湖北中职技能高考数学模拟试题及解答(一)

合集下载

湖北中职技能高考数学模拟试题及解答

湖北中职技能高考数学模拟试题及解答

湖北中职技能高考数学模拟试题及解答Document number【980KGB-6898YT-769T8CB-246UT-18GG08】湖北中职技能高考数学模拟试题及解答(一) 一、选择题(本大题共6小题,每小题分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

1.下列三个结论中正确的个数为①所有的直角三角形可以构成一个集合;②两直线夹角的范围为(0°,90°); ③若ac >bb ,则a >b . A 、0 B 、1 C 、2 D 、3 答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。

2.直线3x +√3y −5=0的倾斜角为A 、π6B 、π3C 、5π6 D 、2π3答案:D 考查直线一般式求斜率,特殊角的三角函数。

3.下列三个结论中正确的为①零向量与任意向量垂直;②数列{3n +5}是以5为公差的等差数列;③(−x +2)(2x −3)>0的解集为(32,2).A 、①②B 、①③C 、②③D 、①②③ 答案:B 考查零向量定义,等差数列通项公式,一元二次不等式的解法。

4.下列函数中为幂函数的是①y =x 2;②y =2x ;③y =x −12;④y =−1x ;⑤ y =1x 2. A 、①②⑤ B 、①③⑤ C 、①④⑤ D 、②③④答案:B 考查幂函数的定义。

5.下列函数中既是奇函数,又在区间(0,+∞)是增函数的是 A 、y =x 2 B 、y =−1x C 、y =sinx D 、y =1x答案:B 考查函数奇偶性和单调性的判断。

6.等差数列{a n }中,a 3=8,a 16=34,则S 18=A 、84B 、378C 、189D 、736答案:B 考查等差数列通项公式及前n 项和公式的运用。

二、填空题(本大题共4小题,每小题6分,共24分)把答案填在答题卡相应题号的横线上。

湖北中职技能高考数学模拟试题及解答(二)

湖北中职技能高考数学模拟试题及解答(二)

湖北中职技能高考数学模拟试题及解答(二)一、选择题 (本大题共6小题,每小题5分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

1、若集合{}02≤=x x A ,则下列结论中正确的是( )A . A = 0B . ⊆0 AC . A φ=D . ⊆φ A答案: D2、若方程x 022=--m x 有两正根,则实数m 的取值范围是( )A 一1<m ≤1B 一1 ≤m ≤1C 一1≤m <0D m <一1 答案:C3、下列函数是同一函数的是( )A 55x y =与2x y =B x e y ln =与x e y ln =C 1)3)(1(-+-=x x x y 与3+=x y D 0x y =与01xy = 答案:D4、不等式(x-1)(x-3) > 0的充要条件是( ) A .{}1<x x B . {}3>x xC . {}31><x x x 或D . {}31<<x x答案: C5、直线3x + y – 4 = 0与直线x -3y + 4 = 0的位置关系为 ( )A 、垂直;B 、相交但不垂直;C 、平行;D 、重合。

答案:A6、下列函数中在定义域内为单调递增的奇函数的是( )A .2()1f x x =-B .3()f x x =C .5()3x f x ⎛⎫= ⎪⎝⎭D .2()log f x x =答案:B二、填空题:(本大题共4小题,每小题6分,共24分)7、已知集合A=(){}132,=-y x y x ,B=(){}22,=+y x y x ,则A ∩B = 答案:⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛73,788、在等比数列 {an} 中, 若a 1 , a 10 是方程 3 X 2–2 X+6 =0的两根,则a 4.a 7= 答案: 29、化简8lg 5lg 2lg )5lg 1(2+- = 答案: 1/310、设圆的方程为122=+y x ,则过点A (1, 2)且与该圆相切的直线方程是 。

