集中供热系统
第六章集中供热系统的热负荷

2)百分数法——概算 百分数法——概算
′ Qt′ = Kt Qn kW Kt 计 算建 筑物 风 空 新 通 、 调 风 加 热热 荷的 数, 般 0.3 ~ 0.5 负 系 一 取 。
3. 热水供应设计热负荷 1)热水供应设计热负荷的确定原则 热水供应热负荷指加热日常生活中洗涤和盥洗用热水的 耗热量,其大小取决于热水用量。热水供应系统的热水 用量具有昼夜的周期性,一天每小时的热水供应量变化 较大,而每天的日用水量变化不大。 热网的热水供应热负荷与热水供应系统和热网的连接方式 有关。 (1)当用户的热水供应系统中有储水箱时,采用供暖期 的热水供应平均热负荷Q 的热水供应平均热负荷Qr.p’计算;当用户无储水箱时, 应以供暖期的热水供应最大热负荷Q 应以供暖期的热水供应最大热负荷Qr.max’作为设计热负 荷。 (2)对城市集中供热系统热网的干线,由于连接的用水单 (2)对城市集中供热系统热网的干线,由于连接的用水单 位数目很多,干线的热水供应设计热负荷可按供暖期热 水供应的平均热负荷Q 水供应的平均热负荷Qr.p’计算。
′ Qt′ = qtVw (tn twt ) ×103
kW
qv 通 体 热 标 也 建 物 通 比 特 指 ) 风 积 指 ( 称 筑 的 风 热 性 标 , W 3 °C; 表示 筑 在 内 温 1°C时 /m 它 建 物 室 外 差 , 每 3建 物 围 积 通 设 热 荷 1m 筑 外 体 的 风 计 负 。 Vw 建 物 外 廓 积 m3 ; 筑 的 轮 体 , tn 供 室 计 温 , 暖 内 算 度 °C; ′ twt 通 室 计 温 , 风 外 算 度 °C. 注:对于一般的民用建筑,室外空气无组织地从门窗等缝隙进入,预 热这些空气到室温所需的渗透和侵入耗热量,已计入供暖设计热负荷 中,不必另行计算。
集中供热的安全隐患分析与防治措施

集中供热的安全隐患分析与防治措施一、集中供热系统的安全隐患1. 管道漏水集中供热系统的管道是将热水或蒸汽输送到用户端的重要通道,一旦管道发生漏水,不仅会导致供热系统的能源浪费,还会给周围环境和建筑结构带来不良影响。
2. 设备故障供热系统中的设备包括锅炉、泵、控制阀等,如果这些设备出现故障,可能会导致供热系统的运行异常甚至停止供热。
3. 安全阀失效安全阀是供热系统中的重要安全装置,一旦失效,可能导致系统内部的压力升高,从而引发爆炸等严重事故。
4. 管道堵塞集中供热系统的管道内部容易积聚各种杂质,导致管道堵塞,影响供热效果甚至造成设备故障。
5. 人为破坏由于供热设备和管道大多设置在地下或者室外,容易受到人为破坏,从而带来安全隐患。
1. 管道漏水防治① 加强管道安全防护。
在集中供热系统管道周围设置防护设施,以避免外界物体的破坏造成漏水。
② 定期对管道进行检查和维护。
及时发现并修复管道漏水隐患,确保供热系统的正常运行。
2. 设备故障防治① 加强设备维护保养。
定期对供热设备进行检查,并进行必要的维护保养工作,确保设备的正常运行。
② 安装监控系统。
通过监控系统实时监测供热设备的运行情况,一旦发现异常及时采取措施。
3. 安全阀失效防治① 定期检测安全阀。
对安全阀进行定期的检测和维护,确保其正常运行。
② 安装自动报警系统。
一旦安全阀失效,自动报警系统能够及时发出警报,以提醒相关人员及时处理。
4. 管道堵塞防治①定期清理管道。
