二、气液相平衡关系
《化工原理》气液平衡 _液体精馏

第7章 液体精馏
7.3.2 精馏装置的流程
典型的连续精馏流程如图7-7 所示。 原料液经预热后,送入精馏 塔内。操作时,连续地从再沸器 取出部分液体作为塔底产品(釜 残液),部分液体气化,产生上 升蒸气,依次通过各层塔板。塔 顶蒸气进入冷凝器中被全部冷凝, 并将部分冷凝液借助重力作用 (也可用泵送)送回塔顶作为回 流液体,其余部分经冷却器(图 中末画出)后被送出作为塔顶产 1.精馏塔 2.再沸器 品(馏出液)。
25
第7章 液体精馏
图7-11 进料板上的物料衡算和热量衡算
26
第7章 液体精馏
将上述关系代入式(7-20a),联解式(7-20)和(7-20a) 可得 L′ − L IV − I F = (7-21) F IV − I L 令
7.2.1双组分溶液的气液相平衡
1.双组分理想溶液的气液相平衡关系 气液相平衡关系,是指溶液与其上方的蒸气达到平衡时, 系统的总压、温度及各组分在气液两相中组成间的关系。 ⑴ 理想溶液及拉乌尔定律 实验表明,理想溶液的气液平衡关系遵循拉乌尔定律。 拉乌尔定律表示:当气液呈平衡时,溶液上方组分的蒸气 分压与溶液中该组分的摩尔分率成正比。 在一定压强下,液体混合物开始沸腾产生第一个气泡的温 度,称为泡点温度(简称泡点)。 严格而言,实际上理想溶液是不存在的,仅对于那些由性 质极相近、分子结构相似的组分所组成的溶液,例如苯-甲苯、 甲醇-乙醇、烃类同系物等可视为理想溶液。
5
第7章 液体精馏
⑵ 气液平衡相图 ① t-x-y图 该图表示在一定总压下, 温度与气、液相组成之间的 关系。 在 总 压 为 101.33kPa 下 , 苯-甲苯混合液的t-x-y图如 图7-1所示。
图7-1 苯-甲苯混合液的t-x-y图
双液系的气—液平衡相图

实验五双液系的气—液平衡相图一、实验目的1、绘制在标准压力下乙醇-正丙醇体系的沸点组成图,并确定其恒沸点及恒沸组成;2、熟练掌握测定双组分液体沸点的方法及用折光率确定二组分物系组成的方法;3、掌握超级恒温槽、阿贝折射仪、气压计等仪器的使用方法。
二、实验原理1、相图任意两个在常温时为液态的物质混合起来组成的体系称为双液系。
两种溶液若能按任意比例进行溶解,称为完全互溶双液系,如环已烷-乙醇、正丙醇-乙醇体系都是完全互溶体系。
若只能在一定比例范围内溶解,称为部分互溶双液系,例苯-水体系。
在完全互溶双液系中,有一部分能形成理想液态混合物,如苯-甲苯系统,二者的行为均符合拉乌尔定律,但大部分双液系是非理想液态混合物,其行为与拉乌尔定律有偏差。
液体的沸点是指液体的蒸气压与外界压力相等时的温度。
在一定外压下,纯液体的沸点有其确定值,但双液系的沸点不仅与外压有关,而且还与两种液体的相对含量有关。
双液系两相平衡时的气相组成和液相组成并不相同。
通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点T(或t)-组成(x)图,即T(或t)—x图。
它表明了沸点与液相组成和与之平衡的气相组成之间的关系。
在恒定压力下,二组分系统气液达到平衡时,其沸点-组成(t-x)图分三类:(1)混合液的沸点介于A、B二纯组分沸点之间。
这类双液系可用分馏法从溶液中分离出两个纯组分。
如苯-甲苯系统,此时混合物的行为符合拉乌尔定律或对拉乌尔定律的偏差不大。
如图5-1(a)所示。
(2)有最低恒沸点体系,如环已烷-乙醇体系,t—x图上有一个最低点,此点称最低恒沸点,在此点相互平衡的液相和气相具有相同的组成,此时混合物的行为对拉乌尔定律产生最大正偏差,如图5-1(b)所示。
对于这类的双液系,用分馏法不能从溶液中同时分离出两个纯组分。
(3)有最高恒沸点体系,如氯仿-丙酮体系,t—x图上有一个最高点,此点称最高恒沸点,在此点相互平衡的液相和气相具有相同的组成,此时混合物的行为对拉乌尔定律产生最大负偏差,如图5-1(c)所示。
气液相平衡