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题文化综合数学部分1-20套参考答案

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题文化综合数学部分1-20套参考答案

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第一套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.D 21.B 22.C 23.B 24.D五、填空题(本大题共4小题,每小题5分,共20分) 25. 101 -5 26.]2,0031-(),(Y27.100 28.cm 2六、解答题(本大题共3小题,共40分) 29.(1)解析:由任意角的直角函数的定义得m=-1,21cos ,23sin -=-=αα, 原式==---ααααcos sin 3sin cos(2)原式===+--+-++6sin3cos 4tan6cos 6sin )66sin()32cos()42tan()63cos(62-sin πππππππππππππππ)(30. (1)设点A (x, y )则AB =(1-x, 1-y) 又AB (-7,10)b 2-a 3==ϖϖ所以⎩⎨⎧=--=-10171y x 解得⎩⎨⎧-==98y x 点A (8,-9)(2))4,3(+--=+λλλb a ϖϖ又)(b a ϖϖλ+∥AB所以2871030--=--λλ解得32-=λ (3))4,3(μμμ--=-b a ϖϖ因为⊥-)(b a ϖϖμAB所以⋅-)(b a ϖϖμAB 01040721=-+-=μμ 解得1761=μ31.(1)直线1l 的方程可化为0224=+-a y x ,则直线21与l l 的距离 105724)1(222=+--=a d 解得4或3-==a a(2)解析:设过点P 的直线方程为Y-3=k(x-2)即kx-y-2k+3=0,圆心到该直线的距离等于半径即113212=++--k k k 解得43=k 求得切线方程为2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第二套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.C 20.B 21.C 22.C 23.D 24.C 五、填空题(本大题共4小题,每小题5分,共20分) 25. 212- 26. 27. 28.六、解答题(本大题共3小题,共40分) 29.(1)解析:原式=434tan )6sin (3cos 4tan 3cos 4tan6sin)4tan()6sin(32cos()47tan()312cos()43tan()62sin(=-----=--+-+--++-+--+πππππππππππππππππππππ)(2) 原式=1tan 1tan 4cos sin cos 2sin 4-+=-+αααααα由已知得3tan -=α代入原式=30.(1)182)(62)(652616=+=+=a a a a S 解得45=a(2)1254-=a S ①1265-=a S ② 由②-①得565653即2a a a a a =-= 因为{}n a 为等比数列,所以356==a a q 31.(1)联立21与l l 的方程可得交点坐标(-1,3)由题意可设直线l 的方程为03=+-a y x将交点坐标代入即可得6=a 即所求直线方程为063=+-y x (2)因为直线与圆相切,所以圆心P(-3,4)到直线的距离等于半径 即222543=-+-==r d 故圆的标准方程为8)4()3(22=-++y x 转化为一般方程为0178622=+-++y x y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第三套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.A 20.C 21.B 22.B 23.C 24.A五、填空题(本大题共4小题,每小题5分,共20分) 25. 32-31-26. 27.(2,-6) 28.六、解答题(本大题共3小题,共40分) 29.(1)原式=3tan 4cos 23sin )34tan(44-cos 2)33sin(ππππππππα---=--++-+)( =(2)解析由34tan ,53cos 2354sin 54)sin(=-=∴∈-==+ααππαααπ),(又得 原式==-αααcos tan sin 230.(1)因为{}n a 为等差数列,所以⎩⎨⎧=+=+1045342a a a a可转化为⎩⎨⎧=+=+532211d a d a 解得⎩⎨⎧=-=341d a故95291010110=⨯+=d a S (2)因为{}n b 为等比数列,⎩⎨⎧==162652a a所以27253==a a q解得3=q 2a 1= 故132-⨯=n n b31.(1)圆的方程可转化为03213222=+-+++k k y x y x由0)321(4914222>+--+=-+k k F E D可得1或5<>k k (2)圆心(2,-1)到直线0434=+-y x 的距离354)1(324=+-⨯-⨯=d3==r d 所以直线与圆相切2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第四套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.B 21.D 22.B 23.B 24.D 五、填空题(本大题共4小题,每小题5分,共20分) 25.13426.]322,1,()(Y 27. 28.12π六、解答题(本大题共3小题,共40分)29.(1)解析:原式=02200002260cos 30sin 3tan 4sin )60720cos()30720sin()34(tan )46(sin ++=+-++--+-ππππππ= (2)由已知得94cos sin 31cos sin =-=+-αααα两边平方得 原式=αααααααcos sin sin tan tan )cos (sin 2=--= 30.(1)1),(b a +=+λλλϖϖ 因为a b a ϖϖϖ⊥+)(λ 所以-1得0)(==⋅+λλa b a ϖϖϖ(2)b ϖ因为∥c ϖ所以1262-=⨯-=k2251032,cos -=⋅--=⋅⋅>=<b a b a b a ϖϖϖϖϖϖ因为],0[,π>∈<b a ϖϖ 所以43,π>=<b a ϖϖ31.(1)直线0723=--y x 得斜率为23 则与之垂直直线得斜率为32-点斜式方程为)3(324+-=-x y 即0632=-+y x (2)点P(1,0) 因为直线与圆相切所以1)5(211222=++⨯==r d故圆的标准方程为1)1(22=+-y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第五套)参考答案四、选择题(本大题共6小题,每小题5分,共30分) 19.B 20.D 21.B 22.B 23.C 24.B 五、填空题(本大题共4小题,每小题5分,共20分)25.-7 0 26.]6,3()3,2(Y 27 .3 28 .六、解答题(本大题共3小题,共40分)29.原式12332)3(023130cos 23tan 2cos6cos2sin 3tan2cos 23tan )23cos()64cos()22sin()34tan(222-=--+-=--+-=-+++-+--++πππππππππππππππ(2)原式αααααααα2222cos tan sin )cos (tan tan )cos (sin -=-=-⋅⋅--⋅=30.(1)因为{}n a 为等差数列,所以44543233b a a a a ==++ 即442a b = 242416a b = 所以44=a 84=b(2){}n a 为等差数列 11=a 4314=+=d a a 所以1=d故n d n a a n =-+=)1(1 {}n b 为等比数列 11=b 8314==q b b 所以2=q故1112--==n n n qb b 31.(1)直线平分圆即直线过圆心(1,2)点斜式方程)1(212-=-x y 即032=+-y x (2)因为直线与圆相切 所以圆心(0,3)到直线032=+-y x 的距离 55353320=+⨯-==r d 故圆的标准方程为59)3(22=-+y x 转化为一般方程为0536622=+-+y y x2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第六套)参考答案四、选择题(本大题共6小题,每小题5分,共30分)19.D (两直线重合) 20.D 21.B 22.B 23.C 24.B (生活常识,冰水共存实例。