定期对管道进行清理,清除管道内的杂质,防止管道堵塞。
② 安装过滤器。
在供热系统中加装过滤器,过滤进入管道的杂质,减少管道堵塞的风险。
5. 人为破坏防治① 加强安全监控。
加强对供热设备和管道周围的安全监控,减少人为破坏的发生。
② 加大宣传力度。
通过宣传教育,增强人们的安全意识,避免人为破坏给供热系统带来安全隐患。
集中供热原理

集中供热原理
集中供热是一种为大型建筑或社区提供供暖服务的方式,它的原理是将发电厂或锅炉房所产生的热能通过管道输送到用户的家庭或单位。
这种供热方式具有节能、安全、可靠、环保等优点,因此在城市建设中得到了广泛应用。
集中供热系统包括供热源、输送管道和用户热交换站三个部分。
供热源可以是发电厂、锅炉房等,通过燃烧燃料产生热能。
输送管道是将热水或蒸汽从供热源输送到用户处的管道,这些管道需要具有较高的密封性和保温性。
用户热交换站是将输送过来的热能通过散热器传递给用户的住宅或办公室。
集中供热的好处是可以集中利用能源,减少能源浪费,同时也能够降低用户的供暖成本。
在使用过程中还能够避免供暖设备的故障和维修,增加了供暖的安全性和可靠性。
不过,在实际应用中需要注意管道的保护和维护,避免漏水和腐蚀等问题。
集中供暖水压标准

集中供暖水压标准集中供暖是指通过一个集中的供热系统,将热能传输到各个用户的供暖方式。
在集中供暖系统中,水压是一个非常重要的参数,它直接影响着供暖系统的正常运行和用户的使用体验。
本文将介绍集中供暖水压的标准。
首先,我们需要明确一点,不同地区和不同类型的集中供暖系统对水压的要求可能会有所不同。
因此,在实际应用中,应根据具体情况来确定水压的标准。
一般来说,水压标准包括供水压力和回水压力两个方面。
对于供水压力,一般要求在0.3-0.5MPa之间。
这个范围可以保证供暖系统正常运行,并且能够满足用户的需求。
如果供水压力过低,可能会导致供暖系统无法正常工作,影响供暖效果;如果供水压力过高,可能会对供暖设备造成损坏。
对于回水压力,一般要求在0.1-0.2MPa之间。
回水压力是指热水从用户处回流到集中供热系统时的压力。
回水压力过低可能会导致热水无法顺利回流,影响供暖效果;回水压力过高可能会对供热设备造成损坏。
除了供水压力和回水压力之外,还有一个重要的指标是系统压差。
系统压差是指供水管道和回水管道之间的压力差。
一般来说,系统压差应保持在0.05-0.1MPa之间。
系统压差过大可能会导致供暖系统无法正常工作,影响供暖效果;系统压差过小可能会导致热水无法顺利回流,影响供暖效果。
为了保证集中供暖系统的正常运行和用户的使用体验,除了水压标准之外,还需要注意以下几点:1. 定期检查和维护供暖设备,确保其正常运行和安全性;2. 定期清洗和维护供暖管道,防止管道堵塞和腐蚀;3. 合理设置供暖设备的温度和运行时间,以节约能源;4. 定期检查和维护集中供热系统的水质,确保水质符合要求。
总之,集中供暖水压标准是保证集中供暖系统正常运行和用户使用体验的重要参数。
在实际应用中,应根据具体情况来确定水压标准,并定期检查和维护供暖设备和管道,以确保系统的正常运行。
同时,还需要注意合理设置设备温度和运行时间,以及定期检查和维护水质。
通过这些措施,可以提高集中供暖系统的效率和可靠性,为用户提供舒适的供暖体验。
城市集中供热工程设计方案

城市集中供热工程设计方案一、引言城市集中供热工程是指将多个建筑物、设施等连接起来,通过集中供热系统向各个用户提供温暖的供热服务。