(2)氨在水中的溶解度曲线,如图1所示。由图1可知、氨在气体在水中的溶解度
在相同的温度下随压力的增大而_________增大;在相同压力下随温度的升高 而_________降低。 A. 增大 降低 B. 降低 增大 C. 增大 增大 D. 降低 降低 回顾2 吸收过程进行的依据是混合气体中各组分的溶解度不同。吸收是因为 存在浓度差才得以进行的。
A Y Y* Y Y* X X X* X* X (X*) B
Y (Y*)
C
图4吸收过程状态图
图5解吸过程状态图
图6平衡状态表示图
(2) 解吸过程状态图,如图5所示。 B点位于平衡线下方区域,在该区域内, Y* ﹥Y ,X ﹥X* ,属于解吸过程。 问题6 为什么位于平衡线下方的操作点属于解析过程? 回答——因为B点实际的液相浓度X比平衡浓度X*要大,也就是说溶质在液相的浓 度太大了,因此,就有溶质从液相逸回气相,此过程为解析过程。 (3) 平衡状态表示图,如图6所示。 C点位于平衡线上,此时Y=Y*,X*=X ,过程处于平衡状态。
xA* pA 2666 0.02832 E 94120
答:其液相平衡浓度xA*为0.02832。
四、吸收平衡线在吸收过程中的应用 〖新课展开〗
1. 判定吸收过程进行的程度和方向 (1) 吸收过程状态图,如图4所示。 图中A点位于吸收平衡线的上方,在该区域内,Y﹥Y*,X*﹥X,属于吸收过程。
将 Y*=mX标绘于Y-X坐标系中,吸收相平衡曲线(X很小)如图3所示。 问题5 平衡线上任何一点表示什么意思? 回答——平衡线上任何一点表示气液两相浓度呈平衡状态。 例4 20℃下,气氨溶解于水中,亨利系数为94120Pa,当达到吸收平衡后,含 氨混合气(气相)中氨的分压为2666 Pa时,其液相平衡浓度xA*为多少? 解 根据亨利定律 可知 p* Ex
双液系气—液平衡相图

双液系气—液平衡相图一、实验目的1.用沸点仪测定在常压下环己烷-乙醇的气液平衡相图。
2.掌握阿贝折射仪的测量原理及使用方法,掌握用折光率确定二元液体组成的方法。
3.掌握测定双组分液体沸点的方法。
二、实验原理两种液体混合而成的二组分体系称为双液系。
两种溶液若能按任意比例进行溶解,称为完全互溶双液系;若只能在一定比例范围内溶解,称为部分互溶双液系。
环己烷-乙醇二元体系就是完全互溶双液系。
双液系蒸馏时的气相组成和液相组成并不相同。
通常用几何作图的方法将双液系的沸点对其气相和液相的组成作图,所得图形叫双液系的沸点(T)组成(x)图,即T—x图。
它表明了在沸点时的液相组成和与之平衡的气相组成之间的关系。
本实验选择一个具有最低恒沸点的环己烷—乙醇体系。
在常压下测定一系列不同组成的混合溶液的沸点及在沸点时呈平衡的气液两相的组成,绘制T—X图,并从相图中确定恒沸点的温度和组成。
三、实验仪器及试剂沸点测定仪 1个 阿贝折光仪 1台 直流稳压电源 1台 水银温度计 1支玻璃温度计 1支超级恒温水浴 1台长滴管 2支环己烷-乙醇系列溶液:1、以环己烷摩尔分数计为0.05,0.15,0.30,0.45,0.55,0.65,0.80,0.95各50ml2、以环己烷摩尔分数为0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90各10ml四、实验步骤绘制标准曲线——安装沸点测定仪——测定沸点——测定平衡的气-液相组成——重复测量其余溶液相平衡1、绘制标准曲线①调节恒温水浴温度,使阿贝折光仪上的温度计读数保持在某一定值。
②分别测定环己烷摩尔分数为0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90的九个溶液以及环己烷和乙醇的折光率,每个需重复3次。
③用较大的坐标纸绘制若干条不同温度下的折光率-组成工作曲线。
2、安装沸点测定仪将干燥的沸点测定仪按照片所示安装好。
用气液平衡关系分析吸收过程

