毕业论文_矿井水泵房的选型设计说明

毕业论文_矿井水泵房的选型设计说明
毕业论文_矿井水泵房的选型设计说明

矿井水泵房的选型设计

一、矿井简介:

王坪煤矿矿井位于煤田东南边缘,位于省朔州市怀仁县境。为设计能力180万吨/年的大型矿井,1984年开工,1988年投产。井田面积11.4km2,截止目前为止,尚有可采煤量1.2亿吨,服务年限50年,开拓方式为平峒二水平(其中第一水平为+1170m,第二水平为+1060m),可采煤层共六层,全厚为18.77m。公司现有职工4870人。

矿井为平峒开拓,井口选在红山峪沟口,在东山村南部开凿一对进回风井,利用距平峒口约1km的措施井——红山峪斜井作排矸斜井。该矿机械化采煤程度高,机采率为93%,采煤方法使用倾斜长壁和走向长壁相结合的方式,实行采区前进、工作面后退式开采,用全部垮落法管理顶板。

王坪煤矿矿井水产生量正常为 m3/h,最大涌水量为 m3/h 排水高度为340米,

矿井工业场地配套建有210万t/a选煤厂,采用重介选煤方法,它是靠具有动力作用的自生介质的选煤方法。

二、设备选择计算与台数的确定

2.1、排水设备能力与台数的确定

A、主要排水设备必须有工作、备用和检修水泵。其中各种水泵的能力,应能在20小时排出24小时的正常涌水量;备用水泵的能力应补小于工作水泵能力的70%,并且工作和备用水泵的总能力,应能在20小时排出矿井24小时的最大涌水量;检修水泵的能力应不小于

工作水泵能力的25%。

B、水文地质条件复杂的矿井,可根据具体情况在水泵房预留安装一定数量水泵的位置,或另增设水泵。

C、排水管路能力应和工作、备用水泵能力相适应;配电设备能力应与水泵总能力相适应。

D、箕斗井、罐笼井和胶带输送机提升井的井底水窝,其排水泵应设置两台,一台工作,一台备用。

2.2、设备的选择与计算

1)、按正常涌水量确定排水设备所必须的排水能力

Q1=Q r/20=3800/20=190(m3/h)

H1=K(H h+5.5)=1.3(340+5.5)=(m)

式中 Q r——矿井正常涌水量,m3/h;

K----扬程损失系数。对于竖井,K=1.1;对于斜井,K=1.20~1.35,倾角大时取小值,此处取1.3;

H h——井筒深度,m。

根据计算结果初步选用200D-43×9的水泵,该泵的流量为190 ~346m3/h,扬程为407.7~367.2米,转速为1480r/min,效率为80%,配带的电动机型号为JSQ1410-4,功率为440千瓦,电压6KV,外形尺寸长×宽×高为3853×1350×1285(mm)。

2)正常涌水量期间所需水泵的工作台数

n r= Q1/Q=190/200=0.95台)

式中 Q----一台水泵的排水能力,m3/h。

3)、最大涌水期间所需水泵台数

24Q dr /20×200=5400/4000=台

根据计算及设计规要求,确定选用上述水泵3台,其中一台工作,一台备用,一台检修。

4)、正常涌水量期间一昼夜水泵工作时间

T r = Q r / n r Q=3800/1×200=(h)

式中 n r ----正常涌水时的水泵工作台数。

5)、排水管直径 按经济流速1.75m/s ,由下列公式计算 dg=

36004Vd Q π =3600

75.114.32204??? =0.21(m)

按标准管径取dg=200mm

式中:Vd=1.5~202m/S

见附表1《常用管径dg 、流速Vd 与流量Q 关系》

6)、排水管中实际流速

V d =

236004g d Q ?π =22

.014.336002204??? =452

880 =195m/S

见附表2《一定管路直径之最大流量及流速限制表》。由附表2可知排水管实际计算水流速度满足规要求。

7)、吸水管直径

ds=dg+25=200+25=225(mm )

8) 吸水管流速 Vs=

2

36004dS Q π =225.014.336002204??? =707880 =1.24m/s

吸水管流速一般取0.8~1.5m/s 。上述计算值满足一般设计规要求。

9)、计算管路实际所需扬程

管路进水段有进水短节一个、闸阀二个、三通一个、进水底阀一个,其等值长度之和为56.76米;

管路出水段有逆止阀三个、弯头四个、异径管一个、三通一个,其等值长度之和为139.22米

进水管扬程损失HsfHs=56.76×0.=1.13(m)

排水管扬程损失为Haf=.22×0.=2.78(m )

10)、水泵总扬程为

H=Hh+Hs+Haf+Hsf=340+5.5+2.78+1.13=350.54(m)

根据计算扬程在选择水泵时应比计算值大5%~8%,即

H=350.54×1.06=372(m)

11)、计算排水管管壁厚度

δ=Pdg/(2Rk-P)+a=4×20/(2×80-7)+0.2=0.72(cm )

取8mm 。

式中:P—管子部液体压力kg/cm2,10m垂高等于一个大气压力。

R K—许用应力,对于铸铁管取200kg/cm,焊接钢管取

600kg/cm,无缝钢管取800kg/cm。

a—考虑管路的腐蚀及管路制造有误差时的附加厚度,对铸铁管取0.7~0.9cm;钢管取0.1~0.2cm。

12)管路材料规格及选择

A、管路规格

管路规格见表7.

B、管材选择:

(1)排水管沿竖井敷设时,应选用焊接管或无缝钢管。沿进闭井敷设的钢管所承受的2件承压在40kg/cm2以时,一般采用焊接连接。

(2)排水管沿斜井敷设时,应根据气压力大小选择管材,一般情况,压力小于10kg/cm2时,可用铸铁管;压力大与kg/cm102时,应选用焊接钢管和无缝钢管。巷道易底鼓时,不宜采用铸铁管。

C、管路条数的确定及其敷设

(1)管路条数的确定

主排水管路必须有工作和备用的水管,其中工作水管的能力应能配合工作水管水泵在20hA,排出矿井24h的正常涌水量;工作和备用水管的总能力,应能配合工作和备用水泵在20h排出矿井24h的最大涌水量。

(2)管路敷设

井筒的管子应安设在管子间,并需按其法兰的最大外径,考虑有足够的安装及检修位置。法兰盘规格满足管路连接用法兰盘的技术规要求。

排水管长度在200M以时,应设有金属弯管支柱,用以承担管重及水柱重。金属弯管支座须固定于专设的钢梁上,为避免管路总想弯曲,需设有导向夹子。

排水管长度在200M以上时,每隔150M~200M需装置伸缩接头,以及承载径管重的支撑直管同样需用专设的钢梁来固定,最上面的伸缩接头及支撑直管,应设于井口50M处。