2020年技能高考文化综合数学部分1-20套参考答案

2020年技能高考文化综合数学部分1-20套参考答案

2020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第一套)参考答案四、选择蛆(本大题共6小题,每小题6分,共30分)24. D 共20分)19.C 20. D 21.B 22.C 23.B 五、填空JB (本大息共4小题,每小题5分,25.101-526.(-l,0)U(0,2]27.10020^328. 3 cm?六、解答题(本大题共3小题,共40分)29.(1)解析:由任意角的直角函数的定义得m=-l.sin …乎,5土龙-1cos a-sin « ~4~-V3 sin a-cosasin ( - 2^- + — ) cos(3^- + —) tan(-2^- + —) sin —cos —tan — l ⑵原式=------------6-----------6—___= 6 6 4 = 一必cos(-2^- - y ) sin(6^- + cos-ysin-^-30. (1)设点 A (x,y)则 427=(l-x, 1-y)又 J27 = 3a - 2b = (-7, 10)所以 I 」* = — m\X = 8 点 A (8, -9)11 - y = 10 ly = -9(2) a + Ab = (-3 - A, A + 4)又(a + Ab) // AB2 所以一 30 - 102 = -72 一 28解得人=--3(3) 3 — pb = (// - 3,4 — //)因为(善-pb) ± AB所以(歹-泌)•泅=21 - 7〃 + 40 - 10〃 = 0解得〃=君31. (1)直线*的方程可化为4x - 2y + 2a = 0,则直线*与%的距离ba-(-1)17-75…d=I,!=—解得a=3或a=-4VF7F io⑵解析:设过点P的直线方程为Y-3=k(x-2)即kx-v-2k+3=O,圆心到该直线的距离等于半径即I k-\-2k+3|=1解得k=3求得切线方程为3x-4y+6=o或乂-2=07F7T42020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第二套)参考答案四、选择蛆(本大题共6小题,每小题6分,共30分)19.C20.B21.C22.C23.D24.C五、填空JS(本大题共4小息,每小题5分,共20分)2六、解答题(本大题共3小题,共40分)29.(1)解析:原式=sin(2)+—)-tan(-3^-+—)cos(2^+—)sin(-^+—)6436cos(-12^-+—)+tan(7^--—)tan(-^-—)344・7T7171,7T y.sin---tan—cos—(-sin—)6436,,一—兀*兀.兀4cos---tan—-tan—344,.4sin a+2cos a4tan a+I(2)原式=--------------------=--------------sin a-cos a tan a-15由已知得tan a=-3代入原式=230.⑴S6=匝尹=匝y=18解得为=4⑵2Sq=为一1①2S5=%-1②由②@得2%=&一为即%=3选因为札}为等比数列,所以q=—=3为31.⑴联立*与】2的方程可得交点坐标(-1.3)由题意可设直线1的方程为3x-尸+a=0将交点坐标代入即可得a=6即所求直线方程为3x-*+6=0(2)因为直线与圆相切,所以圆心P(-3,4)到直线的距离等于半径3+4-5|厂即d===i-----=——L=2V2故圆的标准方程为(x+3)2+(*-4)2=8转化为一般方程为/+*2+6*-8*+17=02020年湖北省普通高等学校招生中职毕业生技能高考模拟试题数学部分(第三套)参考答案四、选择题(本大题共6小题,每小题5分,共30分)19.A2O.C21.B22.B23.C24.A五、填空题(本大题共4小题,每小题6分,共20分)125.-j--|26.(-2,-l)U(-l,0]27.(2,-6)28.1°六、解答题(本大题共3小题,共40分)29.(1)原式=sin(3a+—)-V2cos(-4^+—)+tan(-4^)=-sin—-V2cos—-tan—343343 3够1=24,4-334(2)解析由sin(4+a)=;得sin q=—^•又a c(勿,3))「•cosa=-—,tana=y3原式=--cos a=20tan-a30.⑴因为&,}为等差数列,所以卜+,=4丹+为=1°a.+2d= 2[a,=—4可转化为71解得[|q+3d=5"=310x9故§0=10.+—~d=952•a6⑵因为如}为等比数列,2=所以。

湖北中职技能高考数学模拟试题及解答(含答案解析)

湖北中职技能高考数学模拟试题及解答(含答案解析)

3 1)0 + (lg 2 1)2 lg2 5 ________
4
2
【答案】94 【命题分析】此题主要考查指数与对数的综合运算,涉及分数指数幂、0 次幂、 负整数指数幂、代分数的处理、商的对数运算法则,运算量适中但注意点较多很 容易出错,需要考生有较强对运算实力及专注解题的好习惯。
10. 二次函数 f(x)与 x 轴交点为(-1,0 )和(2,0),与 y 轴的交点为(0,5), 则该函数的解析式为_______________(用一般式表示)
质区别,知晓前 n 项和与第 n 项之间的关系。既能按常规逐一求项的办法解决,
又能使用连续求和办法解决。
6. 对任意实数 a,b,c,给出下列命题:
①“ a b ”是“ ac bc ”充要条件;
②“ a 5 是无理数”是“a 是无理数”的充要条件
③“a>b”是“a2>b2”的充分条件;
④“a<5”是“a<3”的必要条件.
【答案】设点 P 关于直线 的对称点为 P (x ,y ),则点 PP
111
1
的中点 M 在对称轴 上,且 PP1⊥ .……………………………………………………1
y
1
1
(
1)
1且
x
1
2
2
y
1
1
2
0
………………………………3
x 2 2
2
2
1
2 19 解得 x , y ……………………………………………………………1
【答案】 【命题分析】此题主要考查二次函数解析式的求法,题目涉及考虑到学生不层面 的基本功,可以使用二次函数的几种不同形式进行求解,让考生在初中的基础上, 能熟练将三种基本形式的使用做到灵活转换,同时对学生化简的基本功进行一次 检测,可能有考生会将 5 进行约分

