高中数学椭圆,知识题型总结
(文理通用)椭圆题型总结(完美全面)

椭圆题型归纳一、知识总结1、椭圆的概念在平面内与两定点21F F 、的 等于常数(大于21F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的 ,两焦点间的距离叫做椭圆的 。
集合}2{21a MF MF M P =+=,c F F 221=,其中0>a ,0>c ,且c a ,为常数。
(1)若c a >,则集合P 为 ;(2)若c a =,则集合P 为 ; (3)若c a <,则集合P 为 。
b ab aa x a ≤≤-b x b ≤≤- (1)确定椭圆的标准方程包括“定位”和“定量”两方面:“定位”是指确定椭圆与坐标系的相对位置,在中心为原点的情况下,确定焦点位于哪条坐标轴上,以判断椭圆方程的标准形式。
“定量”是指确定22,a b 的具体数值,常用待定系数法。
(2)当椭圆的焦点位置不明确时(或无法确定)求其标准方程时,可设方程为221(0,0,),x y m n m n m n+=>>≠且可避免讨论和繁琐的计算。
也可以设为221A>0,B>0,A B Ax By +=≠(),这种形式在解题中较为方便。
(3)求动点的轨迹方程时,应首先充分的挖掘图形的几何性质,看能否确定轨迹的类型,而不要起步就代入坐标,以避免陷入繁琐的化简计算中二、例题剖析题型一、椭圆的定义例1、设定点)30(1-,F ,)30(2,F ,动点满足条件,则点的轨迹是A 、椭圆B 、线段C 、不存在D 、椭圆或线段例2、下列说法中正确的是( )A.已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于8的点的轨迹是椭圆;B. 已知12(4,0),(4,0)F F -,到12,F F 两点的距离之和等于6的点的轨迹是椭圆;C.到12(4,0),(4,0)F F -两点的距离之和等于点(5,3)M 到12,F F 的距离之和的点的轨迹是椭圆;D.到12(4,0),(4,0)F F -的距离相等的点的轨迹的方程。
高中椭圆知识点归纳

高中椭圆知识点归纳椭圆是高中数学中一个重要的曲线类型,在解析几何中占据着重要的地位。
下面我们来对高中椭圆的知识点进行一个全面的归纳。
一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用数学语言表述为:$|PF_1| +|PF_2| = 2a$($2a >|F_1F_2| = 2c$)其中,$P$为椭圆上的动点,$F_1$、$F_2$为焦点,$a$为长半轴长,$c$为半焦距。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$)其中,$a$为长半轴长,$b$为短半轴长,$c =\sqrt{a^2 b^2}$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)同样,$a$为长半轴长,$b$为短半轴长,$c =\sqrt{a^2 b^2}$。
三、椭圆的性质1、范围对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
4、离心率椭圆的离心率$e =\frac{c}{a}$($0 < e < 1$),它反映了椭圆的扁平程度。
$e$越接近$0$,椭圆越接近圆;$e$越接近$1$,椭圆越扁。
5、焦半径焦点在$x$轴上,若点$P(x_0, y_0)$在椭圆上,则$|PF_1| = a +ex_0$,$|PF_2| = a ex_0$;焦点在$y$轴上时,焦半径公式类似。
高中椭圆的知识点总结

高中椭圆的知识点总结椭圆是高中数学中一个重要的曲线图形,在解析几何中占据着重要的地位。
下面我们来对高中椭圆的知识点进行一个全面的总结。
一、椭圆的定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
用数学表达式表示为:$|PF_1| +|PF_2| = 2a$($2a >|F_1F_2| = 2c$)其中,$P$为椭圆上的动点,$a$为椭圆的长半轴长,$c$为椭圆的半焦距。
二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$)其中,$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$。
2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)在标准方程中,要注意$a$、$b$、$c$之间的关系:$c^2 = a^2 b^2$。
三、椭圆的性质1、范围对于焦点在$x$轴上的椭圆:$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆:$b \leq x \leq b$,$a \leq y \leq a$。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点焦点在$x$轴上的椭圆的顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