目前,有些矿区鉴于矿井温差不大,已不再设置伸缩头,生产种尚未发现问题。

该矿井伸水管路设置峪进风巷中,且冬季采用热风炉为进风巷中提供暖风,一方面防止排水管路冻结,一方面保证进风巷中的温度变化不大,所以,此次设计的管路不设置伸缩头。

(3)在倾斜巷道中,水管直径大于200MM时,可安设在底板上的专用木座或混凝土墩上,水管的下部装设支撑弯道,每隔75~100M 安设一个承担该段管一定重量(包括承重)的带拉杆的管夹子。管径小于200MM如需架设在巷道壁上时,需固定在专设的管子支架上。如设在人行道上侧时,管中心距巷道底板的高度应不小于1800MM。支架间距按设计规执行。

平巷中供水管用铁丝绑吊时,固定间距一般为4~6M。

(4)每条供水管应设防水闸阀,一便在检修可能将排水管中的水

放入水仓中。

(5)底阀应设置在吸水最底水面500MM 以下,其底面应高出吸水井井底800MM 。

D 管路的膨胀计算

管路伸长量

ΔL=aL Δt

=0.012×350×15

=63(mm)

式中:L —管段长度,m ;

A —管线膨胀系数。铜取0.012;铸铁取0.009;

Δt —水与井筒中空气的最大温度差,度。一般矿井水温为16.50~190。

13)、选择水泵

选择水泵的扬程应比计算值大5%~8%,这是考虑水泵经过磨损使扬程降低、管壁积垢、阻力增加时所需的余量扬程。新泵的工作工况点最好在水泵最高效率点的右侧。工况点效率不应低于最高效率的0.85倍。

水泵工况的确定:

A 、求水泵级数

n a =e H H =43

311=7.2 式中 He--所选水泵一级的额定扬程,m 。

选用9级

泵房设计

泵房规范相关 6.1 一般规定 6.1.8 使用潜水泵时,应遵循下列规定: 1 水泵应常年运行在高效率区; 2 在最高与最低水位时,水泵仍能安全、稳定运行; 3 所配用电机电压等级宜为低压; 4 应有防止电缆碰撞、摩擦的措施; 5 潜水泵不宜直接设置于过滤后的清水中。 6.3 管道流速 6.3.1 水泵吸水管及出水管的流速,宜采用下列数值: 1 吸水管: 直径小于 250mm 时,为 1.0~1.2m/s ; 直径在 2501000mm 时,为 1.2~1.6 m/s ; 直径大于 1000mm 时,为 1.5~2.0 m/s 。 2 出水管: 直径小于 250mm 时,为 1.5~2.0 m/s ; 直径在 250~1000mm 时,为 2.0~2.5 m/s ; 直径大于 1000mm 时,为 2.0~3.0 m/s 。 6.4 起重设备 6.4.1 泵房内的起重设备,宜根据水泵或电动机重量按下列规定选用: 1 起重量小于 0.5t 时,采用固定吊钩或移动吊架; 2 起重量在 0.5~3t 时,采用手动或电动起重设备; 3 起重量大于 3t 时,采用电动起重设备。 注:起吊高度大、吊运距离长或起吊次数多的泵房,可适当提高起吊的操作水平。 6.5 水泵机组布置 6.5.1 水泵机组的布置应满足设备的运行、维护、安装和检修的要求。 6.5.2 卧式水泵及小叶轮立式水泵机组的布置应遵守下列规定:

1 单排布置时,相邻两个机组及机组至墙壁间的净距:电动机容量不大于 55kW 时,不小于 1.0m ;电动机容量大于 55kW 时,不小于 1.2m 。当机组竖向布置时,尚需满足相邻进、出水管道间净距不小于 0.6m 。 2 双排布置时,进、出水管道与相邻机组间的净距宜为 0.6~1.2m 。 3 当考虑就地检修时,应保证泵轴和电动机转子在检修时能拆卸。 注:地下式泵房或活动式取水泵房以及电动机容量小于 20kW 时,水泵机组间距可适当减小。 6.5.3 叶轮直径较大的立式水泵机组净距不应小于 1.5m ,并应满足进水流道的布置要求。 泵房连接一般采用钢管,管道阀件的尺寸参见钢制管件02s403 对于泵房的设计要注意先定泵的轴心线

泵房设计规范

6泵房设计 6.1泵房布置 6.1.1泵房布置应根据泵站的总体布置要求和站址地质条件,机电设备型号和参数,进、出水流道(或管道),电源进线方向,对外交通以及有利于泵房施工、机组安装与检修和工程管理等,经技术经济比较确定。 6.1.2泵房布置应符合下列规定: 6.1.2.1满足机电设备布置、安装、运行和检修的要求。 6.1.2.2满足泵房结构布置的要求。 6.1.2.3满足泵房内通风、采暖和采光要求,并符合防潮、防火、防噪声等技术规定。 6.1.2.4满足内外交通运输的要求。 6.1.2.5注意建筑造型,做到布置合理,适用美观。 6.1.3泵房挡水部位顶部安全超高不应小于表6.1.3的规定。 表6.1.3泵房挡水部位顶部安全超高下限值 注: (1)安全超高系指波浪、壅浪计算机高程以上距离泵房挡水部位顶部的高度; (2)设计运用情况系指泵站在设计水位时运用的情况,校核运用情况系指泵站在最高运行水位或洪(涝)水位时运用的情况。 6.1.4主机组间距应根据机电设备和建筑结构布置的要求确定,并应符合本规范9.11.2~9.11.5的规定。

6.1.5主泵房长度应根据主机组台数、布置形式、机组间距,边机组段长度和安装检修间的布置等因素确定,并应满足机组吊运和泵房内部交通的要求。 6.1.6主泵房宽度应根据主机组及辅助设备、电气设备布置要求,进、出水流道(或管道)的尺寸,工作通道宽度,进、出水侧必需的设备吊运要求等因素,结合起吊设备的标准跨度确定,并应符合本规范9.11.7的规定。 立式机组主泵房水泵层宽度的确定,还应考虑集水、排水廊道的布置要求等因素。 6.1.7主泵房各层高度应根据主机组及辅助设备、电气设备的布置,机组的安装、运行、检修,设备吊运以及泵房内通风、采暖和采光要求等因素确定,并应符合本规范9.11.8~9.11.10的规定。 6.1.8主泵房水泵层底板高程应根据水泵安装高程和进水流道(含吸水室)布置或管道安装要求等因素确定。水泵安装高程应根据本规范9.1.10规定的要求,结合泵房处的地形、地质条件综合确定。 主泵房电动机层楼板高程应根据水泵安装高程和泵轴、电动机轴的长度等因素确定。 6.1.9安装在主泵房机组周围的辅助设备、电气设备及管道、电缆道,其布置应避免交叉干扰。 6.1.10辅机房宜设置在紧靠主泵房的一端或出水侧,其尺寸应根据辅助设备布置、安装、运行和检修等要求确定,且应与泵房总体布置相协调。 6.1.11安装检修间宜设置在主泵房内对外交通运输方便的一端或进水侧,其尺寸应根据主机组安装、检修要求确定,并应符合本规范9.11.6的规定。 6.1.12当主泵房分为多层时,各层楼板均应设置吊物孔,其位置应在同一垂线上,并在起吊设备的工作范围之内。 吊物孔的尺寸应按吊运的最大部件或设备外形尺寸各边加0.2m的安全距离确定。 6.1.13主泵房对外至少应有两个出口,其中一个应能满足运输最大部件或设备的要求。 6.1.14立式机组主泵房电动机层的进水侧或出水侧应设主通道,其它各层应设置不少于一条的主通道。主通道宽度不宜小于1.5m,一般通道宽度不宜小于1.0m。吊运设备时,被吊设备与固定物的距离