湖北省技能高考数学部分题型分析(1)

湖北省技能高考数学部分题型分析(1)

湖北省技能高考文化综合训练卷数学部分题型分析一、概念类型:主要考查学生对数学概念的理解和掌握,体现在考点的了解、理解层面。

如 1、(18年)下列三个命题中真命题的个数是()(1)若集合{3}AB =,则3A ⊆;(2)若全集{|17}U x x =<<,且{|13}U C A x x =<≤,则{|37}A x x =<< (3)若:03,:||3p x q x <<<,则条件p 是结论q 成立的必要条件A 、0B 、1C 、2D 、32、下列三个结论中正确结论的个数为①、空集是任何一个集合的真子集。

②、集合(){}2,3--与{}2,3--相等。

③、 x 能被2整除是x 能被4整除的必要条件。

A 、0B 、 1C 、 2D 、33、下列四个结论中正确结论的个数为①、任何一个集合必有两个或两个以上的子集。

②、若,N a ∈则N a ∉-;③、02<-x 是2<x 成立的必要条件。

④、若集合 A B ⊆,且某元素不属于A ,则该元素必不属于BA 、1B 、 2C 、 3D 、4 4、下列三个结论中正确结论的个数为 ①、函数()2lg x x f =与()x x f lg 2=相同。

②、330°与 -30°是终边相同的角。

③、直线012=-y 的倾斜角是0.A 、0B 、 1C 、 2D 、35、(17年)下列三个结论中正确结论的个数是(1)、若θθθ则角且,0tan 0sin <<在第四象限; (2)、直线0122=-+yx 的倾斜角为135°; (3)、终边相同的角的同名三角函数值相同; A .3 B .2 C .1 D .0 6、(16年)下列三个结论中,所有正确结论的序号是(1)、方程0542=--x x 的所有实数根组成的集合用列举法可表示为[-1,5]。

(2)、平面内到点P (-1,1)的距离等于2的点组成的集合为无限集。

技能高考数学模拟试题(一)答案和解析

难易度:基础题
考纲知识点:点到直线的距离公式、直线与原的位置关系
解析:①错②错③错④错
答案:A
难易度:中等题
考纲知识点:函数的概念、函数的两个要素、函数的单调性
22.下列函数在定义域内为减函数且为奇函数的是()
A. B. C. D.
解析:A既不是奇函数又不是偶函数B正确C错误D错误
答案:B
难易度:中等题
考纲知识点:函数的奇偶性、指数函数、三角函数的性质
23.已知向量 ,且 则一定三点共线的是()
A.A,B,D B. A,B,C C. B,C,D D. A,C,D
解析:根据共线向量的定义解答
答案:A
难易度:基础题
考纲知识点:共线向量
24.小明抛一块质地均匀的硬币两次,出现正反各一次的概率是()
A B C D 1
解析:总量为正正、正反、反正、正正
答案:B
难易度:基础题
考纲知识点:古典概型
二、填空(5分×4=20分)
A. B. C. D.
解析:原不等式可化为:
答案:C
难易度:基础题
考纲知识点:一元二次不等式的求解
21.下列说法正确个数的是()
① 表示一个函数② 表示同一函数③设函数 在区间 上有意义.如果有 ,当 时, 成立,那么函数 叫作区间 上的增函数④如果函数 是增函数,则a的取值范围是
A.0 B. 1 Cቤተ መጻሕፍቲ ባይዱ 2 D. 3
25.计算
答案:27
难易度:基础题
考纲知识点:实数指数幂的运算
26.函数 的定义域是
答案:
难易度:基础题
考纲知识点:函数的定义域
27.在等差数列 中,已知 ,则
答案:210

