基坑变形观测方案

基坑变形观测方案
基坑变形观测方案

***-***工程基坑支护工程基坑监测方案

编制:

审核:

批准:

****工程有限公司

二零一六年九月

目录

一、工程概括

二、人员组成与作业流程

三、监测依据及技术标准

四、监测目的及内容

五、监测网点的布设

六、使用仪器与精度要求

七、监测频率及监测方法

八、观测成果的计算、分析及预警报告

九、质量检查验收

十、上交资料

十一、安全保障

附件:

监测成果报表

监测点布置图

一、工程概括

1. 工程简介

拟建的*************************************************。基坑深约11米,基坑周长约660米,坡体土为人工填土、粉土、粉质黏土,地下水位约为自热地面下1.2~2.6米。

2. 基坑设计概况

基坑东侧临近已有建筑处侧壁安全等级为一级,其他地段侧壁安全等级为二级,基坑按临时支护设计,使用期限为一年。

本工程基坑东侧南段临近已有建筑,采用钢筋混凝土灌注桩结合预应力锚索进行支护,采用水泥土搅拌桩作为止水帷幕;基坑东侧中段基坑与已有建筑间相距约13.9米,为了保持止水帷幕封闭,在距已有建筑1.8米处设置2排水泥土搅拌桩作为止水帷幕,从帷幕内边向基坑内侧1:1放坡8米,坡面采用土钉墙进行支护,在坡脚处设置格栅式水泥土搅拌桩结合预应力锚索进行支护;基坑东侧北段2#汽车坡道处紧邻围墙,采用钢管桩超前支护结合复合土钉墙进行支护,采用水泥高压旋喷桩作为止水帷幕;基坑西侧1#汽车坡道处,采用水泥土搅拌桩格栅结合复合土钉墙进行支护,搅拌桩兼作止水帷幕;基坑其它地段上部5米采用直立开挖结合复合土钉墙进行支护,在自然地面下5米出设置1米宽平台,平台下方采用1:1放坡开挖结合复合土钉墙进行支护,采用水泥土搅拌桩作为止水帷幕。

3. 基坑监测项目

本基坑工程监测,在基坑开挖过程与支护结构使用期内,必须进行支护结构的水平位移监测,竖向位移监测,基坑周围已有建筑物的沉降观

测,地下管线的沉降观测,基坑监测项目具体要求如下:

(1)基坑坑顶及锚索端头水平位移监测;

(2)基坑坑顶及锚索端头竖向位移监测;

(3)周边建筑物沉降观测;

(4)地下管线沉降观测;

二、人员组成与作业流程

1. 人员组成

本次我公司计划配备一个测量组完成本工程项目的沉降观测,人员安排如下:

专业监测人员组成固定的监测队伍,随工程实际施工进度、监测数

据变异情况及时开展测试工作。

2.作业流程

变形监测是高精度的测试工作,关乎工程的安全、顺利施工。测试

数据是第一手资料,对积累经验,调解纠纷等起重要作用。

遵循严谨、科学的工作态度,根据我公司质量管理体系要求,特制订本项目工作流程如下。

三、监测依据及技术标准

监测依据为本工程基坑设计图纸、施工进度计划、本基坑监测方案及以下主要规范:

1.《建筑基坑工程监测技术规范》(GB50497-2009)

2.《建筑变形测量规范》(JGJ8-2007)

3.《工程测量规范》(GB50026-2007)

4.《建筑基坑支护技术规程》(JGJ120-2012)

5.《建筑基坑工程技术规范》(DBJ04/T306-2014)

6.《建筑深基坑工程施工安全技术规范》(JGJ311-2013)

7.《建筑地基基础设计规范》(GB50006-2011)

8.《测绘成果质量检查与验收》(GB/T 24356-2009)等。

四、监测目的及内容

1. 监测目的

由于基坑工程设计理论还不够完善,施工场地也存在着各种各样复杂因素的影响,基坑工程设计方案能否真实地反映基坑工程实际状况,只有在方案实施过程中才能得到最终的验证,其中现场监测是获得上述验证的重要和可靠手段。

通过基坑变形监测,提供为确保基坑支护结构安全的变形监测数据。

2. 监测内容

根据本工程的具体情况,依据有关规范的规定和基坑支护设计方案

及建设单位对基坑变形监测的有关要求开展监测。内容主要包围基坑支护结构,具体为:

(1)基坑顶水平位移,39个监测点。

(2)基坑顶垂直位移,39个监测点。

(3)锚索端头水平位移,86个监测点

(4)锚索端头垂直位移,86个监测点

(5)基坑周围邻建,48个监测点。

基坑工程监测应针对监测对象的关键部位,做到重点观测、项目配套并形成完整、有效的监测系统。现场监测应采用仪器监测与巡视相结合进行,以仪器监测为主,巡视为辅。应由专人进行巡视检查,巡视以目测为主,内容是检查支护结构是否出现开裂;基坑支护结构或周边土体的位移值突然明显增大;基坑支护结构的锚杆体系出现过大变形、压屈、断裂、松驰或拔出的迹象;基坑及周边大量积水、长时间连续降雨、周边管道是否出现泄漏;基坑附近地面荷载是否突然增大或超过设计限值;周边件(构)筑物的结构部分、周边地面出现较严重的突发裂缝或危害结构的变形裂缝;周边管线变形突然明显增长或出现裂缝泄漏等。

五、位移监测网点的布设

位移变形监测网由基准点、工作基点、观测点组成,变形监测网的布设,是为了直接获取监测体的变形量。基准点是变形监测的基准,点位要具有更高的稳定性,且须建立在变形区以外的稳定区域,是为了保证数据具有可比性。工作基点是作为高程和坐标的传递点使用,是为了方便观测。

