梯形,它的面积等于12(a +b)2.∴12(a +b)2=2×12ab +12c 2.∴a 2+b 2=c 2.【知识结构】【作业布置】1.教材P 28习题17.1第1,3,7,13,14题.2.相应课时训练.板书设计17.1勾股定理第1课时勾股定理1.勾股定理:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明:“赵爽弦图”“毕达哥拉斯拼图”等.教学反思本节课以“情境导入-从特殊到一般-假设猜想-拼图验证”为主线,使学生亲身体验勾股定理的探索和验证过程,达到更好的学习效果.勾股定理的证明是本节课的难点,可以设计一些拼图活动,让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究,从而突破这一难点.例2作三个边长分别为a ,b ,c 的正方形,把它们拼成如图所示的形状,使H ,C ,B 三点在一条直线上,连接BF ,CD.求证:a 2+b 2=c 2.证明:如图,过点C 作CL ⊥DE 于点L ,交AB 于点M.∵∠FAC =∠BAD =90°,∴∠FAC +∠CAB =∠BAD +∠CAB ,即∠FAB =∠CAD.又AF =AC ,AB =AD ,∴△FAB ≌△CAD(SAS ),∴S △FAB =S △CAD .∵△FAB 的面积等于12AF·AC =12a 2,△CAD 的面积等于12AD·DL(即长方形ADLM 面积的一半),∴长方形ADLM 的面积=a 2.如图,连接AK ,CE ,同理易证△ABK ≌△EBC ,∴易得长方形MLEB 的面积=b 2.∵正方形ADEB 的面积=长方形ADLM 的面积+长方形MLEB 的面积,∴c 2=a 2+b 2,即a 2+b 2=c 2.2.利用勾股定理求边长应用勾股定理求直角三角形的边长时,经常利用a 2+b 2=c 2和其变式:a 2=c 2-b 2,b 2=c 2-a 2,c =a 2+b 2,a =c 2-b 2,b =c 2-a 2.例3在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于(C )A .10B .8C .10或6D .10或8分析:本题要分两种情况考虑,分别在两个图形中利用勾股定理求出BD 和CD ,从而可求出BC 的长.解析:如图①,由勾股定理,得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,∴BC =BD +CD =8+2=10.如图②,由勾股定理,得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,∴BC =BD -CD =8-2=6.综上所述,BC 的长为10或6.故选C .例4已知直角三角形的两边长x ,y 满足|x 2-4|+(y -2)2-1=0,则第三边长为(D )A .3B .13C .5或13D .3,5或13解析:∵|x 2-4|+(y -2)2-1=0,∴x 2-4=0,(y -2)2-1=0.∴x =2或-2(舍去),y =3或1.①当直角三角形的两边长为2和3时,若两直角边的长分别是2,3,则第三边的长为22+32=13;若3为斜边长,则第三边的长为32-22= 5.②当直角三角形的两边长为2和1时,若两直角边的长分别是2,1,则第三边的长为22+12=5;若2为斜边长,则第三边的长为22-12= 3.综上所述,第三边的长为3,5或13.故选D .注意:解题时注意分类讨论思想的应用,考虑问题不全面就会导致漏解.例1如图,在△ABD 中,AC ⊥BD 于点C ,E 为AC 上一点,连接BE ,DE ,延长DE 交AB 于点F ,已知DE =AB ,∠CAD =45°.(1)求证:DF ⊥AB ;(2)利用图中阴影部分面积完成勾股定理的证明.已知:在△ABC 中,∠ACB =90°,BC =a ,AC =b ,AB =c ,求证:a 2+b 2=c 2.证明:(1)∵AC ⊥BD ,∠CAD =45°,∴AC =DC ,∠ACB =∠DCE =90°.在Rt △ABC 和Rt △DEC 中,=DE ,=DC ,∴Rt △ABC ≌Rt △DEC(HL ),∴∠BAC =∠EDC.∵∠BAC +∠ABC =90°,∴∠EDC +∠ABC =90°.∴∠BFD =90°,∴DF ⊥AB.(2)由(1)知Rt △ABC ≌Rt △DEC ,DF ⊥AB ,∴EC =BC =a ,DC =AC =b ,DE =AB =c.由阴影部分面积,得S △BCE +S △ACD =S △AED +S △BED .又AC ⊥BD ,DF ⊥AB ,∴12a 2+12b 2=12c·AF +12c·BF =12c·(AF +BF)=12c·AB =12c·c =12c 2,∴a 2+b 2=c 2.例2勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.勾股定理具体内容为:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.(1)关于勾股定理的证明,人们已经找到了400多种方法,请从图①②③中任选一种来证明该定理.(以下图形均满足证明勾股定理所需的条件)(2)解答下列各题:①如图④⑤⑥,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足S1+S2=S3的有3个.②在如图⑦所示的“勾股树”中,设大正方形M 的边长为m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,则a 2+b 2+c 2+d 2=m 2.(结果用含m 的代数式表示)(3)如图⑧,分别以直角三角形的三边a ,b ,c 为直径作半圆,设图中两个月牙形图案(图中阴影部分)的面积分别为S 1,S 2,直角三角形面积为S 3,请判断S 1,S 2,S 3的关系并证明.解:(1)在图①中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即c 2=12ab·4+(b -a)2,化简得a 2+b 2=c 2;在图②中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即(a +b)2=c 2+12ab·4,化简得a 2+b 2=c 2;在图③中,梯形的面积等于三个直角三角形的面积的和,即12(a +b)(a +b)=12ab·2+12c 2,化简得a 2+b 2=c 2.(2)①解析:在图④中,S 1+S 2=a 2+b 2,S 3=c 2,∵a 2+b 2=c 2,∴S 1+S 2=S 3;在图⑤中,S 1+S 2=12π·(12a)2+12π·(12b)2=18π(a 2+b 2),S 3=12π·(12c)2=18πc 2.∵a 2+b 2=c 2,∴S 1+S 2=S 3;在图⑥中,易得S 1+S 2=34(a 2+b 2),S 3=34c 2.∵a 2+b 2=c 2,∴S 1+S 2=S 3.∴图④⑤⑥中面积关系满足S 1+S 2=S 3的有3个.故答案为3.(3)结论:S 1+S 2=S 3.证明如下:∵S 1+S 2=12π·(a 2)2+12π·(b 2)2+S 3-12π·(c2)2,∴S 1+S 2=18π(a 2+b 2-c 2)+S 3.∵a 2+b 2=c 2,∴S 1+S 2=S 3.。