4、离心率椭圆的离心率$e =\frac{c}{a}$($0 < e < 1$),它反映了椭圆的扁平程度。
$e$越接近于$0$,椭圆越接近于圆;$e$越接近于$1$,椭圆越扁。
5、准线方程焦点在$x$轴上的椭圆的准线方程为$x =\pm \frac{a^2}{c}$;焦点在$y$轴上的椭圆的准线方程为$y =\pm \frac{a^2}{c}$。
高中数学椭圆知识点汇总

高中数学椭圆知识点汇总椭圆的面积公式怎么算点与椭圆点M(x0,y0)椭圆x?/a?+y?/b?=1;点在圆内:x0?/a?+y0?/b?1;点在圆上:x0?/a?+y0?/b?=1;点在圆外:x0?/a?+y0?/b?1;跟圆与直线的位置关系一样的:相交、相离、相切。
直线与椭圆y=kx+m①x?/a+y?/b?=1②由①②可推出x?/a?+(kx+m)?/b?=1相切△=0相离△0无交点相交△0可利用弦长公式:设A(x1,y1)B(x2,y2)求中点坐标根据韦达定理x1+x2=-b/a,x1__x2=c/a带入直线方程可求出y+y/2=可求出中点坐标。
|AB|=d=√(1+k?)[(x1+x2)?-4x1__x2]=√(1+1/k?)[(y1+y2)?-4x1__x2]椭圆面积用定积分怎么算椭圆面积用定积分算为S=abπ。
解题思路:设椭圆x^2/a^2+y^2/b^2=1取第一象限内面积有 y^2=b^2-b^2/a^2__x^2即 y=√(b^2-b^2/a^2__x^2)=b/a__√(a^2-x^2)由于该式反导数为所求面积,观察到原式为圆方程公式__a/b,根据(af(x))=a__f(x),且x=a时圆面积为a^2π/4可得当x=a时,1/4S=b/a__1/4__a^2__π=abπ/4即S=abπ。
高考数学复习策略1、拓实基础,强化通性通法高考对基础知识的考查既全面又突出重点。
抓基础就是要重视对教材的复习,尤其是要重视概念、公式、法则、定理的形成过程,运用时注意条件和结论的限制范围,理解教材中例题的典型作用,对教材中的练习题,不但要会做,还要深刻理解在解决问题时题目所体现的数学思维方法。
2、认真阅读考试说明,减少无用功在平时练习或进行模拟考试时,高中英语,要注意培养考试心境,养成良好的习惯。
首先认真对考试说明进行领会,并要按要求去做,对照说明后的题例,体会说明对知识点是如何考查的,了解说明对每个知识的要求,千万不要对知识的要求进行拔高训练。
高中数学椭圆的基本知识

椭圆的基本知识一、基本知识点知识点一:椭圆的定义:椭圆三定义,简称和比积 1、定义1:(和)到两定点的距离之和为定值的点的轨迹叫做椭圆。
这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距,定值为________。
2、定义2:(比)到定点和定直线的距离之比是定值的点的轨迹叫做椭圆。
定点为焦点,定直线为准线,定值为______。
3、定义3:(积)到两定点连线的斜率之积为定值的点的轨迹是椭圆。
两定点是长轴端点,定值为)01(12<<m e m --=。
知识点二:椭圆的标准方程1、当焦点在x 轴上时,椭圆的标准方程为_______________,其中222b ac -=。
2、当焦点在y 轴上时,椭圆的标准方程为_______________,其中222b ac -=。
知识点三:椭圆的参数方程)0(12222>>b a by a x =+的参数方程为________________。
知识点四:椭圆的一些重要性质(1)对称性:椭圆的标准方程是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心就是椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足b y a x ≤≤,。
(3)顶点:①椭圆的对称轴与椭圆的交点为椭圆的顶点;②椭圆)0(12222>>b a by a x =+与坐标轴的四个顶点分别为___________________________。
③椭圆的长轴和短轴。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为0>>c a ,所以e 的取值范围是10<<e 。
(5)焦半径:椭圆上任一点),(00y x P 到焦点的连线段叫做焦半径。
对于焦点在x 轴上的椭圆,左焦半径01ex a r +=,右焦半径02ex a r -=。
高中数学:椭圆知识点归纳总结及经典例题

y
B2
A1
b a A2
F1 O c F2
x
B1
1. 若椭圆的连个焦点把长 轴分成三等份,则椭圆 的离心率为(
)
1 A.
1 B.
2 C.
D. 无法确定
6
3
3
2. 椭圆
x2 a2
y2 b2
1( a b 0)的左焦点为 F1( c,0), A( a,0)、 B(0,b)是两个顶点,
如果 F1到直线 AB的距离为 b ,则椭圆的离心率 e
解:如图所示,椭圆 x 2 y2 1 的焦点为 F1 3,0 , F2 3,0 . 12 3
点 F1 关于直线 l : x y 9 0 的对称点 F 的坐标为(- 9, 6),直线 FF2 的方程为 x 2y 3 0.