平面、高程控制网利用本工程附近网点联测建立,与本项目坐标、高程系统统一。平面控制测量采用边角网,以测边为主,建立一级平面控制网,控制网平均边长在100米左右。

平面控制网主要技术表1

边长测量的电磁波测距技术要求表2

注:1 测回是指照准目标一次,读数4次的过程。

2 根据具体情况,测边可采取不同时间段代替往返测。

3 测量斜距,须经气象改正和仪器的加、乘常数改正后才能进行平距计算。

高程控制测量采用几何水准方法,水准网主要技术要求如下所示。

水准网的主要技术要求表3

监测点的点位,应根据工程规模、基坑深度、支护结构和设计要求合理布设。变形观测点,按照设计要求,直接埋设在能反映监测体变形特征的部位,要求结构合理、设置牢固。观测点宜布设在基坑顶部,平面上对称布置。监测点均做明显标记并编号,并做好保护工作。监测点平面位置情况,详见基坑变形监测点布置示意图。

六、使用仪器与精度要求

1. 观测仪器

为确保本工程周边建筑物及支护结构的安全,本基坑变形监测主要采用监测仪器设备有:

观测仪器设备配备情况表

1)全站仪采用,最先进的高精度电子全站仪,精度指标±0.5", ±( 0.6mm+1ppm·D)。

2)水准仪采用,最先进的精密电子水准仪,天宝DiNi03电子水准仪及配套铟瓦条码尺,精度指标±0.3mm/km,铟钢水准尺。

2. 水平位移监测精度

基坑顶部水平位移监测精度应根据其水平位移报警值按下表确定。

其中,监测点坐标中误差是指监测点相对测站点(如工作基点等)的坐标中误差,为点位中误差的1/2;当根据累计值和变化速率选择的精度要求不一致时,水平位移监测精度优先按变化速率报警值的要求确定。

全站仪、棱镜安置,对中误差小于设计要求0.5mm。

水平位移监测精度要求(mm)表4

3.竖向位移监测精度

基坑顶部竖向位移监测精度应根据其竖向位移报警值按下表确定。其中,监测点测站高差中误差是指相应精度与视距的几何水准单程一测站的高差中误差。

水准测量为0.3mm的电子水准仪,误差符合设计要求。

竖向位移监测精度要求(mm)表5

七、监测频率及监测方法

1. 监测频率

本次基坑变形监测工作自降水开始至基坑回填结束。按设计和有关规范要求,基坑监测频次统计如表6所示。

现场仪器监测的监测频次表6

监测频率及次数一览表

(1)初始值观测

变形测量的时间性很强,它反映某一时刻变形体相对于基点的变形程度或变形趋势,因此基坑支护各项目初始值是整个变形观测的基础数据。初始值取独立连续三次观测值的算术平均值。具体观测内容的开始观测时间如下:

1)基坑顶部的水平位移、竖向位移,在基坑开挖前(或降水开始前),对基坑顶部等的水平位移、竖向位移观测点进行布点,并完成初始值的观测。

(2)观测频率与周期的调整

监测周期并非一成不变,要依据监测体变形量的变化情况适当调整,以确保监测结果和监测预报的适时准确。当出现下列情况之一时,应加强监测,提高监测频率,并及时向甲方报告监测结果:

①监测数据达到报警值;

②监测数据变化量较大或者速率加快;

③基坑及周边大量积水、长时间连续降雨、周边管道出现泄漏;

④基坑附近地面荷载突然增大或超过设计限值;

⑤支护结构出现开裂;

⑥基坑支护结构或周边土体的位移值突然明显增大;

⑦基坑支护结构的锚杆体系出现过大变形、压屈、断裂、松驰或拔出的迹象;

⑧周边件(构)筑物的结构部分、周边地面出现较严重的突发裂缝或危害结构的变形裂缝;

⑨周边管线变形突然明显增长或出现裂缝泄漏。

2. 水平位移监测方法

1)共布设3个基准点及2个工作基点。根据现场实际情况,为统一基准,准确反映实际变化,每次观测水平位移时要求首先观测工作基点位移。再以工作基点观测基坑顶部各点的水平位移。

2)基坑顶面水平位移观测点,使用高精度全站仪配合棱镜并采用极坐标法施测。采用全组合分组观测法,每组不多于五个方向,进行两测回观测,两次照准目标读数差不能大于2〞,半测回归零差不能大于3〞,一测回内2C互差不能大于5〞,同一方向值各测回互差不能大于3〞。每次观测前需对基准点进行检测。

3)监测方法:极坐标法

极坐标法是利用数学中的极坐标原理,以两个控制点为坐标轴,以

其中一个点为极点建立坐标系,测定观测点到极点的距离,测定观测点与极点连线和两个已知点连线的夹角。如下图所示。

图2 极坐标法测定点位示图

测定待求点C 坐标时,先计算已知点A 、B 的方位角 πα o B

A B

A BA X X Y Y 180?--=

测定角度β和边长BC ,根据公式计算BC 方位角: βαα+=BA BC 计算C 点坐标:

)(Cos S BC B C X X α?+= )(BC αSin S Y Y B C ?+= 3. 竖向位移的监测方法

1)计划在影响范围以外设置3个高程基准点。沉降基准点埋设稳定后,方可作为沉降观测基准点的高程。根据阶段施工的现场具体情况,基准网水准路线长控制在1km 以内。

2)各个观测点,尽量采用不转点直接观测,路线拟为闭合路线或符合线路。观测过程中遵循观测仪器与标尺、观测路线、观测方法、观测环境、观测与数据分析人员五固定的原则。

3)观测按变形测量的精度要求施测。根据本工程情况,使用精密电子水准仪按变形测量规范的二等水准测量精度技术要求观测。

二等水准观测的主要技术要求表7

八、观测成果的计算、分析及预警报告

1)观测数据由测量专业负责人带领专业人员利用平差等专业软件计算,并组织分析。

2) 经专业负责人审核后,计算及分析成果才能形成正式文件上交。监测数据如有异常,当场向项目监理机构进行报告;否则,在下一次检测时向项目监理机构报送上期监测数据。对建设、监理、施工等参建单位关于基坑监测的反馈意见进行讨论和分析,并及时进行回复。

3) 当达到设计监测报警值或《建筑基坑工程监测技术规范》GB50497-2009表8.0.4监测报警值时,立即进行危险报警,并应对基坑支护结构采取应急措施。

监测报警值一览表表9

九、检查验收

对变形测量项目实行两级检查,即作业部门检查和公司质控室检查。对变形观测的记录与计算、分析结果,进行两级检查,填写相应检查记录。质量检查依据本技术设计书和相应测量规范。