取水泵房课程设计计算书

目录 第一章课程设计(论文)任务书 (1) 第二章中文摘要 (2) 第三章设计计算书 (3) 一、设计流量的确定和设计扬程估算 (2) 1.设计流量Q (2) 2.水泵所需静扬程Hst (2) 3.初选水泵和电机 (3) 4.机组基础尺寸的确定 (3) 5.压水管的设计 (4) 6.泵机组及管路布置 (4) 7.吸水井设计计算。 (5) 8.泵站内管路的水力计算 (5) 二、泵站各部分高度的确定 (8) 1.泵房筒体高度的确定 (7) 2.泵房建筑高度的确定 (8) 三、泵房平面尺寸确定 (8) 四、辅助设备的选择和布置 (9) 1.起重设备 (8) 2.引水设备 (8) 3.排水设备 (8) 4.通风设备 (8) 5.计量设备 (9) 第四章结语 (10) 第五章参考文献 (10) 附图 1 取水泵房平面图…………………………………………………………………… 13 附图 1 取水泵房剖面图…………………………………………………………………… 14

第一章课程设计任务书 1.主要内容及基本要求 (一)项目简介 取水泵站,近期用水量为26000方/天,远期用水量为39000方/天。取水头部倒吸水井距离42m,常年平均水位标高74.2m,枯水位为72.5m,水源洪水位为77.1m,泵房设置地室外地面标高78.2m,净水厂混合井水面标高104.2m,取水泵房到净水厂管道长540m。 (二)设计内容及要求 1)、取水泵房工艺平面布置图——泵房构筑物、机组及辅助设施平面布置图,节点大样图、材料设备一览表、图例明确、尺寸要标准清楚,准确。 2)、取水泵房工艺剖面图——具体要求:剖面图中标高尺寸要明确,包括构筑物的控制标高及水位标高。 3)、取水泵房辅助设施详图——包括主要辅助设施详图。 (三)图纸及设计要求 1)、采用A2图纸出图。 2)、设计说明书要内容全面、思路清晰、规范及计算书要详细。 3)、最终成果严格按照四川理工学院课程设计要求排版装订,图纸可附计算说明书后。 2.指定查阅的主要参考文献及说明 [1]《给水排水设计手册》,1册, 11册,中国建筑工业出版社 [2]《给水排水制图标准》 [3]《泵站设计规范》GB/T 50265-97 [4]《给水排水管道工程施工及验收规范》 [5]《泵与泵站》姜乃昌主编,第五版,中国建筑工业出版社 3.进度安排 设计(论文)各阶段名称起止日期 给水与排水工程—水泵与水泵站 1

流体机械,水泵的选型设计

流体机械课程设计 题目:矿井排水设备选型设计 1概述 2设计的原始资料 开拓方式为立井,排水高度为342m ,正常涌水量为655m 3/h ;最大涌水量为850m 3/h ;持续时间60d 。矿水PH 值为中性,重度为10003N/m 3,水温为15℃。该矿井属于高沼气矿井,年产量为5万吨。 3排水方案的确定 在我国煤矿中,目前通常采用集中排水法。集中排水开拓量小,管路敷设简单,管理费用低,但由于上水平需要流到下水平后再排出,则增加了电耗。当矿井较深时可采用分段排水。 涌水量大和水文地质条件复杂的矿井,若发生突然涌水有可能淹没矿井。因此,当主水泵房设在最终水平时,应设防水门。 在煤矿生产中,单水平开采通常采用集中排水;两个水平同时开采时,应根据矿井的具体情况进行具体分析,综合基建投资、施工、操作和维护管理等因素,经过技术和经济比较后。确定最合理的排水系统。 从给定的条件可知,该矿井只有一个开采水平,故可选用单水平开采方案的直接排水系统,只需要在2343车场附近设立中央泵房,就可将井底所有矿水集中排至地面。 4水泵的选型与计算 根据《煤矿安全规程》的要求,主要排水设备必须有工作水泵、备用水泵和检修水泵。工作水泵的能力应能在20h 内排除矿井24h 的正常涌水量(包括充填水和其他用水)。备用水泵的能力应不小于工作水泵能力的70%,并且工作水泵和备用水泵的总能力,应能在20h 内排出矿井24h 的最大泳水量。检修水泵的能力应不小于工作水泵能力的25%。水文地质条件复杂的矿井,可根据具体情况在主水泵房内预留安装一定数量水泵的位置,或另增设水泵。 排水管路必须有工作和备用水管。工作水管的能力应能配合工作水泵在20h 内排完24h 的正常涌水量。工作和备用水管的总能力,应能配合工作和备用水泵在20h 内排出矿井24h 的最大涌水量。 水泵必须排水能力计算 正常涌水期 h m q q Q z z B /7866552.12.120 24 3=?=== 最大涌水期 h m q q Q /10208502.12.12024 3max max max =?===

泵房设计说明书

中国矿业大学——环境与测绘学院 《水泵及水泵站》课程设计说明书

目录 1.设计目的及基本资料-----------------------------3 2.设计流量--------------------------------------4 3.自流管设计------------------------------------4 4.水泵设计流量及扬程----------------------------4 5.水泵机组选择----------------------------------5 6.吸、压水管的设计------------------------------5 7.机组及管路布置--------------------------------6 8.泵站内管路的水力计算--------------------------6 9.辅助设备的选择和布置--------------------------8 10.泵站各部分标高的确定--------------------------9 11.泵房平面尺寸确定------------------------------9