职教高考数学模拟试题含答案

9.已知椭圆的中心在坐标原点,右焦点为(2,0),离心率为则楠圆的标准方程是数学试职教高考模拟试题题10.某几何体的正视图和俯视图如图所示,则该几何体的左视图可以是2024-111.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120分,考试时间120分钟,考生请在答题卡上答题,考试结束后;请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01.D .A .B .C .第10题图卷一(选择题…共60分)11.已知tan(3π-a)=3,且a是第二象限角,则sina等于A 一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出,并填涂在答题卡上)12.如图所示,动点P在边长为1的正方形ABCD的边上沿A→B→C→D运动,z表示动点P 由A点出发所经过的路程,y表示△APD 的面积,则函数y=f(z)的大致图像是1.已知集合M={1,2,3,4},N={3,5},则M ∩N等于A .{3}B .{1,3}C .{2,3,4)D .{1,2,3,4,5}2.已知实数a>b,则“ac>bc”是“c>0”的B.必要不充分条件A.充分不必要条件 D.既不充分也不必要条件C .充要条件B .c .A .D .3.已知复数(2x+y)-(x-y)i的实部和虚部分别为5和-1,则实数z 和y 的值分别是第12题图C .-1,2D .1,-2B .2,1A .2,-14.函数f(x)=√|x-1T-3的定义域是13.已知向量a=(1,-3),b=(-2,4),若4a+(3b-2a)+c=0,则向量c 的坐标为A .(1,-1)B .(-1,1)C .(-4,6)D .(4,-6)14,已知圆的圆心为(1,-2),且直线3x-4y+14=0与圆相切,则圆的标准方程为A .(x -1)²+(y +2)²=25B .(x -1)²+(y +2)²=5C .(x +1)²+(y -2)²=25D .(x +1)²+(y -2)²=5B .(-,-2)A .[4,+]D .(-,-2)U [4,+~)C .[-2,4]5.若m是2和8的等比中项,则实数m 的值是15.计算:cos7.5°cos52.5°-sin7.5sin52.5”等于D .-4或4A .5B .-5或5C .4p 日c A ·6.已知角a 终边上一点P(3,-4),则sin2i 的值为aA B 16.如图所示,在四棱锥P-ABCD中,M,N 分别为PC,AC上的点,且MN//平面PAD,则下列说法正确的是7.过直线x+y+2=0与x-y-4=0的交点且与直线x+2y+1=0垂直的直线方程为B .M N //P A A .M N //P D C .M N //A D D.以上均有可能A .x +2y +5=0B .x +2y -5=0C .2x -y +5=0 D .2x -y -5=08.如图所示,在矩形ABCD 中,O为AC与BD的交点,则AÔ+0方+AD等于的二项展开式中,所有二项式系数之和为64,则展开式的项数是第16题图A .7B .8C .9D .1018.将5名志愿者分配到4个不同的志愿服务岗位,每名志愿者只分配1个岗位,每个岗位至少分配1名志愿者,则不同分配方案的种数是第8题图D .方A .120C .360D .480B .AC c .A b A .A B B .240数学试题答案及评分标准卷一(选择题 共60分)一㊁选择题(本大题20个小题,每小题3分,共60分)1.A ʌ解析ɔ因为集合M ,N 的公共元素是3,所以根据交集的定义可知M ɘN ={3}.2.C ʌ解析ɔ在已知实数a >b 的前提下,a c >b c ⇔c >0,所以 a c >b c 是 c >0 的充要条件.3.B ʌ解析ɔ因为复数(2x +y )-(x -y )i 的实部和虚部分别为5和-1,所以2x +y =5,-(x -y )=-1,{解得x =2,y =1.{4.D ʌ解析ɔ要使函数有意义,需满足|x -1|-3ȡ0,即|x -1|ȡ3,此不等式等价于x -1ȡ3或x -1ɤ-3,解得x ȡ4或x ɤ-2,用区间表示为(-ɕ,-2]ɣ[4,+ɕ).5.D ʌ解析ɔ由题意知,m 2=2ˑ8,解得m =ʃ4.6.D ʌ解析ɔ由点P (3,-4),得r =5,则s i n α=-45,c o s α=35,所以s i n 2α=2s i n αc o s α=-2425.7.D ʌ解析ɔ联立方程x +y +2=0,x -y -4=0,{解得x =1,y =-3,{所以交点坐标为(1,-3),设与直线x +2y +1=0垂直的直线方程为2x -y +D =0,将点(1,-3)代入方程,求得D =-5,所以所求直线方程为2x -y -5=0.8.B ʌ解析ɔA O ң+O B ң+A D ң=A B ң+A D ң=A C ң.9.C ʌ解析ɔ由题意得,c =2,a =5,所以b 2=a 2-c 2=1,所以椭圆的标准方程是x 25+y 2=1.10.C ʌ解析ɔ由该几何体的正视图㊁俯视图和C 选项的左视图可知该几何体是底面为正方形的四棱锥.11.C ʌ解析ɔ由题意得,t a n (3π-α)=-t a n α=3,即t a n α=-3,所以s i n 2α=s i n 2αs i n 2α+c o s 2α=t a n 2αt a n 2α+1=910,又因为α是第二象限角,所以s i n α=31010.12.A ʌ解析ɔ当x ɪ[0,1]时,y =x 2,函数图像是一条过原点自左向右上升的线段;当x ɪ(1,2)时,y =12,函数图像是一段平行于x 轴的线段(不含端点);当x ɪ[2,3]时,y =3-x 2,函数图像是一条自左向右下降的线段,因此该函数的大致图像是A 选项.13.D ʌ解析ɔ因为4a +(3b -2a )+c =0,所以-c =4a +(3b -2a )=2a +3b =2(1,-3)+3(-2,4)=(-4,6),所以c =(4,-6).14.A ʌ解析ɔ设圆的方程为(x -1)2+(y +2)2=r 2,因为直线3x -4y +14=0与圆相切,所以圆心到直线的距离d =r ,即r =|3+8+14|32+(-4)2=5,所以圆的标准方程为(x -1)2+(y +2)2=25.15.A ʌ解析ɔc o s 7.5ʎc o s 52.5ʎ-s i n 7.5ʎs i n 52.5ʎ=c o s (7.5ʎ+52.5ʎ)=c o s 60ʎ=12.16.B ʌ解析ɔ因为MN ʊ平面P A D ,MN ⊂平面P A C ,平面P A C ɘ平面P A D =P A ,所以MN ʊP A .17.A ʌ解析ɔ因为所有项的二项式系数之和为2n =64,所以n =6,所以二项式展开后共有7项.18.B ʌ解析ɔ第一步,从5名志愿者中选出2名志愿者作为一组,选法有C 25=10种;第二步,将这2名志愿者看作1名志愿者与其余3名志愿者一同分配到4个不同的岗位,分配方法有A 44=24种.