质量检查包括下列内容:

1) 使用仪器设备及鉴定情况。

2) 基准点和变形观测点的布设及标石、标志情况。

3) 实际观测情况,包括观测周期、观测方法和操作程序的正确性。

4) 基准点稳定性检测与分析情况。

5) 观测限差和精度统计情况。

6) 记录的完整性及记录项目的齐全性。

7) 观测数据的各项改正情况。

8) 计算过程的正确性、资料整理的完整性、精度统计和质量评定的合理性。

9) 变形测量成果的合理性。

10) 提交成果的正确性、可靠性、统计数据的准确性及数据的符合情况。

11)参加监理例会,汇报监测工作,提出建议。

当质量检查验收中现不符合项时立即提出处理意见,返回作业部门进行纠正。纠正后的成果应重新进行检查验收。

十、上交资料

1)基准点布设示意图;

2)观测点位置图;

3)水平位移与竖向位移监测日报表;

4)阶段总结报表

5)总结报表。

十一、安全保障

1)我公司明确指定工程施工中环境、职业健康安全管理负责人和现场监管人员,实行项目责任制。

2)我公司在施工前,应向甲方详细了解施工现场周围的重要危险源及环境污染因素、在工作过程中产生的职业病危害及其后果,以及相关注意事项,对监测人员进行安全交底。

3)我公司严格遵守并执行《施工高空作业安全管理制度》、《工业企业厂区运输安全规程》、《施工现场动火管理制度》、《施工现场临时用电安全规程》等安全技术规范,以及与工作相关的施工单位制定的现场安全制度和安全操作规程,严禁违章作业和冒险作业。

4)我公司监测人员进入施工现场,必须配备和正确穿戴符合国家标准的劳动防护用品(安全带、安全帽、安全鞋等),自觉接受甲方的安全生产监督检查,不得乱动与工作无关的设备或工具,也不准擅自到其它区域活动。若需对甲方的场地、能源(风、水、电、气)、设备或工具等使用,必须提出申请,经甲方主管领导同意后方可使用。

5)如需在带电线路区作业,必须同甲方一起办理停电手续并切实

停电后,采取严格的防范措施方可作业。

6)我公司必须做到文明监测,派专人负责施工现场的环境卫生,严禁乱堆乱放各种备品、辅料、工具等,同时不得影响车辆行人通行;施工期间,我公司监测产生的废物必须及时清运,严禁集中堆放,废物必须倒到指定场所。

附件一:

水平位移和竖向位移监测日报表

附件二:

监测点平面布置图

附件一:

水平位移和竖向位移监测日报表

第页共页工程名称:报表编号:天气:

观测者:计算者:校核者:测试时间:年月日

项目负责人:监测单位:

附件二:

基坑监测点平面布置图

基坑周围临建监测点平面布置图

基坑变形监测技术方案设计

基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m 2,总建筑面积约23 万m 2,地下建筑面积约8.7 万m 2。 本工程基坑总面积约29300m 2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1. 《建筑变形测量规程》(JGJ/T8-97) 2. 《工程测量规范》(GB50026-93) 3. 《建筑基坑支护技术规程》JGJ120-99 4. 《国家一、二等水准测量规范》(GB12897-93) 5. 《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

基坑变形监测方案

本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This desig n is mai nly for a deep foun datio n pit duri ng the con struct ion of foun dati on pit deformatio n and cause the deformati on of the surro unding en vir onment monitoring methods and data processing program design and analysis.The main mon itori ng content of the foun dati on pit wall for mon itori ng horiz on tal displaceme nt and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision an alysis. Keyword: Horizontal displacement observation; settlement observation; tilt observati on; two level; polar coord in ates

最新基坑开挖监测方案

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

工程测量中深基坑变形观测方法

工程测量中深基坑变形观测方法 随着时代的发展和经济的进步,建筑物的高度不断攀升,而基坑深度也随之加深,这也带来了工程施工难度的不断加大。而深基坑工程变形监测作为促进施工有效进行的重要方式也开始发挥越来越重要的作用,成为促进深基坑工程施工高效进行的重要方式。所以,深基坑的变形监测在以后的工程施工过程中将发挥越来越重要的作用,要重视深基坑的变形监测,同时注重监测的精确性,促进基坑施工更好的开展起来。 标签:工程测量;基坑;变形;观测;方法 1深基坑变形的形成原因 在深基坑的开挖过程中,会造成深基坑底部的土层上升,引起土层的流变。而且这个过程会使得深基坑内外的土体和深基坑的支撑结构出现压力失衡的情况,压力的失衡就会造成土层水平方向的移动。致使支持墙内的土体对支护墙有一种被动的压力趋势,支护墙外的土体对支护墙产生主动的压力趋势。这些会造成支護墙的不均等侧向位移,并最终导致地表的沉降。 2深基坑变形监测的目的 在建筑的深基坑工程中,土体的应力会产生一些变化,这些变化会造成周边的地面沉降和土体的位移,而且深基坑收到相关水土压力的作用,也会造成深基坑维护结构的稳定。所以为了有效的保证深基坑的施工安全,就需要对深基坑的变形进行监测,对发现的威胁要及时的进行处理,以保证深基坑的施工安全。 3深基坑的监测内容和方法 3.1深基坑的监测内容 在深基坑的施工过程中,为了及时的掌握深基坑的安全状态,需要在施工的现场来对深基坑进行监测。并通过对现场的监测数据来分析深基坑的强度。监测可以有效的获知深基坑周边环境的变化,而且可以及时的获得潜在的险情,并作出一些及时的干预。在目前的深基坑施工过程中,需要监测的变形量主要有桩顶的水平和垂直位移、土体的压力、深基坑内外的水位和周边环境的沉降等。 3.2深基坑的监测方法 3.2.1深基坑现场巡视的方法对深基坑的现场巡视主要是依靠人眼的观测,并且可以用一些辅助的工具来对深基坑的维护结构质量和土体有无裂缝和位移以及周边的环境有无沉降等来观测。采用人工目测的方法可以监测比较多的内容,而且获得的信息更加的直观,可靠度也很高。如果再和仪器的监测数据进行融合分析,可以有效的预测深基坑的变形趋势。因此深基坑现场巡视法在实际中