人教版八年级下册数学1.矩形的判定课件

高效上好每节课·快乐上好每天学
例2如图,平行四边形ABCD四个内角的平分线围成四边
形EFGH,猜想四边形EFGH的形状,并说明理由
例2如图,平行四边形ABCD四个内角的平分线围成四边形EFGH,猜想四边形EFGH的形状,并说明理由
解:四边形EFGH是矩形
※∴∠矩AE形B=的90判°,解定即定:∠理HE1四F=90边° 形EFGH是矩形
B 通过合作、探究、交流等活动,培养学生的逻辑推理、动手实践和观察探究的能力。
∴∠DAB+∠ABC=180° 经历探索、猜想、证明的过程,理解并掌握矩形的判定方法(3种);
F
有一个角是直角的平行四边形是矩形.
(※ 或矩O形A=的O判C=∵定OB定=AO理D2E)、BE分别平分∠DAB、∠ABC
四猜边想形 :A有B三EC个是∴角平∠是行直四E角边的A形四.B边+形∠是矩E形B. A=90 °
第十八章 平行四边形
18.2.1 矩形
—矩形的判定
(第2课时)
高效上好每节课·快乐上好每天学
学习目标
1. 经历探索、猜想、证明的过程,理解并掌握矩形的判定方法(3种); 2. 会运用矩形的3种判定方法解决相关问题; 3.使学生在探究的过程中获得成功的体验,增强自信心,激发求知欲望;
教学重点:矩形的判定方法。 教学难点:矩形的判定方法及性质的综合运用。 教学过程与方法:
猜想:对角线相等的平行四边形是矩形. 例2如图,平行四边形ABCD四个内角的平分线围成四边形EFGH,猜想四边形EFGH的形状,并说明理由
你能证明上述结论吗?
高效上好每节课·快乐上好每天学
图1-16
矩形的判定定理1:对角线相等的平行四边形是矩形.
高效上好每节课·快乐上好每天学

八年级数学勾股定理的逆定理1


原命题:猫有4只脚 逆命题:有4只脚的是猫
(正确)
(不正确)
(正确)
原命题:等边三角形的三边相等。
(不正确) 逆命题:三边相等的三角形是等边三角形。 (1)任何一个命题都有逆命题; (2)原命题正确,逆命题不一定正确;原命题不正 确,逆命题可能正确。 (3)原命题与逆命题的关系是题设和结论相互转换
写出下列命题的逆命题并判断它们是否成立:
(1)等腰三角形的两底角相等
原命题:如果一个三角形是等腰三角形,那么这个 三角形的两底角相等。
逆命题:如果一个三角形的两底角相等,那么这个 三角形是等腰三角形。
勾股定理: 若直角三角形的两直角边为a ,b , 斜边为 c ,则有
a2+ b2=c2。
逆定理:
2 2
B
)
A、锐角三角形 C、钝角三角形
B、直角三角形 D、等边三角形
已知a,b,c为△ABC的三边,且满 足 a2+b2+c2+338=10a+24b+26c. 试判断△ABC的形状.
训练:
1.如图,两个正方形的面积分别为64,49, 则AC=( ) 17 A
D 64 49
C
2.由四根木棒,长度分别为3,4,5,12, 13 若取其中三根木棒组呈三角形,有( ) 4 种取法,其中,能构成直角三角形的是 ( )种取法。 2
2. 将直角三角形的三边的长度扩大同样的倍数, 则得到的三角形是 ( A )
A. 是直角三角形;
B. 可能是锐角三角形;
C. 可能是钝角三角形; D. 不可能是直角三角形.
中考链接
已知:如图,四边形 ABCD 中,∠B=900,AB=3,BC=4, CD = 12 , AD = 13, 求 四 边 形 ABCD的面积?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学1(能力提高与创新)
1. 若一个三角形的周长为12,且三角形的三边都是整数,有一边长为5,那么满足条件的
三角形有 个。
2. 已知有一个特殊的三角形,它有两条边长度相等,且其中的两边长分别5cm和10cm,则
它的周长为( )
A. 15cm B. 25cm
C. 20cm D. 25cm或20cm
3. 已知三角形的三边长分别是4,7,x,若x的值为整数,则x的值有( )
A. 3个 B. 5个 C. 7个 D. 9个
4.已知,在△ABC中,AB=AC,BD是AC边上的中线,BD把△ABC的周长分为36和48
两部分,则BC= .
5.如图,长方形四周共有14个点(包括顶点),相邻两个点的距离都是1,以这些点为顶
点构成三角形,则面积等于6的三角形有 个.