设计目的及基本资料 设计目的: 本课程设计的主要目的是把《水泵及水泵站》、《给水工程》中所获得的理论知识加以系统化。并应用于设计工作中,使所学知识得到巩固和提高,同时提高同学们有条理地创造性地处理设计资料地独立工作能力。设计基本资料: 1. 某中小水厂,近期设计水量6万米3/日,要求远期10万米3/日(不包括水厂自用水) 2. 原水厂水质符合饮用水规定。根据河岸地质地形以决定采用固定式泵房由吸水井中抽水,吸水井采用自流管从取水头部取水,取水头部采用箱式。取水头部到吸水井的距离为80米。 3. 水源洪水为标高为48.7米(1%频率);枯水位标高为30.2米(97%频率);常年平均水位标高为39.8米。 4. 净水厂混合井水面标高为58.1米,取水泵房到净水厂管道长900米。 5. 地区气候资料可根据设计需要自设。 6. 水厂为双电源进行。

第三讲水泵选型的设计

第三讲水泵选型的设计 水泵是水泵站的主要设备,它决定着其他设备的选型配套和泵站构筑物的形式、尺寸,合理地选择水泵对降低工程造价及运行管理费用都有很大的意义。3.1 选型原则 水泵选型是根据所需的设计流量与设计扬程选泵,应满足以下要求: 1、在满足设计流量与设计扬程的情况下,应适应工况变化,即工况变化时,扬程浪费较小。 2、在长期运行中平均工作效率高,即选用效率较高的泵,运行时能使工况点落在高效段。 H较大,汽蚀余量较小 3、水泵汽蚀性能良好,即选用允许吸上真空高度S 的泵。 4、所配电机总装机容量小,避免“大马拉小车”。 5、结构合理,便于安装、维护和管理。 6、泵站投资较小。 3.2 水泵选择 3.2.1 泵型的选择 根据我国目前泵类产品生产供应情况,以及现有泵站的选用情况,中高扬程 20以上,一般用双吸离心泵如Sh型、SA型、S型中小流量的水泵站,扬程在m 10以下,目前多采用ZLB型、等,;对于低扬程大流量的雨水泵站扬程一般在m ZLQ型半调或全调式轴流泵;中扬程泵站,扬程在m ~ 10时,有较多的泵型 m20 供选,轴流泵、离心泵与混流泵性能在此范围有较大的重叠区。一般选用混流泵有较好的性能,如HB型、沅江型等。 3.2.2 结构型式的选择 水泵的结构型式一般有立式、卧式和斜式三种。 1、卧式机组,泵轴水平安装,安装精度要求比立式低,水泵电机直接置于基础上,机组荷载也直接传递给地基,机泵可分别拆卸,分别安装,便于管理,泵房结构相应简单,但占地面积较大,当建站地址较狭窄时可能增大造价。 2、立式机组,泵轴铅直安装,安装精度要求高,其转动部分是悬吊式结构,

并有较大的轴向推力,为此给设计、安装检修带来麻烦,还可能增加辅助设备。泵房为多层结构,底板标高一般较低,但电机可置于上层,有利用防洪通风,其占地面积较小,当水源水位变化较大采用卧式机组不经济时可考虑用立式机组。 3、斜式机组,泵轴与水平面呈一定夹角安装,对于中、小型机组,在岸坡上安装时选用。 总之,应根据实际情况,综合考虑,因地制宜选用水泵的结构型式。 3.2.3水泵台数的选择 所选水泵台数的多少,实际上就是水泵大、小的选择,一般而言,大泵运行效率高,台数少便于管理,减少运行与管理费用(特大水泵除外),而且占地面积小,建站投资较小,但配水灵活与供水可靠性相应减少;反之,水泵较小,台数较多时,调配灵活,供水可靠性增大,吊运方便,管理维护水平要求不高,但很麻烦。 水泵台数的多少,主要根据泵站的功能确定,如给水一级泵站一般用同一型号较大机组,二级泵站一般用一种,最多不超过二种型号的较小机组,从泵站统计资料看,水泵机组台数一般为4-10台(循环泵站除外)。 3.3选型方法 现以给水一、二级泵站为例 一级泵站:从水源取水输水至净水构筑物 1、确定需要的设计流量与设计扬程 (1)设计流量 一级泵站均匀供水,按最高日平均时流量计算 T Q Q d I α= (m 3/h ) (6-12) 式中 d Q ——供水对象最高日用水量 3()m d ,计算方法参考《给水工程》 α——考虑净水构筑物自身用水的系数1.1~05.1=α T ——泵站一昼夜工作的小时数。 (2)设计扬程 由静扬程和损失扬程两部分组成。 h H H ST ∑+= d S h h h ∑+∑=∑ 式中 ST H ——静扬程,等于净水构筑物起点设计最高水位(由净水构筑物水

生活水泵选型计算

流量Q(m3/h)计算 Q=[(m×q)/t]×K 即 最大每小时流量(m3/h) ={【(用水人数×用水标准)】/(用水时间×1000)}×小时变化系数 K——变化系数(一般为1.5-2.5) q——用水标准(华南一般采用300升/人.日 高级住宅采用400升/人.日) t——用水时间(一般采用12小时/日) m——用水人数(一般一户按4-5人计算) 1000——升与m3/h之间的单位换算率 扬程 扬程H(m)计算 建筑层数 1 2 3 4 5 6 7 8 9... 最低水压 15 19 23 27 31 35 39 43...每增加一层扬程增加4米 说明:建筑物所需有效供水压力减除市政供水或外来水压即为设备的扬程。 验证流量 在保证计算不出错的情况下,若计算出的流量小于自来水管道流量即计算正确。-----------------------------------------------------------------------------

--- 案例演示 某城市小区,共有8栋楼每栋15层,楼房标高67米,每层8户,自来水管道压力为0.15-0.35Mpa,市政工程水管管径为DN250。求该小区的最大供水量和扬程 1.流量Q的确定 Q={(用水人数4×8栋×15层×8户×小时变化数2×华南用水标准300L/人)/时间12小时}÷进率1000 Q=192m3/h 取整为Q=200m3/h 2.扬程H的确定 小区市所需水压力H=67米,减去市政管道压力0.15MPa=15米 最终设备所需扬程为H=67-15米=52米 取整扬程=60米3.验证水量是否高于市政供水量 按照GB50015-2003《国家建筑给排水设计规范》要求 生活给水管道的水流速取1.0-1.5m/s 此处去V=1.2m/s 故市政管道流量Q=πr×r×V=3.14×0.125*0.125*3600=212m3/h由此 市政供水量大于小区所需供水量 选型合理