基坑开挖监测方案

1.工程概况 拟建综合楼工程项目为地下二层、地上八层(局部三层、五层),设地下室二层,预计开挖深度约为地面以下9.0m左右。挡土结构和支承结构为钻孔灌注桩,止水桩为高压旋喷水泥土桩,大量土方为支撑和支挡下挖土。 地理位置处于解放东路、茶局路交汇处西北角,场地为原供电局旧址。基坑四周建筑物密集,东侧为十层交通大厦,其余四周为4-5层砖混结构的住宅楼,紧邻基坑为110KV城中高压变电所,该所为本工程监测的重点。 设计单位:工程桩为机械工业部深圳设计研究院,围护桩为南京南大岩土工程技术有限公司,《岩土工程勘察报告》由宜兴市建筑设计研究院提供。 2.施工监测的重要性和目的 2.1施工监测的重要性 在基坑开挖的施工过程中,基坑内外的土体将由原来的静止土压力状态向被动和主动土压力状态转变,应力状态的改变引起维护结构承受荷载并导致围护结构和土体的变形,围护结构的内力(围护桩和墙的内力,支撑轴力或土锚拉力等)和变形(深基坑坑内土体的隆起、基坑支护结构及其周围土体的沉降和侧向位移等)中的任一量值超过容许的范围,将造成基坑的失稳破坏或对周围环境造成不利影响,深基坑开挖工程往往在建筑密集的市中心,施工场地四周有建筑物和地下管线,基坑开挖所引起的土体变形将在一定程度上改变这些建筑物和地下管线的正常状态,当土体变形过大时,会造成邻近结构和设施的失效或破坏。同时基坑相邻的建筑物又相当于较重的集中荷载,基坑周围的管线常引起地表水渗漏,这些因素又是导致土体变形加剧的原因。基坑工程设置于力学性质相当复杂的地层中,在基坑围护结构设计和变形预估时,一方面,基坑围护体系所承受的土压力等荷载存在着较大的不确定性;另一方面,对地层和围护结构一般都作了较多的简化和假定,与实际有一定的差异;加之,基坑开挖与围护结构施工过程中,存在着时间和空间上的延迟过程,以及降雨、地面堆载和挖机撞击等偶然因素的作用,使得现阶段在基坑工程设计时对结构内力计算以及土体变形的预估与工程实际情况有较大的差异,并在相当程度上仍依靠经验。因此,在基坑施工过程中,只有对基坑支护结构、基坑周围的土

基坑工程监测开题报告

山东科技大学 本科毕业设计(论文)开题报告题目基坑工程的综合监测 学院名称测绘科学与工程学院 专业班级 学生 学号 指导教师 填表时间:年 5 月 6 日

填表说明 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。 2.此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期完成,经指导教师签署意见、相关系主任审查后生效。 3.学生应按照学校统一设计的电子文档标准格式,用A4纸打印。 4.参考文献不少于8篇,其中应有适当的外文资料(一般不少于2篇)。 5.开题报告作为毕业设计(论文)资料,与毕业设计(论文)一同存档。

设计(论文) 题目 基坑开挖监测 设计(论文)类型(划“√”)工程实际科研项目实验室建设理论研究其它√ 一、本课题的研究目的和意义 随着城市建设的发展,基坑施工的开挖深度越来越深,从最初的5~7m发展到目前最深已达20m多。由于地下土体性质、荷载条件、施工环境的复杂性,对在施工过程中引发的土体性状、环境、邻近建筑物、地下设施变化的监测已成了工程建设必不可少的重要环节。 对于复杂的大中型工程或环境要求严格的项目,往往难从以往的经验中得到借鉴,也难以从理论上找到定量分析、预测的方法,这就必定要依赖于施工过程中的现场监测。首先,靠现场监测据来了解基坑的设计强度,为今后降低工程成本指标提供设计依据。第二,可及时了解施工环境——地下土层、地下管线、地下设施、地面建筑在施工过程中所受的影响及影响程度。第三,可及时发现和预报险情的发生及险情的发展程度,为及时采取安全补救措施充当耳目。监测在取得大量测试数据同时对工程总结经验、完善基坑的支撑、提高设计水平有着重要意义。 根据我市周边地区的基坑工程事故分析可知,由于部分单位不重视基坑施工过程的监测,从而造成了较严重的工程事故,甚至造成了人员伤亡事故。如基坑围护结构的失稳,周边建筑的裂缝及地下设施的破坏。因此,当前对于我基坑开展监测工作已经变得越来越重要。

基坑变形监测方案

摘要 本设计主要针对某深基坑工程施工过程中基坑变形及引起周边环境变形进行监测的方法及相关数据处理方案的设计与分析。主要监测内容对基坑壁进行水平位移监测和沉降监测;内支撑格构柱进行沉降监测;周边临近基坑受基坑影响的建筑物作沉降监测;周边建筑沉降超预警值后要求进行倾斜观测。采用监测方法为精密二等水准、极坐标法、投点法,并对其可行性进行做了精度分析。 关键字:沉降观测;水平位移观测;倾斜观测;二等水准;极坐标

Abtract This design is mainly for a deep foundation pit during the construction of foundation pit deformation and cause the deformation of the surrounding environment monitoring methods and data processing program design and analysis.The main monitoring content of the foundation pit wall for monitoring horizontal displacement and settlement monitoring;In support of lattice column for subsidence monitoring; near an excavation foundation pit surrounding by effect of buildings for subsidence monitoring;The surrounding building settlement of super early warning value requirements of the tilt observation.The monitoring method for precision two level, the polar coordinate method, points method,And its feasibility was made precision analysis. Keyword:Horizontal displacement observation; settlement observation; tilt observation; two level; polar coordinates

基坑变形监测方案

佳·5.4克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·5.4克拉项目部 二○一七年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图

一、编制依据 1、佳·5.4克拉基坑开挖图; 2、佳·5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·5.4克拉项目基坑支护结构设计》《佳·5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程±0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为11.77m;西塔筏板厚度为1 500mm,开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q4al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m。