x 2y 3 0 解方程组 x y 9 0 得交点 M 的坐标为(- 5, 4).此时 MF1 MF2 最小. 所求椭圆的长轴: 2a MF1 MF2 FF2 6 5 ,∴ a 3 5 ,又 c 3 ,
例 2 已知椭圆的中心在原点,且经过点 P 3,0 , a 3b ,求椭圆的标准方程.
分析: 因椭圆的中心在原点,故其标准方程有两种情况. 法,
根据题设条件,运用待定系数
求出参数 a 和 b (或 a 2 和 b 2 )的值,即可求得椭圆的标准方程.
解:当焦点在 x 轴上时,设其方程为
x2 a2
y2 b2
∴ b2 a2 c2
2
35
32
36 .因此,所求椭圆的方程为
x2 y2 1. 45 36
例10
2
已知方程 x k5
2
y 3k
1表示椭圆,求 k 的取值范围.
分析:关键是根据题意,列出点 P 满足的关系式.
高中数学椭圆知识点总结

高中数学椭圆知识点总结第一篇:椭圆的定义及基本性质一、椭圆的定义椭圆是指平面内到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
两点F1和F2称为椭圆的焦点,中间的线段称为椭圆的长轴,垂直于长轴的线段称为椭圆的短轴,长轴的一半a称为椭圆的半长轴,短轴的一半b称为椭圆的半短轴。
二、椭圆的基本性质1. 椭圆上的任意一点P到两焦点F1和F2的距离之和等于椭圆的长轴长度2a。
2. 椭圆上的任意一点P到两焦点F1和F2的距离之差等于椭圆的短轴长度2b。
3. 椭圆上与长轴平行的直线称为椭圆的次中心轴,垂直于长轴的直线称为椭圆的主中心轴。
4. 椭圆的离心率e等于焦点距离除以长轴长度,即e=√(a²-b²)/a。
5. 椭圆的面积为πab。
6. 椭圆的周长无解析式,但可以通过积分求解。
7. 椭圆对称性:关于长轴、短轴、次中心轴和主中心轴都有对称轴。
三、椭圆的求解椭圆的标准方程为(x²/a²)+(y²/b²)=1,其中a和b 分别为半长轴和半短轴的长度。
椭圆的一般方程为Ax²+Bxy+Cy²+Dx+Ey+F=0,其中A、B、C、D、E、F为常数。
常用的求解方法有以下几种:1. 椭圆的标准方程变形法。
通过移项、变形等方法将一般方程转化为标准方程。
2. 半坐标轴法。
通过平移和旋转椭圆,使其长轴与坐标轴平行或垂直。
3. 矩阵法。
通过矩阵运算,将一般方程转化为标准方程。
四、椭圆的应用椭圆在生活和工程中有广泛的应用。
例如,在太阳系中行星的运动轨迹、卫星的轨道以及天体的椭球形等都具有椭圆的特征。
此外,在建筑设计中,椭圆形的建筑物也十分常见,如伦敦的温布利球场和巴黎的凯旋门等。
椭圆也广泛应用于牙轮、机械手、调速器等机械制造中。
高中数学必修2椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳考点一 椭圆的定义椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e=ac(0<e<1)的动点M 的轨迹叫做椭圆.这个定点是椭圆的焦点,这条定直线叫做椭圆的准线,这个常数e 是椭圆的离心率.注意:当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F =的点的轨迹是线段12F F ;当平面内与两个定点12,F F 距离的和等于常数 1.22(2)a a F F <的点的轨迹不存在. 例 动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为 ( ) A 、椭圆 B 、线段12,F F C 、直线12,F F D 、不能确定考点二 椭圆的标准方程一 标准方程1焦点在x 轴上 标准方程是:22221x y a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(,0),(,0)c c -2焦点在y 轴上 标准方程是:22221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为(0,),(0,)c c -3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22179x y +=的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>)例 已知椭圆过两点1),(2)A B -,求椭圆标准方程5 与12222=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x二 重难点问题探析: 1.要有用定义的意识例 已知12,F F 为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A 、B 两点若2212F A F B += 则AB =________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陈氏优学教学课题椭圆知识点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:假设,那么动点的轨迹为线段;假设,那么动点的轨迹无图形.讲练结合一.椭圆的定义1.假设ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,那么顶点C 的轨迹方程是 知识点二:椭圆的标准方程1.当焦点在轴上时,椭圆的标准方程:,其中;2.当焦点在轴上时,椭圆的标准方程:,其中;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有和;3.椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,。