根据分步计数原理,不同的分配方案有10ˑ24=240种.19.B ʌ解析ɔ从24个节气中选择4个节气,共有C 424种情况,这四个节气中含有 立春 的情况有C 323种,故这4个节气中含有 立春 的概率为C 323C 424=16.20.B ʌ解析ɔ由题意得,a 1,a 2,a 3, ,a 8构成等比数列{a n },其中a 1=1,公比q =22,所以a 7=a 1q 6=1ˑ22æèçöø÷6=18.卷二(非选择题 共60分)二㊁填空题(本大题5个小题,每小题4分,共20分)21.4π3ʌ解析ɔ设正方体的棱长为x ,则6x 2=24,解得x =2或x =-2(舍去),因为正方体内切球的直径等于正方体的棱长,所以球的半径为1,所以球的体积为4π3.22.π3或2π3 ʌ解析ɔ因为s i n x =32>0,所以当x ɪ(0,2π)时,角x 有两个,分别是第一象限角和第二象限角,即x =π3或x =π-π3=2π3.23.30 ʌ解析ɔ由题意得,分层抽样的比例为1245+15=15,则书画组抽取的人数为(30+10)ˑ15=8,乐器组抽取的人数为30-12-8=10,故有(a +20)ˑ15=10,解得a =30.24.516 ʌ解析ɔ因为随机变量X ~B 6,12æèçöø÷,所以P (X =3)=C 36ˑ12æèçöø÷3ˑ1-12æèçöø÷6-3=C 36ˑ12æèçöø÷6=516.25.(0,1)ɣ[3,+ɕ) ʌ解析ɔ当0<a <1时,y =(a -1)x +5是减函数,y =a x 也是减函数,在x =2处满足(a -1)ˑ2+5ȡa 2,解得-1ɤa ɤ3,所以0<a <1;当a >1时,y =(a -1)x +5是增函数,y =a x 也是增函数,在x =2处满足(a -1)ˑ2+5ɤa 2,解得a ȡ3或a ɤ-1,所以a ȡ3.综上所述,实数a 的取值范围是(0,1)ɣ[3,+ɕ).三㊁解答题(本大题5个小题,共40分)26.解:(1)设二次函数为f (x )=a x 2+b x +c (a ʂ0),则a +b +c =4,c =1,9a +3b +c =4,ìîíïïïï(2分) 解得a =-1,b =4,c =1,ìîíïïïï(3分) 所以函数f (x )=-x 2+4x +1.(4分) (2)函数f (x )=-x 2+4x +1的图像开口向下,对称轴为x =2,(5分) 即函数f (x )=-x 2+4x +1在[-1,2]单调递增,在[2,5]单调递减,(6分) 所以f (x )m i n =f (-1)=f (5)=-4,f (x )m a x =f (2)=5.(8分)27.解:(1)由题意得a 1+2d =5,a 1+9d =-9,{(2分) 解得a 1=9,d =-2,{(3分) 所以数列{a n }的通项公式为a n =11-2n .(4分) (2)由(1)知,S n =n a 1+n (n -1)2d =10n -n 2,(5分) 因为S n =-(n -5)2+25,(6分) 所以当n =5时,S n 取得最大值.(7分)28.解:(1)由题意得,øD A B =90ʎ-45ʎ=45ʎ,øD B A =90ʎ-60ʎ=30ʎ,则øA D B =180ʎ-(øD A B +øD B A )=180ʎ-(45ʎ+30ʎ)=105ʎ,(1分) 又因为在әA D B 中,A B =5(3+3),所以由正弦定理,得D B s i n øD A B =A B s i n øA D B,(2分) 即D B s i n 45ʎ=5(3+3)s i n 105ʎ,解得D B =103(海里).(4分) (2)在әD B C 中,øD B C =60ʎ,(5分)由余弦定理,得D C 2=D B 2+B C 2-2ˑD B ˑB C ˑc o s 60ʎ(6分)=(103)2+(203)2-2ˑ103ˑ203ˑ12=900,(7分) 所以D C =30(海里),(8分) 所以该救援船从C 点到达D 点所需的时间为1小时.(9分)29.解:(1)由题意得,f (3)=l o g 12(10-3a )=-2,(1分) 即10-3a =12æèçöø÷-2,(2分) 解得a =2.(3分) (2)因为f (x )ȡ0,即l o g 12(10-2x )ȡ0,(4分)所以0<10-2x ɤ1,(5分) 解得92ɤx <5,(6分) 所以x 的取值范围是92,5éëêêöø÷.(7分) 30.解:(1)f (x )=3s i n x c o s x -c o s 2x +12=32s i n 2x -12(2c o s 2x -1)=32s i n 2x -12c o s 2x =s i n 2x -π6æèçöø÷,(2分) 所以函数f (x )的最小正周期为T =2π2=π,(3分) 令-π2+2k πɤ2x -π6ɤπ2+2k π,k ɪZ ,(4分) 解得-π6+k πɤx ɤπ3+k π,k ɪZ ,(5分) 所以函数f (x )的单调递增区间为-π6+k π,π3+k πéëêêùûúú(k ɪZ ).(6分) (2)因为x ɪ0,5π12éëêêùûúú,则2x -π6ɪ-π6,2π3éëêêùûúú,(7分) 所以-12ɤs i n 2x -π6æèçöø÷ɤ1,(8分) 所以函数f (x )的最大值为1,最小值为-12.(9分)。