深基坑变形监测的常见方法及应用

深基坑变形监测的常见方法及应用 本文主要介绍了深基坑的变形监测,分析了深基坑边坡的水平位移和竖向位移的监测方法,阐释了基坑变形监测过程中遇到的各种情况及需要注意的问题。 标签:深基坑;基坑变形监测;水平位移;竖向位移 随着科技的发展和技术的进步,为了解决土地资源日渐减少与城市人口不断增长的矛盾,越来越多的小高层、高层甚至超高层建筑物应运而生。伴随着高层建筑的崛起,深基坑工程也日益发展起来,深基坑的安全问题已经成为基础施工的重中之重。因此深基坑的变形监测也具有更实际更重要的意义。 深基坑工程是指基坑开挖的深度值超过5米(含5米)的基坑(槽)的土方开挖、边坡支护以及降水工程,或者基坑开挖的深度值虽未超过5米,但其地质条件情况、周围环境情况以及地下管线情况等较为复杂,或影响相邻建(构)筑物安全的基坑(槽)的土方开挖、边坡支护以及降水工程。根据规范要求,开挖深度值超过5m、或者开挖深度值虽不超过5m但现场地质情况和周围环境较复杂的基坑工程均应实施基坑工程变形监测。 基坑监测是指在施工及使用期限内,对深基坑及周边环境实施的检查、监控工作。监测项目主要包括:水平位移监测、竖向位移监测、深层水平位移监测、倾斜监测、裂缝监测、支护结构内力监测、土压力监测、孔隙水压力监测、地下水位监测、锚杆拉力监测、周边已建建筑的沉降监测等。其中基坑边坡的水平位移和竖向位移监测是最常见的基坑变形监测项目,本文就以此二项监测为例做相应的介绍和分析。 1、基坑变形测置点的设置 变形测量点分为基准点、工作基点和变形监测点。 基准点作为该工程的基准和检核点,必须保证其稳定性,每个基坑工程至少应设置3个基准点。当基准点离所测建筑距离较远致使变形测量作业不方便时,宜在稳定的位置设置工作基点。基准点和工作基点应避开交通干道主路、地下管线、仓库推栈、水源地、河岸、松软填土、滑坡地段、机器震动区以及其他可能使标石、标志易遭腐蚀和破坏的地方,并应选设在变形影响范围以外且稳定、易于长期保存的地方。监测期间,应定期检查基准点和工作基点的稳定性。 基坑工程变形监测点是直接反应基坑变形情况的测量点。根据规范要求,基坑工程监测点的布置应最大程度地反映监测对象的实际状态及其变化趋势,并应满足监控要求。为了满足观测条件,应将点位沿基坑周边布置在边坡顶部,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20米,并应保证每条边坡上监测点数不少于3个。监测点宜采用1015cm长,直径20mm的钢筋,固定在边坡顶部,钢筋顶部刻十字花。

(完整版)深基坑监测方案

************工程 基坑变形监测方案 编制人: 审批人: 施工单位:********************** 2014年10月17日

目录 1、工程概况 (1) 2、监测目的及要求 (1) 3、编制依据 (2) 4、工程地质概要 (2) 5、监测内容 (3) 6、监测频率 (7) 7、测量主要仪器设备 (9) 8、监测工作管理保证监测质量的措施 (9) 9、监测人员配备 (14) 10、监测资料的提交 (14)

基坑变形监测方案 1、工程概况: 1、工程名称:*************** 2、工程地点:***************。 3、建设单位:**************** 4、设计单位:**************** 5、勘察单位:**************** 6、监理单位:***************** 7、施工单位:***************** 8、结构形式:***************** 深基坑支护采用如下方案: 1.1 基坑支护方案 本工程基坑东侧采用钢筋砼排桩支护,北侧采用锚杆加土钉墙支护(详见专项施工方案)。 2、监测目的及要求 2.1.监测目的 在深基坑开挖的施工过程中,基坑内外的土体由原来的静止土压力状态向主动力土压力状态转变,应力状态的改变引起的变形,即使采取支护措施,一定数量的变形总是难以避免的。这些变形包括:深基坑坑内土体的隆起,基坑支护结构以及周围土体的沉降和侧向位移。无论那种位移的量超出了某种容许的范围,都将对基坑支护结构造成危害。因

此,在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体进行综合、系统的监测,才能对工程情况有全面的了解。确保工程顺利进行。 2.2.深基坑工程监测的要求 在深基坑开挖与支护工程中,为满足支护结构及被护土体的稳定性,首先要防止破坏或极限状态发生。破坏或极限状态主要表现为静力平行的丧失,或支护结构的构造产生破坏。在破坏前,往往会在基坑侧向的不同部位上出现较多的变形或变形速率明显增大。支护结构物和被支护土体的过大位移将引起邻近建筑物的倾斜和开裂。如果进行周密的监测控制,无疑有利于采取应急措施,在很大程度上避免或减轻破坏的后果。 3、编制依据: 3.1《建筑基坑工程变形技术规范》(GB50497-2009) 3.2《城市测量规范》(CJJ8-99) 3.3《精密水准测量规范》(GB/T15314-940) 3.4《工程测量规范》(GB 50026-93) 3.5《建筑边坡工程技术规范》(GB50330-2007) 3.6 《建筑基坑支护技术技术规程》(JGJ120-99) 4、工程地质概要: 4.1本基坑地下水属潜水类型,其主要补给来源为大气降水。 4.2拟建场地浅层土层成份复杂,基坑工程正式施工前应对场地内的障碍物作进一步查明并给予清除,以确保围护体和坑内加固等正常施

基坑支护监测方案(1)