本文将探讨城市集中供热工程的设计方案,涵盖供热系统的构建、热源选择、管网布局等关键问题。
二、供热系统构建城市集中供热系统是由热源、热网和热力站组成的。
热源是提供供热能源的设备,可以选择的热源包括锅炉、燃气轮机、地源热泵等。
在进行设计时,需要考虑热源的可靠性、供热能力以及燃料的成本等因素。
热网是将热源产生的热能输送到用户处的管道系统,应根据用户分布、供热负荷等参数进行管道的设计和布局。
热力站则负责将热网上输送的热能转换为用户所需要的供热形式,例如蒸汽、热水等。
三、热源选择热源的选择应综合考虑供热系统的经济性、可靠性和环境影响。
在传统的供热系统中,常用的热源是锅炉。
锅炉使用燃煤、燃气等能源进行热能转化,但会产生废气和灰尘等污染物。
近年来,可再生能源的应用逐渐增多,太阳能、生物质能和地源热能等成为热源的新选择。
这些可再生能源具有环境友好、能源可持续利用等特点,但需要考虑其供热能力和建设成本。
四、管网布局城市集中供热系统的管网布局是保证热能传输顺畅的关键。
在进行管网布局时,应考虑用户分布和供热负荷等因素。
一般来说,管道的布局应尽量短、路径直线,以降低输送热能的损失。
同时,还应合理设置阀门、泵站等设备,以保证管网的稳定运行和维护。
五、节能措施为了提高供热系统的能效,可以采取一系列节能措施。
首先,可以通过加装隔热层、改进管道绝热、减少热损失等方式来降低热能的损耗。
其次,可采用变频技术、蓄热技术等手段,提高系统的灵活性和热能利用率。
此外,也可以考虑与其他能源系统(如电力系统)进行联网,实现能源的综合利用。
六、安全与环保城市集中供热工程设计方案中,安全与环保是非常重要的考虑因素。
在热源的选择上,应优先考虑低污染、低排放的能源。
对于锅炉等传统热源,应配备合格的烟气处理设备,以降低排放对环境的影响。
集中供热系统的热源

热电联产
2. 70-80年代 热电联产呈下降趋势 在此 热电机组 占总装机 5% ,其中公用占29%, 自备热电站占71%。 3. 1981~1989年,计划安排从3000Kw~300Mw, 各种供热机组项目213个,总装机5800MW 到88年底按产建成2900MW,年发电能力120多亿度 实现供热能7000多百万大卡/小时,年节约标煤400万吨 4.1989年底我国的热电联产状况如下: 年供热量 51757百万千焦 平均供热厂用电率 6026度/百万千焦 供热标准煤耗 39.83公斤/百万千焦
QT
Qm
它是热电厂最主要的技术经济参数之一。这是由于供热 机组的安装容量和热电厂的燃料节约都取决于热化参数。
热化系数的意义:
a.热电厂最主要的技术经济参数,即汽轮机的安装容量 和热电厂所获得的燃料节约量取决于热化参数。
热电厂供热系统
例如 当型号参数不变的情况下 则会使热电厂安装容量增大 结果是 基础建设投资加大 但此时燃料节约加大 二者是矛盾的
热电联产
热电联产
热电联产: 既生产电力又生产热能的联合生产。
具体方式:利用汽轮机中做过功的蒸汽对外供热。例如,热电厂中
装背压机,调节抽气式汽轮机,冷凝采暖两用机等,利 用排式抽气供给热用户,就属于两种能量联合生产。
实现两种能量生产必须具备的基本条件:
1.有热用户,而且要保证热能用户所需参数(压力,温度)和流量
g.对联合供热系统水力计算时,应分析各热源的投入顺序和工 况。计算不同状况的水力计算后选择最不利工况为设计依据。 h.提高供热系统自控水平是保证联合供热系统正常而又经济 运行的最重要措施。