湖北中职技能高考数学模拟试题及解答(二)

湖北中职技能高考数学模拟试题及解答(二)一、选择题 (本大题共6小题,每小题5分,共30分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

1、若集合{}02≤=x x A ,则下列结论中正确的是( ) A . A = 0 B . ⊆0 A C . A φ= D . ⊆φ A 答案: D2、若方程x 022=--m x 有两正根,则实数m 的取值范围是( ) A 一1<m ≤1 B 一1 ≤m ≤1 C 一1≤m <0 D m <一1 答案:C3、下列函数是同一函数的是( )A 55x y =与2x y =B x e y ln =与x e y ln =C 1)3)(1(-+-=x x x y 与3+=x y D 0x y =与01xy =答案:D4、不等式(x-1)(x-3) > 0的充要条件是( )A .{}1<x xB . {}3>x xC . {}31><x x x 或D . {}31<<x x 答案: C5、直线3x + y – 4 = 0与直线x -3y + 4 = 0的位置关系为 ( )A 、垂直;B 、相交但不垂直;C 、平行;D 、重合。

答案:A6、下列函数中在定义域内为单调递增的奇函数的是( )A .2()1f x x =-B .3()f x x =C .5()3xf x ⎛⎫= ⎪⎝⎭D .2()log f x x =答案:B二、填空题:(本大题共4小题,每小题6分,共24分)7、已知集合A=(){}132,=-y x y x ,B=(){}22,=+y x y x ,则A ∩B =答案:⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛73,788、在等比数列 {an} 中, 若a 1 , a 10 是方程 3 X 2–2 X+6 =0的两根,则a 4.a 7=答案: 29、化简8lg 5lg 2lg )5lg 1(2+- =答案: 1/310、设圆的方程为122=+y x ,则过点A (1, 2)且与该圆相切的直线方程是 。

湖北省技能高考模拟卷数学

湖北省技能高考模拟卷数学一、单项选择题1.给出下列四个命题词:①若全集U={1,2,3,4},集合A={2,3,4},则C U A={1};②空集是任何一个集合的真子集;③若A∩B=∅,则A=B=∅④若全集U=N,则C U N∗={0};其中假命题的个数为A.1B.2C.3D.42.不等式x2+4x−21≤0的解集为A.(−∞,−7]∪[3,+∞)B.[−7,3]C.[−3,7]D.(−∞,−3]∪[7,+∞)3.已知函数f(x)=ax+2x2在其定义域上是偶函数,则a的值为A.1B.−1C.0D.3(x−1)的定义域是4.函数y=√log12A.(1,+∞)B.(2,+∞)C.(−∞,2)D.(1,2]5.经过4小时,时针旋转了radA.π3radB.−π3radC.2π3radD.−2π36.下列说法中,正确的是x的图像关于轴对称A.y=log2x与y=log12B.log2x2与2log2x是同一函数C.若函数y=log a(x−2)过点(4,1),则a=2D.若函数y=log(a−1)x在(0,+∞)内为增函数,则a>17.下列四组数据:①12,14,18 ②2,−2√2,4③a 2,a 4,a 8④lg 2,lg 4,lg 8下列说法中,正确的是A.①和②是等比数列B.②和③是等比数列C.③是等比数列,④是等差数列D.②和④是等差数列8.已知一个正三棱锥的底面边长为4cm ,其侧面积为60cm 2,则它的斜高为A.10cmB.8cmC.6cmD.4cm二、填空题9.中国目前有四个直辖市,分别是北京、天津、上海、重庆。

小红暑假准备从中挑选一个城市旅游,则北京被选中的概率是10.计算:(49)12−(−2022)0+0.125−13=11.在等差数列{a n }中,若公差d =2,a 1+a 3+a 5=30,则a 5+a 7+a 9=12.与向量a ⃗=(3,4)垂直的单位向量的坐标为三、解答题13.解答下列问题:(1)已知角α的终边经过点P (−3t,4t )(t <0),求sin α+cos α的值(2)已知sin (π+α)=−√32且f (α)=sin (3π−α)cos (2π−α)tan (−α+π)−tan (α−π)sin (−α),若α是第二象限角,求f (α)的值14.已知直线l 1:3x −4y −12=0,直线l 2垂直于直线l 1,且过点P (1,−1),圆C:x 2+y 2−4x −6y +4=0(1)求直线l 1的横截距、纵截距和斜率(2)求直线l 2的方程(3)判断直线l 2与圆C 的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北中职技能高考数学模拟试题及解答(一)
一、选择题(本大题共6小题,每小题分,共30分)
在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出。