管路阻力计算和水泵选型

2.1水系统管路阻力估算、管路及水泵选择 a)确定管径 一般情况下,按5℃温差来确定水流量(或按主机参数表中的额定水流量),主管道按主机最大能力的总和估算,分支管道按末端名义能力估算。根据能力查下面《能力比摩阻速查估算表》,选定管型。 b)沿程阻力计算 根据公式沿程阻力=比摩阻×管长,即H y=R×L,pa,计算时应选取最不利管路来计算:第一步:采用插值法计算具体的适用比摩阻,比如能力为,范围属于“6<Q≤11”能力段,K r=,进行插值计算。 R=104+()×= pa/m 第二步:根据所需管长计算沿程阻力,假设管长L=28m,则 H y= R×L=×28= pa= kpa c)局部阻力计算 作为估算,一般地,把局部阻力估算为沿程阻力的30-50%,当阀门、弯头、三通等管件较多的时候,取大值。实际计算采用如下公式: Hj=ξ*ρv2/2,ξ---局部阻力系数,ρv2/2---动压 ρv2/2动压查表插值计算,ξ局部阻力系数参考下表取值:

d)水路总阻力计算及水泵选型 水路总阻力包括:所有管道的沿程阻力、阀门、弯头、三通等管件的局部阻力、室外主机的换热器阻力(损失)、室内末端阻力(损失),后面两项与不同的主机型号和末端相关。计算式为: H q=H y+H j+H z+H m+H f H z——室外主机换热器阻力,一般取7m水柱 H m——室内末端阻力 H f——水系统余量,一般取5m水柱; 总阻力计算完成后,就可以根据总阻力选取流量满足要求的情况下能提供不小于总阻力扬程的水泵来匹配水系统。选取水泵时要根据“流量——扬程曲线”来确定,但扬程和流量不能超出所需太大(一般不超过20%),避免导致出现水力失调和运行耗能较高。 水系统的沿程阻力和局部阻力与系统水流量和所采用的管径相关,流量、管径及所使用各种配件的多少决定总阻力,流量取决于主机能力(负荷)及送回水温差,流量确定的情况下,管径越大,总阻力越小,水泵的耗能越小,但管路初投资会增大。 PE-RT地暖管的规格(参考)(红色字的为推荐使用规格、计算基准) ?计算例 现有项目系统图如下:

最新泵房设计规范标准

1 泵房设计 1.1 泵房布置 1.1.1 泵房布置应根据泵站的总体布置要求和站址地质条件,机电设备型号和参数,进、出水流道(或管道),电源进线方向,对外交通以及有利于泵房施工、机组安装与检修和工程管理等,经技术经济比较确定。 1.1.2 泵房布置应符合下列规定: 1.1. 2.1 满足机电设备布置、安装、运行和检修的要求。 1.1. 2.2 满足泵房结构布置的要求。 1.1. 2.3 满足泵房内通风、采暖和采光要求,并符合防潮、防火、防噪声等技术规定。 1.1. 2.4 满足内外交通运输的要求。 1.1. 2.5 注意建筑造型,做到布置合理,适用美观。 1.1.3 泵房挡水部位顶部安全超高不应小于表1.1.3的规定。 表1.1.3 泵房挡水部位顶部安全超高下限值 注: (1)安全超高系指波浪、壅浪计算机高程以上距离泵房挡水部位顶部的高度; (2)设计运用情况系指泵站在设计水位时运用的情况,校核运用情况系指泵站在最高运行水位或洪(涝)水位时运用的情况。 1.1.4 主机组间距应根据机电设备和建筑结构布置的要求确定,并应符合本规范9.11.2~9.11.5的规定。

1.1.5 主泵房长度应根据主机组台数、布置形式、机组间距,边机组段长度和安装检修间的布置等因素确定,并应满足机组吊运和泵房内部交通的要求。 1.1.1 主泵房宽度应根据主机组及辅助设备、电气设备布置要求,进、出水流道(或管道)的尺寸,工作通道宽度,进、出水侧必需的设备吊运要求等因素,结合起吊设备的标准跨度确定,并应符合本规范9.11.7的规定。 立式机组主泵房水泵层宽度的确定,还应考虑集水、排水廊道的布置要求等因素。 1.1.7 主泵房各层高度应根据主机组及辅助设备、电气设备的布置,机组的安装、运行、检修,设备吊运以及泵房内通风、采暖和采光要求等因素确定,并应符合本规范9.11.8~9.11.10的规定。 1.1.8 主泵房水泵层底板高程应根据水泵安装高程和进水流道(含吸水室)布置或管道安装要求等因素确定。水泵安装高程应根据本规范9.1.10规定的要求,结合泵房处的地形、地质条件综合确定。 主泵房电动机层楼板高程应根据水泵安装高程和泵轴、电动机轴的长度等因素确定。 1.1.9 安装在主泵房机组周围的辅助设备、电气设备及管道、电缆道,其布置应避免交叉干扰。 1.1.10 辅机房宜设置在紧靠主泵房的一端或出水侧,其尺寸应根据辅助设备布置、安装、运行和检修等要求确定,且应与泵房总体布置相协调。 1.1.11 安装检修间宜设置在主泵房内对外交通运输方便的一端或进水侧,其尺寸应根据主机组安装、检修要求确定,并应符合本规范9.11.1的规定。 1.1.12 当主泵房分为多层时,各层楼板均应设置吊物孔,其位置应在同一垂线上,并在起吊设备的工作范围之内。 吊物孔的尺寸应按吊运的最大部件或设备外形尺寸各边加0.2m的安全距离确定。 1.1.13 主泵房对外至少应有两个出口,其中一个应能满足运输最大部件或设备的要求。

水泵选型方案

北苑宾馆酒店改扩建项目 选型方案 一、工程概况: 建筑情况:24层1栋;-3F-2F为低区(标高5.1m)由市政自来水直接供给,3F-12F为中区(标高42.69m),13F-24F为高区(标高83.19m),由位于地下泵房(标高-13.2m)的无负压设备加压供给,高峰期自来水压力0.2MPa。 生活用水加压区用水卫生器具: 中区:洗手盆223个,淋浴器178个,浴缸160个。 高区:洗手盆204个,淋浴器195个,浴缸195个。 现制作选型方案。 二、设计依据及产品的技术标准 1.客户提供的基本要求 2.《民用建筑电气设计规范》(JGJ/T16-92) 3.《建筑防雷设计规范》(GB50057-94) 4.《泵站设计规范》(GB/T50265-97) 5.《低压成套开关设备和控制设备》(GB7251-1997) 6.《电力装置的继电保护及自动装置设计规范》 7.《电力装置的电气测量仪表设计规范》 8.《通用用电设备配电设计规范》 9.建筑给水排水设计规范(GB50015-95) 10.给水排水设计手册·第2册 11.上海艺迈《罐式增压稳流给水设备企业标准》 三、选型方案 1、中区宾馆流量计算 根据宾馆参数计算需要加压供水的流量,洗手盆223个,淋浴器178个,浴缸160个,现按3.6.5式计算出所需小时流量:

以下为流量计算方式: Q= (3.6.5) 式中 Q ——计算管段的给水设计秒流量(L/S); Ng ——计算管段的卫生器具给水总当量; a ——根据建筑物用途而定的系数;(查表3.6.5 得到a为2.5) 中区Ng=492.75 代入公式得设计小时用水流量为: 中区宾馆流量Q=11.10L/S*3.6=39.96m3/h 2、高区宾馆流量计算 根据宾馆参数计算需要加压供水的流量,洗手盆204个,淋浴器195个,浴缸195个,现按3.6.5式计算出所需小时流量: 以下为流量计算方式:

水泵的选型和总扬程的计算

水泵铭牌上的扬程称“额定扬程”(这时水泵的效率最高),对一台水泵而言,扬程不是一个常数,当水泵的转速不变时,扬程一般随水泵流量的增加而减小,在中、小比转数范围内,流量的增加幅度比扬程的减小幅度大。因此,水泵的轴功率及电机电流随水泵流量的增加而增大,如果超过倍时,则容易烧毁电机。 在选择水泵扬程时,必须清楚水泵总扬程H和水泵净扬程H1的概念及它们的关系。净扬程H1(又叫实际扬程、几何扬程、地形扬程)是指进水面至出水口中心(或排水面)间的垂直距离。水泵总扬程为: H=H1+h+V2/2g 式中:H——水泵总扬程; H1——水泵净扬程; h——管路损失扬程; V2/2g——泵出水口处的动能损失水头。 其中h项的计算比较麻烦,下表列出了每100米的钢管管路损失扬程(米)供参考。(塑料管的管损约为钢管的倍,胶管的管损与钢管基本相同,铸铁管损为钢管的倍)

从上表查出的数除以100,再乘以管路的长度(米)就得到所求的h损失扬程。 动能损失水头V2/2g对于不同管径为流量的函数,不同管径的数值见表 例如,确定一眼深水井的动水位为85m,涌水量为50m3/h,输水管路长度110m,公称内径为75mm的钢管,试计算水泵总扬程。从表中查出每100m管损为15m,那么管损 h=110÷100×15= V2/2g=Q2≈ 所以总扬程 H=85++=102m 选择水泵时水泵的额定扬程应为总扬程的1~倍,就上面例子而言,H泵=(1~)×H=102~ 查说明书型号为200QJ50-150/7-25 需要说明的是,每种泵都有一个适用范围,一般扬程允许在~倍额定扬程范围内使用,流量在~倍额定流量范围内使用。 为保证电泵的起动顺利和正常运转,要求变压器负载功率不应超过其

取水泵房设计

取水泵房初步设计 一、设计说明书 设计任务及基本设计资料 宜城市自来水公司为解决供水紧张问题,计划新建一座设计水量为80000吨/天的水厂(远期供水120000吨/天),水厂以赣江为原水,采用固定式取水泵房,取水点处修水最高洪水位米(1﹪频率),最低枯水位(99%保证率)米,常水位92.40米,水厂地面标高115.00米,泵站设计地面标高97.00米,水厂反应池水面高出地面3.00米,泵站到水厂的输水干管全长3200米。试进行该一级泵站的工艺设计。 3.设计技术要求 设计要求达到扩初设计程度,设计成果包括: (1)泵站平面布置图.(1~2张) (2)泵站剖面图. (1张) (3)主要设备及材料表. (4)设计计算及说明书. 二、设计概要 取水泵站在水厂中也称一级泵站.在地面水水源中,取水泵站一般由吸水井、泵房及闸阀井三部分组成。取水泵站由于它靠江临水的确良特点,所以河道的水文、水运、地质以及航道的变化等都会影响到取水泵上本身的埋深、结构形式以及工程造价等。其从水源中吸进所需处理的水量,经泵站输送到水处理工艺流程进行净化处理。 设计中通过粗估流量以及扬程的方法粗略的选取水泵;作水泵并联工况点判断各水泵是否在各自的高效段工作,以此来评估经济合理性以及各泵的利用情况。取水泵房布置采用圆形钢筋混凝土结构,以此节约用地,根据布置原则确定各尺寸间距及长度,选取吸水管路和压水管路的管路配件,各辅助设备之后,绘制得取水泵站平面图及取水泵站立体剖面图各一张。设计取水泵房时,在土建结构方面应考虑到河岸的稳定性,在泵房的抗浮、抗裂、抗倾覆、防滑波等方面均应有周详的计算。在施工过程中,应考虑到争取在河道枯水位时施工,要抢季节,要有比较周全的施工组织计划。在泵房投产后,在运行管理方面必须很好地使用通风、采光、起重、排水以及水锤防护等设施。此外,取水泵站由于其扩建比较困难,所以在新建给水工程时,可以采取近远期结合,对于本例中,对于机组的基础、吸压水管的穿插嵌管,以及电气容量等我们应该考虑到远期扩建的可能性,

水泵选型计算

50108采区泵房选型 一、50108水泵选型基本参数 正常涌水量:Qz=105m3/h 正常涌水期Rz=320天 最大涌水量:Qmax=300m3/h 最大涌水期Rman=45天 排水高度:从+270水平至+310水平总计40米 二、水泵选型 1、水泵选型依据: 《煤矿安全规程》第二百七十八条规定,主要排水设备应符合下列要求:水泵:必须有工作、备用和检修水泵。工作水泵的能力,应能在20h内排水矿井24h的正常涌水量,(包括充填水及其他用水)。备用水泵的能力应不小于工作水泵能力的70%,工作和备用水泵的总能力,应能在20h内排出矿井24h的最大涌水量。检修水泵的能力应不小于工作水泵能力的25%。 配电设备:应同工作、备用以及检修水泵相适应,并能同时开动工作和备用水泵。 2、水泵的选型计算 ①正常涌水期,水泵必须的排水能力 Q B≥Qz=1.2×105=126 m3/h ②又工作面最大涌水量时,工作水泵和备用水泵的总能力应满足20h排出采区24h最大涌水量 最大涌水期,水泵必须的排水能力 Qmax≥Qmax=1.2×300=360 m3/h ③水泵必须的扬程 H B=(40+4)/0.9=49m ④初选水泵 根据涌水量QB和排水高度HB,查泵产品目录选取MD155-3*30型多级离心泵三台, BQS77-100/2-37/N型水泵一台备用,其额定流量Qe=155 m3/h和77m3/h,额定扬程He=90m和100m.额定效率为0.8