1、判断过程的方向
例:在101.3kPa,20℃下,稀氨水的气液相平衡关系为 : ,若含氨0.094摩尔分数的混合气和组成
的氨水接触,确定过程的方向。 解: 用相平衡关系确定与实际气相组成 成平衡的液相组成
2021/10/24
将其与实际组成比较 : ∴气液相接触时,氨将从气相转入液相,发生吸收过程。 或者利用相平衡关系确定与实际液相组成成平衡的气相组成
塔底 x1增加
组成为:
组成为y1的混合气
增加塔高 增加吸收剂用量
塔顶y2降低
组成为:
极限 极限
2021/10/24
2021/10/24
2、计算过程的推动力
当气液相的组成均用摩尔分数表示时,吸收的推动力可表示为:
以气相组成差表示的吸收推动力; 以液相组成差表示的吸收推动力。
3、确定过程的极限
所谓过程的极限是指两相充分接触后,各相组成变化的最大可能性。
2021/10/24
组成为y1的混合气
增加塔高 减少吸收剂用量
将其与实际组成比较: ∴氨从气相转入液相,发生吸收过程。 若含氨0.02摩尔分数的混合气和 x=0.05的氨水,氨由液相转入气相,发生解吸过程。 此外,用气液相平衡曲线图也可判断两相接触时的传质方向 具体方法: 已知相互接触的气液相的 实际组成y和x,在x-y坐标 图中确定状态点,若点在 平衡曲线上方,则发生吸 收过程;若点在平衡曲线 下方,则发生解吸过程。
第二节--双组分溶液的汽液相平衡

第二节双组分溶液的汽液相平衡§6.2.1、理想物系的汽液相平衡平衡蒸馏与简单蒸馏中都存在着汽液两相共存的物系。
在平衡蒸馏中汽液两相充分接触后再进行分离,可以近似认为两相已达到平衡状态。
在简单蒸馏中汽体自沸腾液体中产生,也可近似认为两相处于平衡状态。
所以,蒸馏过程都涉及到两相共存的平衡物系。
一、汽液两相平衡共存的自由度物系中共有四个变量P、T、y、xF = c-p+2 = 2-2+2 = 2所以四个变量中只有两个独立变量。
而蒸馏过程的操作压强是恒定不变的。
P一定,则F=1,即T、x、y中只有一个独立变量了。
若T一定,则x、y随之而定;若x或y 一定,则T(y)或T(x)也随之而定。
图中恒压下双组分平衡物系中必存在着:1)液相(或汽相)组成与温度间的一一对应关系,T-x(y)关系。
2)汽、液相组成之间的一一对应关系,y~x关系。
二、双组分理想物系的Tb~x关系式(泡点——液相组成关系式)理想物系液相为理想溶液I.S.,服从拉乌尔定律;微观Micro:g11=g22=g12,宏观Macro:△H=0;△V=0汽相为理想气体I.G.,服从理想气体定律或道尔顿分压定律。
根据拉乌尔定律,液相上方的平衡蒸汽压为,,混合液的沸腾条件是各组分的蒸汽压之和等于外压,即或Tb~x的函数关系已知泡点,可直接计算液相组成;反之,已知组成也可算出泡点,但一般需经试差,这是由于fA (t)和fB(t)通常系非线性函数的缘故。
纯组分的p0与t的关系通常可表示成如下的经验式:安托因方程A,B,C为安托因常数,由手册查得。
三.汽液两相平衡组成间的关系式Κ——相平衡常数,y-x的函数关系,P一定,Κ=f(T)。
四.汽相组成与温度(露点)的定量表达式y-Td函数关系式五.t~x(y)图和y-x图P恒定E、F互成平衡的汽、液相B'——第一个汽泡D'——第一个液滴把p一定,不同温度下互成平衡的汽液两相组成y和x绘制在y-x坐标中,得到的图称为y-x图。
双液系的气相平衡图

双液系的气液相平衡图1 引言在一定压力下,两组分系统气液达到平衡时,表示液态混合物的沸点与平衡时气液中两组分关系的相图,称为沸点-组成(T-x)相图。
本实验的目的是测定常压下环己烷-乙醇双液系的沸点-组成图,由于该双液系对拉乌尔定律有较大的正偏差,故相图大致如图1所示,可见,欲测定此图,需在气液平衡后同时测定溶液的沸点、气相和液相组成。
前者可由沸点仪实现,而后者可用折射仪及由不同浓度溶液得到的工作曲线测得。
图1 环己烷-乙醇双液系的沸点-组成相图2 实验操作2.1实验药品、仪器及测试装置示意图2.1.1 实验仪器自制沸点仪,阿贝折射仪,调压器,温度传感器,锥形瓶,分析天平(AR2140),5ml 及10ml吸量管,洗耳球2.1.2 实验药品环己烷,无水乙醇2.1.3 实验装置示意图图21.冷却水入口2.气相冷凝液储存小泡3.温度计4.喷嘴5.电热丝6.调压器2.2 实验条件温度:室温(具体数值未知)气压:未知湿度:未知2.3实验操作步骤及方法要点a.按下表配比配制不同浓度的环己烷-乙醇溶液,并在空瓶时m0、加入环己烷后m1、加入无水乙醇后m2(本实验先加入环己烷后加入无水乙醇)分别进行称量并记录。
注意:所用锥形瓶要事先干燥;由于浓度是根据称量的数值由两组分的质量进行计算,所以每次加入液体的体积不必太精确。
表1 环己烷-无水乙醇混合溶液配比b.根据所测得的质量,用公式ω=(m1-m0)/(m2-m0) 公式1计算环己烷的质量分数,其中ω指环己烷的质量分数。
c.用阿贝折射仪测定以上配好的不同浓度环己烷-乙醇溶液的折射率以及纯环己烷和无水乙醇的折射率,记录数据。
注意:每次测量折射率后,要将折射仪的棱镜打开,用洗耳球吹干,以备下次使用。
d.根据上一步测得的折射率,用线性拟合的方法做工作曲线,检查数据是否可靠,若不可靠应重复测量。
e.由于不同浓度的各样品已经事先装入沸点仪,所以直接选定一个浓度的样品,接通电源,加热样品。
双组分溶液的气液相平衡关系