6已知,在△ABC中,∠A=50°,

(1) 如图(1), BF,CE分别是三角形两内角的角平分线,交于点D,则∠BDC= .
(2) 如图(2), BD,CD分别是三角形两外角的角平分线,交于点D,则∠BDC= .
(3)如图(3), BD,CD分别是三角形的内角和外角的角平分线,交于点D,
求∠BDC的度数.

7.如图所示,已知∠BDC=142°,∠B=34°,∠C=28°,则∠A=________度.
8.如图,AB∥DE,∠B=80°,∠D=140°,则∠C= 度.

9(1)如图1,把△ABC沿DE折叠,使点A落在点A’处,若∠A=50°,
则∠1+∠2= 度.
(2)如图2,已知BI平分∠ABC,IC平分∠ACB,把△ABC折叠,使点A与点I重合,
若∠1+∠2=130°,求∠BIC的度数.

D
E
F

C

A

B
C
B

A

D
D
C

A

E
B

(1) (2) (3)

E
D

C

B
A

10. 有长度分别为4cm,5cm, 7cm, 11cm的四根木棒,用其中三根首尾相接搭三角形,你能
搭成几个?三条边长分别为多少?

11下列各图是用同样长的小棒摆出的一系列的三角形图案:

(1) 如图(1)有1个小三角形,需要3根小棒,那么图(3)有几个小三角形?搭
成这样的一个图形需要这样的小棒多少根?
(2) 照这样搭下去,第20个图形有几个小三角形,需要这样的小棒多少根?
(3) 那么搭到第n个图形呢?

12.如图,在△ABC中,AD是BC边上的高,BE是∠ABC的平分线,AD与BE相交于点F,
已知∠C=70°,∠BAC=30°,求∠AFB的度数.

13.对于同一平面内的三条直线a,b,c,给出下列5个判断:①a∥b②b∥c;③a⊥b;④a∥c;
⑤a⊥c.请以其中两个论断为条件,一个论断为结论,组成一个你认为正确的命题(至
少写两个命题).

14 观察下列给出的方程,找出它们的共同特征,试给出名称,并作出定义.
x3+x2-3x+4=0,x3+x-1=0,x3-2x2+3=x,y3+2y2-5y-1=0.

15对于三个数cba,,,我们定义},,{cbaM表示这三个数的平均数,},,min{cba表示这三

(1) (2) (3)
(4)

F
E
D

C

B
A
第3题
个数中最小的数.例如:343321}3,2,1{M,)1(1)1(},2,1min{aaaa.解决
下列问题:
(1)}33|,22|,2min{1 ;
(2)如果}2,1,2min{}2,1,2{xxxxM,求x的值.

16.下列关于代数式x2-2x+3的两个命题:
①若x为自然数,则该代数式的值都是质数;
②该代数式的值不可能小于2.
请判断两个命题的真假,并说明理由.

17已知正数a和b,有下列命题:①若2ba,则1ab;②若3ba,则23ab;
③若6ba,则3ab.
(1)根据以上命题所提供的规律,请写出命题:若9ba,则ab ;
(2)由此你猜想的规律是: ,并说明你猜想的命题是否为
真命题.

18如图,AB//CD,BN、DN分别平分∠ABM、∠MDC,请探究∠BMD和∠N之间的数量关
系,并给予证明.

C D
M N
B A
19(1)如图,求∠A+∠B+∠C+∠D+∠E的度数.
(2)①如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为 .
②猜想当∠A,∠B,∠C,∠D,∠E,∠F满足什么条件时AB∥FC,并
证明你的猜想.

20下面是4×4的正方形方格图形,如图1所示.在A点有一只蚂蚁沿格线(虚线)爬行到B点,
爬行路径正好把大正方形分割成全等的两个图形.请在图2的a、b、c三个4×4正方形方格
中分别画出三种不同的走法,把每个大正方形都分成两个全等图形.

A
B

b
c
A
B

A B a B A
图1

21 P是等边三角形ABC内一点,且PA=6,PB=8,PC=10,若将三角形PAC饶点A逆时针旋
转后,得到三角形P‘AB。求(1)PP’的长度,(2)∠APB的度数

E
D
C

B
A

F
E
D
C

BA

相关文档
最新文档