未选,错选或多选均不得分。

1.下列三个结论中正确的个数为
①所有的直角三角形可以构成一个集合;
②两直线夹角的范围为(0°,90°);
③若ac>bc,则a>b.
A、0
B、1
C、2
D、3
答案:B 考查集合的定义,夹角的定义,不等式的乘法性质。

2.直线3x+√3y−5=0的倾斜角为
A、π
6B、π
3
C、5π
6
D、2π
3
答案:D考查直线一般式求斜率,特殊角的三角函数。

3.下列三个结论中正确的为
①零向量与任意向量垂直;
②数列{3n+5}是以5为公差的等差数列;
③(−x+2)(2x−3)>0的解集为(3
2
,2).
A、①②
B、①③
C、②③
D、①②③
答案:B考查零向量定义,等差数列通项公式,一元二次不等式的解法。

4.下列函数中为幂函数的是
①y=x2;②y=2x;③y=x−1
2;④y=−
1
x
;⑤ y=1
x2
.
A、①②⑤
B、①③⑤
C、①④⑤
D、②③④
答案:B考查幂函数的定义。

5.下列函数中既是奇函数,又在区间(0,+∞)是增函数的是
A、y=x2
B、y=−1
x C、y=sinx D、y=1
x
答案:B考查函数奇偶性和单调性的判断。

6.等差数列{a n}中,a3=8,a16=34,则S18=
A 、84
B 、378
C 、189
D 、736 答案:B 考查等差数列通项公式及前n 项和公式的运用。

二、填空题(本大题共4小题,每小题6分,共24分)
把答案填在答题卡相应题号的横线上。

7.计算:[(−5
)2]12−log 3√93+√2√23√26= 答案:193 考查指数、对数的运算法则及计算能力。

8.函数f (x )=√−x 2+5x x−3+lg
(2x −4)的定义域用区间表示为 答案:(2,3)∪(3,5] 考查函数定义域的求法,不等式的解法及集合交集。

9.若数列{a n }是等差数列,其中a 2,a 5,a 11成等比数列,则公比q = 答案:2 考查等比中项,等差数列通项公式,等比数列定义。

10.与向量a ⃗ =(−3,4)垂直的单位向量坐标为
答案:(45,35)或(−45,−35) 考查向量垂直的充要条件,单位向量的定义。

三、解答题(本大题共3小题,每小题12分,共36分 )
应写出文字说明,证明过程或演算步骤。

11.平面内给定三个向量a ⃗ =(3,2),b ⃗ =(−1,2),c =(4,1),解答下列问题:
(I )求满足a ⃗ =mb ⃗ +nc 的实数m,n ; (6分)
(II )设(a ⃗ +kc )//(2b ⃗⃗⃗⃗ −a ⃗ ),求实数k 的值. (6分)
答案:(I )mb ⃗ +nc =(−m,2m )+(4n,n)=(4n −m,2m +n )
∴ {4n −m =32m +n =2 得:{m =59n =89
考查向量的线性运算
(II )a ⃗ +kc =(3,2)+(−k ,2k)=(3−k ,2+2k )
2b ⃗⃗⃗⃗ −a ⃗ =(−2,4)−(3,2)=(−5,2)
由(a ⃗ +kc )//(2b ⃗⃗⃗⃗ −a ⃗ )可得:−5(2+2k)−2(3−k )=0
得:k =-2
考查向量的线性运算,向量平行的充要条件。

12.解答下列问题:
(I )求sin(−150°)cos (600°)tan (−405°)
cos (−180)sin (−690)的; (6分)
(II )设θ为第三象限的角,且cos (2π−θ)=−45,求
2sin (θ−3π)+3cos (9π−θ)tan (7π+θ)−cos (−θ)的值. (6分)
答案:(I )原式=
−sin 30°(−cos 60°)(−tan 45°)−cos 180°sin 30° =12×√32×1−1×12=−√32
考查诱导公式,特殊角的三角函数值。

(II )cos (2π−θ)=cos θ=−45
sin 2θ=1−(−45)2=916
因为θ为第三象限的角,∴sin θ=−35,tan θ=34
2sin (θ−3π)+3cos (9π−θ)tan (7π+θ)−cos (−θ)=−2sin θ−3cos θtan θ−cos θ
=−2×(−35)−3×(−45)
34+45=7231 考查诱导公式,同角三角函数基本关系式,象限角三角函数值的符号。

13.已知直线l 1:x +y −3=0与l 2:x −2y −6=0相交于点P ,求解下列问题: (I )过点P 且横截距是纵截距两倍的直线l 的方程; (6分)
(II )圆心在点P 与直线4x −3y +1=0相切的圆的一般方程. (6分)
答案:(I ){x +y −3=0x −2y −6=0得{x =4y =−1
所以P 点坐标为(4,-1)
设l 的方程为y +1=k(x −4)即kx −y −4k +1=0
令x =0,得纵截距为y 0=−4k +1
令y =0,得横截距为x 0=
4k−1k 由题知4k−1k =2(−4k +1),得k =−2或14
所以直线方程为:2x+y−9=0或x−4y=0
考查交点坐标、截距的求法,直线的点斜式方程、一般式方程。

(II)圆心坐标为P(4,-1)
=4
半径为r=
22
所以圆的标准方程为:(x−4)2+(y+1)2=16
一般方程为:x2+y2−8x+2y+1=0
考查点到直线的距离公式,圆的标准方程,一般方程。

相关文档
最新文档