讲练结合二.利用标准方程确定参数1.椭圆2214x y m+=的焦距为2,那么m = 。
2.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
知识点三:椭圆的简单几何性质椭圆的的简单几何性质〔1〕对称性对于椭圆标准方程,把x换成―x,或把y换成―y,或把x、y同时换成―x、―y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
〔2〕范围椭圆上所有的点都位于直线x=±a和y=±b所围成的矩形内,所以椭圆上点的坐标满足|x|≤a,|y|≤b。
〔3〕顶点①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆〔a>b>0〕与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1〔―a,0〕,A 2〔a,0〕,B1〔0,―b〕,B2〔0,b〕。
③线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。
a和b分别叫做椭圆的长半轴长和短半轴长。
〔4〕离心率①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。
②因为a>c>0,所以e的取值范围是0<e<1。
e越接近1,那么c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。
当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。
椭圆的图像中线段的几何特征〔如下列图〕:〔1〕,,;〔2〕,,;〔3〕,,;知识点四:椭圆与〔a>b>0〕的区别和联系标准方程图形性质焦点,,焦距范围,,对称性关于x轴、y轴和原点对称顶点,,轴长轴长=,短轴长=离心率准线方程焦半径,,注意:椭圆,〔a >b >0〕的相同点为形状、大小都相同,参数间的关系都有a >b >0和,a 2=b 2+c 2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。
题型一 椭圆焦点三角形面积公式的应用定理 在椭圆12222=+by a x 〔a >b >0〕中,焦点分别为1F 、2F ,点P 是椭圆上任意一点,θ=∠21PF F ,那么2tan221θb S PF F =∆.证明:记2211||,||r PF r PF ==,由椭圆的第一定义得.4)(,2222121a r r a r r =+∴=+在△21PF F 中,由余弦定理得:.)2(cos 22212221c r r r r =-+θ配方得:.4cos 22)(22121221c r r r r r r =--+θ 即.4)cos 1(242212c r r a =+-θ.cos 12cos 1)(222221θθ+=+-=∴b c a r r由任意三角形的面积公式得:2tan 2cos 22cos2sin2cos 1sin sin 2122222121θθθθθθθ⋅=⋅=+⋅==∆b b b r r S PF F ..2tan 221θb S PF F =∴∆典题妙解例1 假设P 是椭圆16410022=+y x 上的一点,1F 、2F 是其焦点,且︒=∠6021PF F ,求 Py F 1 O F 2 xP法二 设直线与椭圆的交点为,、,,,为的中点,A x y B x y M AB ()()()112221∴,,又、两点在椭圆上,则,x x y y A B x y x y 121212122222424164+=+=+=+ =-+-=164012221222,两式相减得()()x x y y∴y y x x x x y y 12121212412--=-++=-()即,故所求直线为k x y AB =-+-=12240 点差法1.过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.命题意图:此题利用对称问题来考查用待定系数法求曲线方程的方法,设计新颖,根底性强,属★★★★★级题目.知识依托:待定系数法求曲线方程,如何处理直线与圆锥曲线问题,对称问题. 错解分析:不能恰当地利用离心率设出方程是学生容易犯的错误.恰当地利用好对称问题是解决好此题的关键.