§7-2 区域锅炉房
分类:
按燃料分 燃媒 热水锅炉
集中供热系统热负荷的概算和特征

第六章 集中供热系统的热负荷概述热负荷是大型集中供暖系统工程中十分重要的一个环节,它是工程设计方案是否可行作出基本保证,而在大型工程的前期准备中,概算是十分重要的。
应用广泛。
对实际工程而言,每个用户热负荷是实际计算,而对集中供热系统中的某用户的热负荷是采用概算或估算的方法计算。
第一节 集中供热系统热负荷的概算和特征集中供热系统热用户种类:供暖、通风、空调、热水供应和生产工艺等.特点:a )前三者为季节性负荷,后两者为全年性负荷 B )它们是供热规划和设计的最主要依据。
C )在规划阶段,各类建筑仅有规模。
功能 数据不全,故通常采用概算指标计算方法来确认热负荷、一 供暖设计热负荷供暖设计热负荷在供热系统中所占比重很大,并可由两种热指标法进行计算,即,体积指标法和面积指标法进行计算、 1) 体积指标法3'(')10n v w nw Q q V t t -=-⨯ KW式中 'n Q ——建筑物的供暖设计热负荷,kw VW 建筑物的外围体积,M3 Tn 供暖室内计算温度 Tw 供暖室内计算温度Qv 建筑物的供暖体积热指标,其含义为各类建筑物,在室内外温差1℃时,每1m 3 建筑物外围体积的平均供暖热负荷。
Qv 的特征:a )大小取决于围护结构与外形B )来源:已有建筑计算数据统计与实测所汇总的手册( 注:应用不多) 2) 面积热指标法 3'10n f Q q F -=⨯ 建筑物供暖设计热负荷 建筑物的建筑面积 建筑物供暖面积热指标含义:每1m 3 建筑面积的平均供暖设计热负荷 Qf 的特征:a ) 大小取决于围护结构与外形和功能 B )来源已完成设计数据与实测 C )应用广泛(见附录6-1,讲解) 3)城市规划指标法以人为本→人均建筑面积→各类建筑比例→各类建筑面积→总规划热指标或者以土地面积→建筑面积→各类建筑比例→综合热指标→总热负荷。
应用:用来作近期或远期规划热负荷用。
集中供暖的原理

集中供暖的原理
集中供暖是指将热能集中供应到建筑物中的所有房间和空间,以提供舒适的室内温度。
其原理是通过热源将热能转化为热水或蒸汽,然后通过管道系统将热媒介传输到各个供暖终端(如散热器、地板辐射等)。
在供暖终端处,热媒介与空气进行热交换,使室内空气得到加热,从而提高室内温度。
集中供暖的系统通常包括以下主要组成部分:供热系统、管道系统和供暖终端。
供热系统由热源、热交换设备(如锅炉、换热器等)和控制装置组成。
热源可以是燃气锅炉、燃油锅炉、电锅炉等,它们通过燃烧燃料或电能产生热能。
热源将产生的热能转移给热媒介,使其温度升高。
热媒介可以是热水或蒸汽,在运输过程中通过管道系统输送到各个供暖终端。
管道系统起到连接热源和供暖终端的作用,通常由金属或塑料制成的管道组成。
管道系统中的热媒介在一定压力下流动,通过热传导和对流的方式将热能传输到供暖终端。
管道系统还包括阀门、泵等辅助设备,用于控制热媒介的流量和温度。
供暖终端是连接到管道系统的设备,用于将热能传递给室内空气。
常见的供暖终端包括散热器、地板辐射、风机盘管等。
这些供暖终端通过与室内空气接触,将热能传递给空气,使室内温度逐渐提高。
集中供暖系统中的控制装置可以根据室内温度、室外温度等参数对供热系统进行调节和控制,以实现舒适的室内温度。
通过