XXX三期基坑支护 监 测 方 案 XXX有限公司 二O一四年十月十二日

XXX基坑支护监测方案 1.工程概述 工程概况 本工程合肥市XXX?XXX项目三期基坑支护指定分包工程由合肥新站XXX开发有限公司投资新建,工程地点位于合肥市万佛湖路与潜山路交口西北侧ZWQTC-036地块。 合肥市XXX?XXX项目三期基坑支护指定分包工程由江苏东南建筑工程结构设计事务所有限公司设计,基坑支护详见设计图纸。 本支护工程为临时性工程,基坑安全等级为二级,结构重要性系数为,基坑使用期为12个月。 、本工程支护范围内土层分布自上而下依次为素填土、粘土、强风化泥质砂岩、中风化泥质砂岩,基坑底落于粘土中,场地地下水类型为主要为上承滞水。 、基坑开挖深度约为—,基坑靠近星光东路有较多管线,北侧会所周边有天然气管道。经放线,管道在基坑上口线外侧3m,对基坑施工无影响。 、本次设计图纸分为4个剖面,分别为1-1剖面、1a-1a剖面,2-2剖面、3-3剖面。 1-1剖面设计为Φ800旋挖桩,间距,桩长10米,距桩顶2m处设置一道锚索,基坑内侧喷锚护面。1a-1a剖面设计为Φ1000旋挖桩,间距,桩长15米,基坑内侧喷锚护面。 2-2剖面、3-3剖面设计为土钉墙。潜山路一侧设计为自然放坡,放坡比例为1:。 地下底板面标高为,基坑开挖深度为约, 场地岩土工程条件 拟建场地地基土构成层序自上而下为: ①层杂填土(Q ml)——层厚~,层底标高为~。褐、褐灰,褐黄、黄褐色等,湿,松散状态,状态不均匀。该层主要成分为粘性土,表部主要含碎砖石、砼块等建筑垃圾,含有植物根茎,局部地段夹生活垃圾和淤泥质土等。 ②层粉质粘土(Q 4 al+pl)——此层仅局部分布,层厚~,层底标高为~。褐灰、灰黄色等,可塑状态,湿,有光泽,无摇振反应,干强度中等,韧性中等;含少量氧化铁、铁锰结核及高岭土等。 ③ 1层粘土(Q 3 al+pl)——层厚一般为~,层底标高为~。灰褐、褐灰、灰黄、褐黄色等,一般为硬

基坑沉降观测方案共9页word资料

大兴康庄两限房(一期) 1#、5#、8#号住宅楼 基坑变形监测方案 北京住总第三开发建设有限公司 康庄工程项目经理部 2009年2月 目录 1. 编制依据 (2) 1.1. 施工图纸 (2) 1.2.主要规程规范 (2) 1.3.其他 (3) 2. 工程概况 (3) 3. 施工部署 (3) 3.1.人员部署 (3) 3.2.监测管理程序 (4) 4. 基坑变形监测的必要性、目的和内容 (4) 4.1.基坑变形监测的必要性 (4) 4.2.监测目的和内容 (4) 5. 监测要求及准备 (5) 5.1.监测要求 (5) 5.2.监测过程控制要求 (6)

5.3.对监测数据结果的要求 (6) 5.4.主要测试设备 (6) 6. 监测方法 (6) 6.1.肉眼观察 (6) 6.2.基坑外半永久性基准点的布置 (7) 6.3.水平位移监测 (7) 6.4.监测频率 (7) 6.5.变形控制标准 (7) 6.6.资料整理和分析反馈 (8) 6.7.其它注意事项 (8) 6.8.监控报警值 (8) 1.编制依据

2.工程概况 3.施工部署 3.1.人员部署 3.1.1.项目部组织机构

项目部施工监测管理人员为岳秀记,负责本工程的基坑变形监测工作;分包单位的监测工作必须严格执行项目部制定的一系列监测管理制度,做到持证上岗。 4.基坑变形监测的必要性、目的和内容 4.1.基坑变形监测的必要性 在深基坑施工过程中,只有对基坑支护结构、基坑周围的土体和相邻的构筑物进行全面、系统的监测,才能对基坑工程的安全性和对周围环境的影响程度有全面的了解,以确保工程的顺利进行,在出现异常情况时及时反馈,并采取必要的工程应急措施,甚至调整施工工艺或修改设计参数。 4.2.监测目的和内容 监测目的:检验设计所采取的各种假设和参数的正确性,指导基

基坑变形监测方案 (1)

佳·克拉项目 基坑变形监测方案 编制: 甘肃统建建筑装饰工程集团有限公司 佳·克拉项目部 二○一七年九月二十日

目录

附图一:基坑监测点平面布置图

一、编制依据 1、佳·克拉基坑开挖图; 2、佳·克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳·克拉项目基坑支护结构设计》《佳·克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007; 5、《建筑工程施工质量验收统一标准》GB50300-2013; 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009; 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳·克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳·水岸华庭C地块。拟建场地近南北宽约,东西长约。 本工程±绝对标高为。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm,开挖深度为;西塔筏板厚度为1500mm,开挖深度为,,商铺为300厚的防水板,开挖深度为。 本基坑安全级别属于一级基坑。

(二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑; ①粉质粘土(Q 4 土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为~,层面标高~。 al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色, ②圆砾(Q 4 重型动力触探试验修正值=~击,中密-密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中风化,圆砾一般粒径为~,偶含卵石及漂石。层面埋深~,厚度~,层面标高~。 ③强风化泥岩(N):该层分布于整个场地,半成岩,褐红色-灰绿色,微裂隙及风华裂隙较发育,中密-密实,矿物成分以蒙脱石、绿泥石,高岭石、白云母等为主,泥钙质胶结,碎屑结构,中厚层状构造,岩芯呈短柱状,具有遇水易软化的特点,强风化泥岩岩体基本质量等级Ⅴ级。层面埋深~,厚度~,层面标高~。 ④中风化泥岩(N):该层分布整个场地,半成岩,褐红色-灰绿色,见微裂隙,致密;矿物成分以蒙脱石、绿泥石、高岭石、白云母、长石、石英等为主,泥钙质胶结,碎屑结构,巨厚层状构造,岩芯呈短桩状,具有遇水易软化的特点,未经扰动时坚硬,岩体基本质量等级为Ⅳ级。层面埋深~,勘察厚度~(未揭穿),层面标高~。 (三)气象 天水市气候类型属暖温带轻冰冻中湿区,据天气气象局资料,本区多年平均气温℃,极端最高气温℃,极端最低气温℃,历年最冷月相对湿度平均62%,最热月平均湿度73%,年最大降水量,降水多集中在7、8、9月份,多暴雨,夏季多东北风,夏季平均风速s,冬季多东风,冬季平均风速s,30年遇最大风速s,年雷暴日天,年沙暴日天,年雾日数天,历年最大积雪厚度15cm,地表有季节性冻土,标准冻土深度,场地内无地表水。 (四)地下水 根据区域水文地质资料和勘察结果,拟建场地地下水为第四系松散岩类孔隙潜水,②圆砾