工作泵台数1台多级离心泵和1台潜水电泵:n1≥Qe Q B =232 126=0.54, 取n1=2台 备用泵台数:n 2=0.8 n 1=0.8 取n 2=1台 共计3台泵 三、确定管路系统、计算管径 1、管路趟数确定: 《煤矿安全规程》第二百七十八条规定: 水管:必须有工作和备用的水管。工作水管的能力应能配合工作水泵在20h 内排出矿井24h 的正常涌水量。工作和备用水管的总能力,应能配合工作和备用水泵在 20h 内排出矿井24h 的最大涌水量。 正常涌水时期两台泵工作,最大涌水时期三台泵工作。根据各涌水期投入工作的水泵台数,选用两趟排水管路,正常涌水期时可任意使用一趟排水管工作,另一趟备用,最大涌水期时,两管同时排水,单泵单管工作。 2、管路材料和管径的选择 由于排水高度远小于200m ,从建设经济型角度考虑,选用PE 管。 初选管径:选择排水管径是针对一定的流量寻找运转费用和初期投资费用两者之和最低的管径。由于管路的初期投资费用与管径成正比,而运转费所需的电耗与管径成反比。所以,通常用关内流速的方法求得,经济流速Vp=1.5~2.2m/s 。 排水管内径: dx=p 36004V Qe π, Qe 为额定水泵流量155 m3/h ,本次选取dx=Φ166mm ,故选择Φ200 PE 管 符合要求。 dx=p 36004V Qe π, Qe 为额定水泵流量77m3/h ,本次选取dx=Φ117mm ,故选择Φ160 PE 管 符合要求。

毕业设计地下式泵房(下)

5稳定分析及地基处理 5.1 稳定分析 泵房内部布置和拟定泵房的主要尺寸后,为了确保泵房安全,还需进行泵房整体稳定性分析计算,包括泵房的抗滑、抗浮、抗渗及地基稳定分析。如果不能满足整体稳定要求,则应在分析计算结果的饿基础上对泵房内部布置和尺寸进行修改,或采取泵房地基处理工程措施,使之满足稳定要求,然后才进行泵房结构设计。 地下式泵房结构应满足抗浮、抗滑、抗渗等要求,由于地下式泵站“临水深埋”,在结构上要求承受土压和水压,泵房筒体和底板要求不透水,应保持自身稳定。泵房底板一般采取整体浇筑的混凝土或钢筋混凝土底板,并与泵机组的基础浇筑成一体。防渗混凝土的抗渗标号不小于400号。在一般情况下泵房四周环水或有回填土,受力均匀,抗滑较易满足。主要作抗浮核算,尤其室内无水的地下泵房,抗浮能力较差。若不能满足要求时,应采取一定结构或施工措施,如将底板趾延长,并在其上回填土以增加泵房自重,也可以在底板下设置混凝土井柱群,这种措施对于地基条件较差的情况更有利。 5.1.1泵房抗浮稳定计算 5.1.1.1泵房自重 本设计为全地下式,而土体孔隙及岩体裂隙中赋存着大量的地下水,对岩土体中的泵房会产生浮力,若泵房的自重小于浮力,会产生泵房的上拱、地板开裂、整体失稳等事故。因此需要研究地下泵房的抗浮问题。 场地地下水类型为潜水,勘察期间拟建场地潜水地下水埋深7.1m(水位标高98.4m),年变幅2m左右,近3-5年最高水位为4m左右,场地最高水位可按4m设计。 泵房自重包括泵房结构自重、填料重量和永久设备重量。其中各项永久设备重量见表5—1,泵房结构自重见表5—2

表5—1 泵房各项永久设备重量 名称数量重量/个(kg)总重量(kg)KQSN450—N9水泵 6 2531 15186 KQSN450—N9水泵电动机 6 1058+3300 26148 KQSN300—M4水泵 1 995 995 KQSN300—M4水泵电动机 1 601+2520 3121 SK-1.5真空泵及其电动机7 178+80 1806 供水泵及其电动机 2 300+100 800 排水泵及其电动机 2 300+100 800 4-72-12C型离心风机7 1450 10150 DWT-I-7屋顶轴流风机 2 85 170 LDA型5t电动单梁起重机 1 2420 2420 Z445T-10-60闸阀7 960 6720 H44T-10-50逆止阀7 350 2450 管道及泵壳中水重粗估20000 总计90766 表5—2 泵房结构自重 重量(KN) 数量/个总重(KN) 名称体积(3 m) m) 容重(KN/3 底板24×12×1 25 7200 1 7200 顶板24×12×1 25 7200 1 7200 墙72×7.5×0.5 25 6750 1 6750 柱1×1×8 25 200 10 2000 牛腿0.6×0.4×0.83 25 4.98 10 49.8 总重23199.8 综上,泵房自重为90766×9.8÷1000+23199.8=24089.31KN

排水泵选型计算

一、井下排水 根据矿井开拓方式,本矿设计排水系统为一级排水,投产时在+2375m水平标高井底车场设1套井底主、副水仓及排水设施,矿井涌水由井底主、副水仓直接排至+2500m地面消防水池。 (一)、矿井不同时期井下正常、最大涌水量 根据《陇南市武都区龙沟补充勘查地质报告》预测计算,矿井最大涌水量4.5m3/h ,正常值涌水量3m3/h。涌水 PH≤5,管路敷设斜架倾角约 25°,排水垂高129m(地面消防水池+2500m,水泵标高+2375m,再加上井底车场至水仓最低水位距离 4m)。 (二)、设计依据 =3m3/h; (1)矿井正常涌水量:Q B =4.5m3/h; (2)矿井最大涌水量:Q max (3)排高:129m。 (三)、选型计算 1、所需水泵最小流量 Q1= 24Q B/20 = 24×3/20 =3.6(m3/h) 2、所需水泵最大流量 Q2= 24Q max/20 = 24×4.5/20 =5.4(m3/h) 3、排水总高度 h= 排水高度+吸水高度=125+4=129(m) 4、水泵所需扬程的估算。 HB=Hc/ηg(取0. 77∽0. 74) =129 /0.77∽0.74 =168∽175m 5、管路阻力计算 管路阻力按下式计算:

(m) 式中: Hat—排水管路扬程损失m; Hst—吸水管路扬程损失m; λ—水与管壁摩擦的阻力系数,查表D=108mm钢管0.038: —管路计算长度,等于实际长度加上底阀、异形管、逆止阀、闸阀及其它L i 部分补充损失的等值长度m,计算长度取值500m; D —管道公称直径m;取0.1m; g —水流速度,按经济流速取2.0m。 V d 将各参数代入公式,经计算=38m。管路淤积后增加的阻力系数取1.7,增加的阻力为65m。 6、水泵扬程 淤积前:H=129+38=167m; 淤积后:H=129+65=194m; (四)、排水泵选择 选择MD12-50×5型矿用多级离心泵,其流量为12m3/h,扬程为250m;配用防爆电机功率30kW、进出口50mm、效率46.5%。 (五)、排水泵的工作、备用、检修台数 选择MD12-50×5型矿用多级离心泵3台,其中1台工作、1台备用、1台检修。 (六)、排水能力、电机功率和吸上真空高度校验 按管路淤积后工况参数校验排水能力,按管路淤积前工况参数校验电机功