合理的调节和控制,集中供暖系统能够提供稳定、高效的供暖效果,满足人们对舒适室内环境的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 集中供热系统方案的确定
多热源联合供热系统主要的组合方式: 1.热电厂与区域锅炉房联合供热; 2.几个热电厂联合供热。 多热源联合供热的热水供热系统优点 由于热源数目增多,整个系统的供热安全率得到保证,个 别热源锅炉出现事故,不致影响整个系统的供热能力; 合理地安排热效率高的锅炉先投入运行,还可以提高整个 供热系统的热能利用率; 配置相应的热网系统图式,可以提高整个系统的供热后备 能力。
图7-1区域热水锅炉房供热系统示意图 1-热水锅炉;2-循环水泵;3-除ห้องสมุดไป่ตู้器;4-压力调节阀;5-补给水泵; 6-补充水处理装置;7-采暖散热器;8-生活热水加热器;9-水龙头
2 集中供热系统的形式
热水锅炉房
在区域锅炉房内装设热水锅炉及其附属设备,直接制备热 水的集中供热系统,近年来在国内有较大的发展。它多用 于城市区域或街区的供暖,或用于工矿企业中供暖通风热 负荷较大的场合。 热水锅炉房的集中供热系统定压方式,主要有下列几种方 式。 (1) 采用高架水箱定压; (2) 采用补给水泵定压; (3) 采用气体定压; (4) 采用蒸汽定压
1.向集中供热系统的所有热用户供应蒸汽的型式。 2.在蒸汽锅炉房内同时制备蒸汽和热水热媒的型式。通常 蒸汽供应生产工艺用热,热水作为热媒,供应供暖、通风 等热用户。 根据在蒸汽锅炉房集中制备热水的方式不同,有: (1)采用集中热交换站的型式; (2)采用蒸汽喷射装置的型式; (3)采用淋水式换热器的型式。
2 集中供热系统的形式
3)通风系统热用户与热网的连接 通风系统中加热空气的设备的承压能力较高,对热媒参数 也无严格限制,因此用户通风系统与热水供热管网的连接, 通常采用简单的直接连接,如图7-6e所示。 4)热水供应热用户与热网的连接 无储水箱的连接方式(图7-6f) 装设上部储水箱的连接方式(图7-6g) 装设容积式换热器的连接方式(图7-6h) 装设下部储水箱的连接方式 (图7-6i)
集中供热系统热媒主要有热水和蒸汽两种,其供热参数及运行方式是 由热电厂、热网、热用户的条件、特性和要求所决定的。 1 供热介质比较 热水的主要优点: 1)热水介质热能效率高。 没有凝结水和蒸汽泄漏,以及二次蒸汽的热损失,因而热能利用率比 蒸汽供热系统好,实践证明,一般可节约燃料20%一40%。 2)调节方便,可以根据室外空气温度进行热水温度调节(质调节) ,以 达到节能、保证室内采暖温度、满足卫生要求的目的; 3)热水采暖系统的蓄热能力高,热稳定性好; 由于系统中水量多,水的比热大,因此在水力工况和热力工况短时间 失调时,也不会引起供暖状况的很大波动。 4)输送距离长。一般可达5~lOkm,甚至达到15~20km; 5)热损失小。
1 集中供热系统方案的确定
其它热源供热系统
1)工业余热 工业余热是指工业生产过程的产品和排放物料所含的 热或设备的散热。工业余热的利用,根据余热的载能体不 同,可分为气态余热利用、液态余热利用和固态余热利用 几种类型。 工业余热大多具有以下几个特点: 1.大多数生产工艺过程的余热,它的数量和参数直接受生 产工艺影响,波动较大,而且与外部的热负荷无直接关系。 2.大多数工业余热的载能体(如可燃气体、高温烟汽、乏 汽、工业产品的物理热等),都属于高温和非洁净的载能 体。
LOGO
供热工程
HEATING ENGINEERING