深基坑监测方案

目录 一、工程概况 (1) 二、编制依据 (1) 三、基坑侧壁安全等级划分 (1) 四、基坑支护方案 (1) 五、监测目的及要求 (2) 六、工程地质概要 (2) 七、监测内容 (3) 八、监测频率 (8) 九、测试主要仪器设备...................................... - 11 - 十、监测工作管理、保证监测质量的措施...................... - 11 - 十一、监测人员配备........................................ - 14 - 十二、监测资料的提交...................................... - 15 -

一、工程概况: 本项目为CENTER工程,本子项为通风中心;工程号为HB1001,子项号为VX。建设地点:四川省乐山市夹江县南岸乡。 通风中心长58.60m,宽33.10m,建筑高度(室外地坪至女儿墙)为22.900m,消防高度(室外地坪至屋面面层)为22.200m,地上二层,局部三层。占地面积1956.19㎡,建筑面积4298.00㎡。 建筑结构形式:钢筋混凝土框架——抗震墙结构,本建筑设计使用年限为50年,抗震Ⅰ类建筑。 二、编制依据: 1、《建筑基坑工程变形技术规范》(GB50497-2009) 2、《城市测量规范》(CJJ/T8-2011) 3、《精密水准测量规范》(GB/T15314-940) 4、《工程测量规范》(GB 50026-2007) 5、《建筑边坡工程技术规范》(GB50330-2002) 6、《建筑基坑支护技术技术规程》(JGJ120-2012) 7、基坑支护工程施工方案设计 三、基坑侧壁安全等级划分: 基坑 1-2交A-B,1-2交E-F,开挖的基坑深度较大约为8m,放坡系数80°,近似垂直开挖,如破坏后果较严重,因此侧壁安全等级定为一级,侧壁重要性系数1.1。 基坑其他位置地势相对开阔,无相邻建筑等级评定为二级,侧壁重要性系数1.0。

基坑变形监测方案

佳?5.4克拉项目基坑变形监测方案编制:______________ 甘肃统建建筑装饰工程集团有限公司佳?5.4克拉项目部 二O年九月二十日

目录 一、编制依据 (1) 二、工程概况 (1) (一)工程简介 (1) (二)地层岩性 (1) (三)气象 (2) (四)地下水 (2) 三、施工部署 (3) (一)人员部署 (3) (二)监测管理程序 (3) (三)测量检测部署 (3) 四、深基坑监测要求 (3) (一)监测要求 (3) (二)、监测过程控制要求 (4) (三)、监测数据结果的要求 (4) 五、监测方法 (4) (一)监测仪器及要求 (5) (二)巡视检查 (5) (三)监测点的布置 (5) 六、监测期和监测频率 (5) 七、监测报警及异常情况下的监测措施 (6) 八、资料整理和分析反馈 (6) 九、作业安全及其它注意事项 (6) 十、雨季施工技术措施 (6) 十一、应急预案 (7) (一)应急救援部署 (7) (二)突发事件风险分析及预防 (8) 附图一:基坑监测点平面布置图 、编制依据 1、佳?5.4克拉基坑开挖图; 2、佳?5.4克拉岩土工程勘察报告; 3、兰州理工大学建筑勘察设计院《佳? 5.4克拉项目基坑支护结构设计》

《佳? 5.4克拉项目基坑降水设计》; 4、《工程测量规范》GB50026-2007 5、《建筑工程施工质量验收统一标准》GB50300-2013 6、《湿陷性黄土地区建筑基坑工程安全技术规程》JGJ167-2009; 7、《建筑基坑工程检测技术规范》GB50497-2009 8、《建筑变形测量规范》JGJ8-2007; 9、基坑监测强制性条文。 二、工程概况 (一)工程简介 工程名称:佳? 5.4克拉。 工程地点:拟建场地位于甘肃省天水市秦州区吴家崖村,场地北邻吴家崖村田地。东侧为吴家崖村,南临山水嘉园1#地块,西临佳?水岸华庭C地块。拟建场地近南北宽约59.3m-82.7m,东西长约48.7m-118.5m。 本工程士0.000绝对标高为1198.000。地下二层,地上A塔十八层,B塔十五层,商铺为地上三层。结构形式主楼为剪力墙结构,裙楼为框架结构。本工程基础采用筏板,东塔筏板厚度为1800mm开挖深度为11.77m;西塔筏板厚度为1 500mm开挖深度为11.47m,,商铺为300厚的防水板,开挖深度为10.27m。 本基坑安全级别属于一级基坑。 (二)地层岩性 在勘察深度范围内,拟建场地地层自上而下依次分布为: ①粉质粘土(Q al):该层分布于整个勘察场地,属第四系冲积产物;黄褐色,坚硬-硬塑;土质均匀,含少量植物根系和少量泥岩碎屑,孔隙较发育,有光泽,无瑶震反应,干强度中等,韧性一般,层厚为1.50~23.20m,层面标高 1195.19m~1214.05m ②圆砾(Q4al+pl):该层除区域缺失外,基本分布于整个勘察场地,冲、洪积成因,青灰色,重型动力触探试验修正值N63.5=14.6~23.4 击,中密- 密实,接触排列,磨圆度较好,颗粒形状呈圆状-亚圆状,级配较好,颗粒间充填物以中粗砂为主,含少量粉土,骨架颗粒成分主要为变质岩、石英岩和花岗岩等,中

基坑变形监测技术方案

基坑变形监测方案2007-11 基坑变形监测技术方案 一、工程概况 本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。 本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。 二、依据及原则 1.《建筑变形测量规程》(JGJ/T8-97) 2.《工程测量规范》(GB50026-93) 3.《建筑基坑支护技术规程》JGJ120-99 4.《国家一、二等水准测量规范》(GB12897-93) 5.《天津市建筑地基基础设计规范》(TBJ1-88) 依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目 为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作: 1、周边环境监测 A、地下管线变形监测; B、基坑外道路变形监测; C、基坑外地下潜水水位监测; D、基坑外承压水水位监测; E、基坑外土体水平位移(测斜)监测; F、基坑外土体表面变形监测; G、海河堤岸变形(沉降、变形)监测; 2、围护结构监测 A、围护桩桩体水平位移(测斜)监测; B、围护桩桩顶变形(沉降、位移)监测; C、围护桩内、外侧水土压力监测; D、围护桩的竖向钢筋应力监测; 3、支撑体系和立柱监测 A、支撑轴力监测; B、钢格构柱及立柱角钢应力监测; C、立柱位移和沉降监测;