水泵选型计算公式

水泵选型计算公式 一、水泵选型计算 1、水泵必须的排水能力 Q B = 20 24max Q m 3/h 2、水泵扬程估算 H=K (H P +H X ) m H P :排水高度;H X :吸水高度;K :管路损失系数,竖井K=1.1—1.5;斜井?<20°时K=1.3~1.35;?=20°~30°时K=1.25~1.3;?>30°时K=1.2~1.25 二、管路选择计算 1、管径: ' 900'V Q d n π= m Qn :水泵额定流量;'V 经济流速m/s ; 'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m 2、管壁厚计算 ?? ? ???+----+ = C P d P P P p )65.0(230*)65.0(230211σσδ mm d P :标准管内径mm ;P :水管内部工作阻力P=0.11Hsy (测地高度m ) Kg/cm 2; σ:许用应力,无缝管σ=8Kg/mm 2,焊管σ=6 Kg/mm 2,C=1mm ; 3、流速计算 2 900d Q V n π= m/s 三、管路阻力损失计算 ∑+=g V g d LV h 22*22ξλ m ; 总阻力损失计算 h w =(h p +h x +g Vp 22 )*1.7 1.7:附加阻力系数 四、水泵工作点的确定 H=Hsy+RQ 2 m ; 22Q H Q H H R W SY =-= Hsy :测地高度 m 五、校验计算 ①吸水高度:Hx=Hs-h wx -g V x 22 m ;②η2=85%~90%ηmax ;③稳定性:Hsy ≤0.9H 0 六、电机容量计算 c m m m H Q K N ηηγ102*3600= Kw ;c η:传动效率,直联时c η=1,联轴节时 c η=0.95~0.98; K 备用系数Q m <20m 3/h ,K=1.5;Q m=20—80 m 3/h ,K=1.3—1.2;Q m=80—300 m 3/h ,K=1.2—1.1;Q m >300 m 3/h ,K=1.1;

给水加压泵房设计全过程

给水加压泵房设计全过程 1.设计基础资料 某加压泵房,负有小区的生活与消防供水任务。 ①泵房设计地点的地面高程-0.15m,冰冻深度为1.00m,地下水位-1.00m。 ②小区最高时用水量为l3.9L/s,消防供水满足小区室外与室内消防用水要求,水量按35L/s考虑。 ③蓄水池底标高为-0.500m,高水位为-1.55m,最低水位为-4.90m,消防水位 -2.65m。 ④小区管网控制点标高为0.35m,生活供水所需自由水头420kPa,消防时550kPa;输水管与管网总水头损失最大用水时为20kPa,消防时为50kPa。 ⑤蓄水池内消防储水量252m3,生活调节水量120m3,消防用水平时不得动用。2.泵站设计参数的确定 (1)设计流量生活供水设计流量按小区最大时流量考虑:Qh=13.9L/s(50m3/h)。消防供水设计流量为35L/s(126m3/h)。 (2)设计扬程最大用水时蓄水池的最低生活吸水位与设计最不利点地面高差 Zc=3.0m;所需自由水压Hc=420kPa,输水管与管网总水头损失为∑hn=20kPa,泵站内总水 头损失∑hs=10kPa;考虑增加10kPa的安全水头。 生活加压水泵设计扬程: Hp=Zc+Hc+∑hs+∑hn+10=30+420+10+20+10=490kPa 消防时蓄水池的最低动水位与设计最不利点地面高差Zc=5.25m;所需自由水压Hc=550kPa,输水管与管网总水头损失为∑hn=50kPa,泵站内总水头损失∑ hs=20kPa;考虑增加15kPa的安全水头。 消防水泵设计扬程:Hp=Zc+Hc+∑hs+∑hn+15=52.5+550+20+50+15=687.5kPa 3.选择水泵与电机

水泵选型计算

太阳能系统中水泵选型 太阳能热水系统中选择水泵的时候遵循下列原则: ①在太阳热水系统中,在满足扬程和流量要求的条件下,应选择功率较小的泵; ②在强迫循环系统中,水温≥50℃时宜选用热水泵; ③泵与传热工质应有很好的相容性; ④水泵选择时,还要注意管径及电源选择(220V或380V)。 水泵的流量、扬程应根据给水系统所需的流量、压力确定。由流量、扬程查水泵性能表(工作曲线)即可确定其型号。根据水泵在系统中的作用,可分为集热循环泵,水箱间循环泵、补水泵、给水泵(或增压泵),管道循环泵。因此水泵在系统中的作用主要有补水、循环、增压。 水泵工作曲线 一、集热循环水泵: 1、水泵流量的确定 单位集热面积流量(小时流量)×集热面积;西藏、青海地区70~80l/㎡;其它地区一般为50l/㎡。内蒙、新疆辐照较好地区可选60l/㎡。 2、水泵扬程的确定 Hb≧H1+H2+H3 H1—水箱最低点到集热器最高点的高差。(若为负值,则为0)

H2—管道沿程损失,一般区域若不超过6台,可计为经过一台集热器循环一周的管道+集热器管线总长度的3%。 H3-流出水头,一般为2~3米 太阳集热系统流量确定之后针对具体的管路可以计算出该支路的沿程阻力损失和局部阻力损失,即管路压降。在联集管系统中,若串联台数是6台单层集热器(辐照量一般的地区,流量为50l/㎡),管道管径按照标准配置,则热水系统的管道流阻可选择0.03米水柱/米管。 若串联台数变化,可根据下式进行测算: 管网的沿程水头损失 m 式中:f h ∑——系统沿程损失合计, 1i 、2i ……n i 、i ——各计算管段单位长度沿程水头损失,/kpa m 1l 、2l ……n l 、l ——各计算管段的管道长度,m 单位长度水头损失 1.85 4.87 1.85 105j g i C d q --= 式中: i ——各计算管段单位长度沿程水头损失,/kpa m C ——海澄—维廉系数 各种塑料管、内衬(涂)塑管C =140, 铜管、不锈钢管C =130, 衬水泥、树脂的铸铁管C =130, 普通钢管、铸铁管C =100, g q ——设计秒流量,3 /m s j d ——管道计算内径,m 局部水头损失 210.5m H V g ξ-= 式中:m H ——局部水头损失,m ξ——局部阻力系数, v ——管道中流速,/m s (太阳能系统中一般选择为1米/秒) 112233f n n h i l i l i l i l =+++??????∑

相关文档
最新文档