7 集中供热系统
教学目标
【知识目标】 1.掌握集中供热系统热媒特点、热媒参数的确定方法; 2.掌握集中供热系统的组成、系统形式、特点; 3.了解其它热源系统的基本原理、特点; 4.掌握热水、蒸汽供热系统与供热管网的连接方式、适用 场合; 5.了解凝结水回收系统的分类、系统形式及适用场合。 【能力目标】 1.能够进行集中供热系统热媒种类及参数的选择; 2.会进行热水、蒸汽采暖热用户与供热管网的连接方式的 确定。
2 集中供热系统的形式
图7-4 抽汽式热电厂供热系统示意图
2 集中供热系统的形式
2 集中供热系统的形式
2.2 按热媒种类分类 1 热水供热系统 根据热网循环水是否被直接取出,可分为闭式系统和开式 系统。 闭式热网只供应用户所需热量,水作为供热介质不被取出, 我们可认为系统的流量是不变的,但实际上热媒通过阀门、 水泵轴承、补偿器(套筒或膨胀节)以及其它不严密处时, 总会向外部泄漏少量循环水,使系统循环水流量减少。在 正常情况下,系统的泄漏水量一般不超过系统总容水量的 1%,泄漏的水靠补水装置来补充。 闭式双管(由一条供水管和一条回水管组成)热水供热系 统是我国目前应用最广泛的一种供热系统形式。图7-6所 示为双管闭式热水供热系统示意图。
目 录
1
1 集中供热系统方案的确定 2 集中供热系统的形式 3 集中供热系统热负荷
2
3
1 集中供热系统方案的确定
1.1 集中供热系统概述
集中供热是以集中热源所产生的热水或蒸汽作为热媒,通 过热网向一个城镇或较大区域的生产、供暖、通风、空调 和生活热水等热用户供热的方式。具有热负荷多、热源规 模大、热效率高、节约燃料和劳动力、占地面积少等优点。 集中供热系统是由热源、热网和热用户三部分组成的。 分类: (1)根据热媒不同:热水供热系统和蒸汽供热系统; (2)根据供热管道的不同:单管制、双管制和多管制的供热 系统。 (3)根据热源不同:热电厂供热系统;区域锅炉房供热系统; 利用工业余热的供热系统;以核能、太阳能、地热能等作 为热源的供热系统。
1 集中供热系统方案的确定
3 供热热媒参数的选择 热水热力网最佳设计供、回水温度,应结合具体工程条件, 考虑热源、管网、用户内系统等方面的因素,进行技术经 济比较。当不具备确定最佳供、回水温度的技术经济比较 条件时,热水供、回水温度可按以下原则确定: 1) 以热电厂为热源时,设计供水温度可取用110~150℃, 回水温度可取70~80℃或更低一些; 2) 以区域热水锅炉房为热源,当供热规模较小时,通常采 用的供、回水温度为95/70℃或80/60℃的水温;当供热 规模较大时,经过技术经济比较可采用110/70℃、130/ 70℃、150/80℃等高温水作为供热介质。
2 集中供热系统的形式
区域蒸汽锅炉房供热系统,其组成如图7-2所示。
图7-2 区域蒸汽锅炉房集中供热系统示意图
(a)室内采暖系统;(b)通风系统;(c)热水供应系统;(d)生产工艺用热系统 1-蒸汽锅炉;2-蒸汽干管;3-疏永器;4-凝水干管;5-凝结水箱;6-锅炉给水泵
2 集中供热系统的形式 蒸汽锅炉房
1 集中供热系统方案的确定
2 供热介质的选择 对热电厂供热系统,可以利用低位热能的热用户(如采暖、通风、 热水供应等),应首先考虑以热水作为热媒。 对于生产工艺的热用户,通常以蒸汽作为热媒。 对民用建筑物,采暖、通风、空调及生活热水供热的城市热网宜 采用热水作为其供热介质。 对既有生产工艺,又有采暖、通风等热负荷的城市热网供热介质 的确定原则为:
1 集中供热系统方案的确定
1.2 方案确定的基本原则及热源形式确定
基本原则: 有效利用并节约能源; 投资少,见效快,运行经济; 符合环保要求; 符合国家各项政策法规; 适应当地经济发展要求等。 热源形式: 发展规划 能源政策 环保政策
1 集中供热系统方案的确定
1.3 热媒种类及参数的确定
2 集中供热系统的形式
图7-6 双管闭式热水供热系统示意图 a)无混合装置的直接连接;b)设水喷射器的直接连接;c)设混合水泵的直接连接;d)供暖热用户与热网的间接连 接;e)通风热用户与热网的连接;f)无储水箱的连接方式;g)装设上部储水箱的连接方式;h)装置容积式换热器的连 接方式;i)装设下部储水箱的连接方式 l-热源的加热装置;2-网路循环水泵;3-补给水泵;4-补给水压力调节器;5-散热器;6-水喷射器;7-混合水泵; 8-表面式水-水换热器 ;9-采暖热用户系统的循环水泵;10-膨胀水箱;11-空气加热器;12-温度调节器;13-水-水换 热器;14-储水箱;15-容积式换热器;16-下部储水箱;17-热水供应系统的循环水泵;18-热水供应系统的循环管路
2 集中供热系统的形式
1)直接连接 直接连接是用户系统直接连接于热水网路上。 无混合装置的直接连接(图7-6a) 装水喷射器的直接连接(图7-6b) 设混合水泵的直接连接(图7-6c) 2)间接连接 间接连接方式是在采暖系统热用户入口处或在热力站处设置表面式水 -水换热器,用户系统与热水网路被表面式水-水换热器隔离,形成两 个独立的系统。用户与管网水力工况不发生直接联系的连接方式称为 间接连接,如图7-6d。 间接连接系统的工作方式是:热网供水管的热水进入设置在建筑物用 户引入口或热力站的表面式水-水换热器内,采暖系统热用户的循环 水也进入表面式水-水换热器,二者通过换热器的表面进行热量交换, 冷却后的热网回水返回热网回水管去,被加热的采暖系统热用户的循 环水由热用户系统的循环水泵驱动循环流动。 间接联接需设热交换器与热用户的循环水泵等设备,造价比上述直接 连接高得多。 循环水泵需经常维护,并消耗电能,运行费用增加。
1 集中供热系统方案的确定
蒸汽的主要优点: 1)可以满足多种热用户的需要(特别是生产工艺用热),适 用面广; 2)蒸汽介质的输送靠自身压力,不用循环泵,不用耗电。输 送凝结水所耗的电能较供热管网输送网路循环水所耗的电 能少得多; 3)蒸汽的密度小,使用和输送过程中不用考虑静压;用户的 连接方式简单,运行也较方便。 4)使用蒸汽介质,热用户的散热器或热交换器中,因温度和 传热系数都比水高,所以散热设备的面积可减小,设备投 资费用降低。
1 集中供热系统方案的确定
2)核能供热系统 核能是指核裂变产生的能量,以这种能量为热源的城市集中供热 称为核能供热。 核能供热目前有核热电站供热和低温供热堆供热两种方式。 目前我国推荐的堆型主要有两种: 自然循环微沸腾式低温核供热堆、池式低温核供热堆 3)地热水供热 地热能具有蕴藏量丰富、相比于火力及核能发电要安全、污染较 少、地热能电站的全年利用率高、节省矿物燃料等优点。 地热通常是指陆地地表以下5000m深度内的热能。 目前开采和利用最多的是地热水。 作为供热的热源,地热水具有如下一些特点: (1)在不同条件下,地热水的参数(温度、压力等)及成份会有很大的 差别。 (2)地热水的参数与热负荷无关。 (3)一次性利用。