基坑支护变形监测方案

XXXXXXXXX工程基坑监测 专项案 一、监测工程的概况和边的环境 本工程由一栋18层高层住宅楼及一栋6层多层住宅楼组成,两楼之间有2层商铺连接。该工程含有1层地下室,地下室主要位于18层住宅楼及2层商铺区域,基坑开挖深度约4m。拟建建筑均为框架结构,拟采用桩基础。 拟建工程位于嵊泗县菜园镇,边均有邻近建筑,东侧靠东路,场地东、南、西面山麓距场地3~12m。 二、监测的项目 2.1基坑现场监测的对象: (1)支护结构;(2)相关的自然环境;(3)施工工况;(4)地下水状况;(5)基坑底部及围土体;(6)围建筑物;(7)围重要的道路。 2.2仪器检测: (1)坡顶水平位移;(2)破顶竖向位移;(3)土体深层水平位移;(4)土钉拉力;(5)围建筑物变形。 三、监测的编制依据及人员配置 3.1、编制依据 (2)《建筑基坑工程监测技术规》(GB50497-2009)

(3)《建筑地基基础设计规》(GB50007-2002) (4)《建筑变形测量规》(JGJ8-2007) (5)《建筑基坑支护设计规程》(JGJ120-99) (6)《建筑基坑工程设计规程》(DB33/T1008-2000) (7)本工程围护专项案 (8)瑞邦建设工程检测有限公司基坑监测案 3.2、人员配置如下表 四、监测目的 为了确保在施工期间基坑和围建筑物的安全,对印刷厂商住楼工程进行基坑支护的变形监测。根据定期地进行基坑支护的监测,能动态地反映基坑边的沉降量,当变形超过有关标准或监测结果变形达到报警值时,能够及时地进行加固处理措施,防止出现事故。 监测报警值: (1)深层土体水平位移监测:当日位移超过4mm/d或累计位移达50mm。

沉降观测及基坑变形监测方案(建筑助手)

一、测区概况 1、地理位置 待建的秦皇岛恒大城位于秦皇岛市火车站北侧,本次涉及沉降观测及基坑 变形监测建筑物为:5#、6#地块(6#地块1、2标;5#地块、6#地块3、4标) 拟建的住宅及商业建筑,该标段位于规划北港大街南侧,迎宾北路由标段中间 穿过。 项目工程为剪力墙结构,桩筏、筏板基础,一般为地下2层,地上5—49层。该项目由荆州市晴川建筑设计院有限公司设计,恒大地产集团秦皇岛恒大 城房地产开发有限公司投资建设,本工程地基基础设计等级为甲级。依据设计 要求,本工程按国家规范,在施工及使用期间均进行沉降观测。 本次沉降观测工程范围主要包含住宅及配套工程。基坑监测部分指根据设 计图纸要求需要进行基坑监测部分。 二、工作任务 恒大城5#、6#地块3、4标段建筑沉降观测具体情况如下表所示: 楼号布点个 数 建筑层数观测层数总监测次数 1# 6 33 ±0、3、6、9、12、15、18、21、24、 27、29、31、33 ≥13次 2# 6 33 ±0、3、6、9、12、15、18、21、24、 27、29、31、33 ≥13次 3# 6 33 ±0、3、6、9、12、15、18、21、24、 27、29、31、33 ≥13次 4# 6 33 ±0、3、6、9、12、15、18、21、24、 27、29、31、33 ≥13次 5# 6 33 ±0、3、6、9、12、15、18、21、24、 27、29、31、33 ≥13次 6# 6 28 ±0、3、6、9、12、15、18、21、24、 26、28 ≥11次 7# 6 28 ±0、3、6、9、12、15、18、21、24、 26、28 ≥11次 8# 6 28 ±0、3、6、9、12、15、18、21、24、 26、28 ≥11次 9# 6 28 ±0、3、6、9、12、15、18、21、24、 26、28 ≥11次

建筑物沉降观测及基坑变形监测点布设及报告计划.doc

2、监测点的布设 2.0.1 基坑顶部竖向位移 监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角 处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于 3 个。监测点宜设置在基坑边坡坡顶上。 监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、 阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于 3 个。监测点宜设置在冠梁上。 2.0.2 基坑顶部水平位移 监测点的布设同 2.1 基坑顶部竖向位移,宜为共用点。 2.0.3 坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性 的部位,数量和间距视具体情况而定,但每边至少应设 1 个监测孔。 2.0.4地下水位 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或 在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧 约2m处。 2.0.5锚(杆)索拉力 锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边 跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应 为该层锚杆总数的1~3%,并不应少于 3 根。每层监测点在竖向上的位置宜保持 一致。每根杆体上的测试点应设置在锚头附近位置。 2.0.6 支护桩桩身内力

支护桩桩身内力监测点应布置在受力、变形较大且有代表性的部位,监测 点数量和横向间距视具体情况而定,但每边至少应设 1 处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。 2.0.7 支撑内力 支撑内力监测点的布置应符合下列要求: 1、监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用的杆件上; 2、每道支撑的内力监测点不应少于 3 个,各道支撑的监测点位置宜在竖向保 持一致; 3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3 部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3 部位; 4、每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。 2.0.8围护墙侧向土压力 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或有代表性的部位; 2、平面布置上基坑每边不宜少于 2 个测点。在竖向布置上,测点间距宜为 2~5m,测点下部宜密; 3、当按土层分布情况布设时,每层应至少布设 1 个测点,且布置在各层土的 中部; 4、土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。 2.0.9 土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土内,数量与深度应 根据具体情况确定,在厚度较大的土层中应适当加密。 2.0.10 立柱竖向位移 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、 2

相关文档
最新文档