双组分溶液的气液相平衡关系
汽、液两相物系分为理想物系与非理想物系两大类。 理想物系:液相为理想溶液、汽相为理想气体的物系。 实验表明,理想溶液服从拉乌尔(Raoult)定律,理想气体 服从理想气体定律或道尔顿分压定律。
严格地说不存在完全理想的物系。 对性质相近、分子结构相似的组分所组成的溶液,如苯-甲 苯,甲醇-乙醇,烃内同系物等,可视为理想溶液;若汽相 压力不高,可视为理想气体,则物系可视为理想物系。
yA
pA P
p0A xA P
xA
P pB0 p0A pB0
yA
p0A P
P pB0 p0A pB0
一定总压下汽相组成与温度的关系式。
对一定组成的汽相而言该温度又称为露点,故上式又称为 露点方程。
对非理想物系不能简单地使用上述定律。汽液相平 衡数据主要通过实验测定。
GLL
相对挥发度
溶液中各组分的挥发性由挥发度来量衡,其定义为组分在 汽相中的平衡蒸汽压与在液相中的摩尔分数的比值。
对双组分物系
A
pA xA
B
pB xB
A、B ——溶液中 A、B 两组分的挥发度。对纯组分液体,
其挥发度就等于该温度下液体的饱和蒸汽压。
溶液中两组分挥发度之比称为相对挥发度,用 表示
A pA xA B pB xB
低压气体 道尔顿分压定律
Py A xA yA yB K A
PyB xB xA xB K B
是相平衡时两个组分在汽相中的摩尔分数比与液相中摩
尔分数比的比值,由其大小可以判断该混合液能否用蒸馏 方法加以分离以及分离的难易程度。
GLL
>1,表示组分 A 较 B 易挥发; 值越大,两个组分在两相中的相对含量差别越大,越容
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、气液相平衡关系
汽液平衡是专业术语,汽相与液相间的相平衡。
它与气液平衡有一些共同的规律,所以有时把它与气液平衡合在一起进行研究。
为简便起见,常把汽相或气相与液相之间的平衡合写成汽(气)液平衡。
习惯上把低于临界温度的气体称为蒸气,简称汽,它可以加压液化;高于临界温度的气相,不能加压液化,称为气体。
概述
气液平衡(vapour-liquid equilibrium)vapour-liquid equilibrium又称汽液平衡。
是由n个组分的混合物构成一个封闭系统,并有气-液两相共存,一定的温度和压力下,两相达到平衡时,各组分在汽液两相中的化学位趋于相等。
或运用逸度更为方便:在混合物中i组分在气相和液相中的逸度相等,称气液平衡。
表示方法
若在某一温度、某一压力下气液两相达到平衡,则仅剩下一个自由度,即,气相组成或液相组成。
气相组成与液相组成之间必然存在着固定的关系。
即:气液平衡关系。
平衡溶解度曲线或者数学关系式(亨利定律)便是反映这一气液平衡关系的方法。
平衡溶解度曲线:在一定条件下,溶解达到相平衡时,反映溶质组分在气相中浓度与液相中浓度的关系曲线。
亨利定律:稀溶液范围内,溶解度曲线通常地近似为一直线。
亨利定律就是描述溶质组分在互呈平衡的气相、液相中浓度关系的数学关系式。
在稀溶液中挥发性溶质的实验中,实验表明,只有当气体在液体中的溶解度不很高时该定律才是正确的,此时的气体实际上是稀溶液中的挥发性溶质,气体压力则是溶质的蒸气压。
所以亨利定律还可表述为:在一定温度下,稀薄溶液中溶质的蒸气分压与溶液浓度成正比。
— 1 —。