技巧与方法:此题是典型的求圆锥曲线方程的问题,解法一,将A 、B 两点坐标代入圆锥曲线方程,两式相减得关于直线AB 斜率的等式.解法二,用韦达定理.解法一:由e =22=a c ,得21222=-ab a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,A (x 1,y 1),B (x 2,y 2)在椭圆上. 那么x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,(x 12-x 22)+2(y 12-弦长公式:假设直线y kx b =+与圆锥曲线相交于两点A 、B ,且12,x x 分别为A 、B 的横坐标,那么AB=2121k x x +-,〔假设12,y y 分别为A 、B 的纵坐标,那么AB=21211y y k -+〕,假设弦AB 所在直线方程设为x ky b =+,那么AB =2121k y y +-。
2、焦点弦〔过焦点的弦〕:焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
1. 第二定义:平面内与一个定点的距离和它到一条定直线的距离之比是常数e cae M =<<()01的动点的轨迹叫做椭圆,定点为椭圆的一个焦点,定直线为 椭圆的准线,常数e 是椭圆的离心率。
注意:①对对应于右焦点,的准线称为右准线,x a y b a b F c 22222100+=>>()()方程是,对应于左焦点,的准线为左准线x a c F c x a c=-=-2120()②e 的几何意义:椭圆上一点到焦点的距离与到相应准线的距离的比。
2. 焦半径及焦半径公式:椭圆上一个点到焦点的距离叫做椭圆上这个点的焦半径。
对于椭圆,设,为椭圆上一点,由第二定义:x a y ba b P x y 222102+=>>()()左焦半径∴·左左r x a cca r ex c a a ca ex 02020+==+=+右焦半径右右r a cx car a ex 200-=⇒=-题型四 参数方程3. 椭圆参数方程问题:如图以原点为圆心,分别以a 、b 〔a>b>0〕为半径作两个圆,点B 是大圆半径OA 与小圆的交点,过点A 作AN ⊥Ox ,垂足为N ,过点B 作BN ⊥AN ,垂足为M ,求当半径OA 绕O 旋转时点M 的轨迹的参数方程。
解:设点的坐标是,,是以为始边,为终边的正角,取为M x y ()ϕϕOx OA 参数。
那么∴x ON OA y NM OB x a y b ======⎧⎨⎩||cos ||sin cos sin ()ϕϕϕϕ1这就是椭圆参数方程:为参数时,称为“离心角”ϕϕ 说明:<1> 对上述方程〔1〕消参即xay bx a y b ==⎧⎨⎪⎪⎩⎪⎪⇒+=cos sin ϕϕ22221普通方程 <2>由以上消参过程可知将椭圆的普通方程进行三角变形即得参数方程。
直线与椭圆位置关系:x a y by kx b 22221+==+②求椭圆上动点P 〔x ,y 〕到直线距离的最大值和最小值,〔法一,参数方程法;法二,数形结合,求平行线间距离,作l '∥l 且l '与椭圆相切〕例4. 已知椭圆,在椭圆上求一点,使到直线:x y P P l x y 228840+=-+= 的距离最小并求出距离的最小值〔或最大值〕?解:法一 设,由参数方程得P (cos sin )()22θθ则d =-+=--|cos sin ||sin()|2242342θθθϕ 其中,当时,tan min ϕθϕπ=-===2221222d 此时,cos sin sin cos θϕθϕ=-=-==22313即点坐标为,P P ()-8313法二 因与椭圆相离,故把直线平移至,使与椭圆相切,则与的距离,l l l l l l '''即为所求的最小值,切点为所求点最大('')l →设:,则由消得l x y m x y m x y x '-+=-+=+=⎧⎨⎩0088229280449802222y my m m m -+-==--=,令×∆() 解之得±,为最大,由图得m m =-=-333()此时,,由平行线间距离得P l ()min -=8313222222000210310123x y a b e A B a b AB x P AB C x y x F AF BF +=>>=+=椭圆()的离心率,、是椭圆上关于坐标不对称的两点,线段的中垂线与轴交于点(,)。
()设中点为(,),求的值。
()若是椭圆的右焦点,且,求椭圆的方程。
_____2、椭圆2212516x y +=两焦点为F 1、F 2,A(3,1)点P 在椭圆上,那么|PF 1|+|PA|的最大值为_____,最小值为 ___3、椭圆2214x y +=,A(1,0),P 为椭圆上任意一点,求|PA|的最大值 最小值 。
4.设F 是椭圆322x +242y =1的右焦点,定点A(2,3)在椭圆内,在椭圆上求一点P 使|PA|+2|PF|最小,求P 点坐标 最小值 .知识点四:椭圆与〔a >b >0〕的区别和联系标准方程图形性质焦点 ,,焦距范围,,对称性 关于x 轴、y 轴和原点对称顶点 ,,轴长轴长=,短轴长=离心率准线方程焦半径,,注意:椭圆,〔a>b>0〕的相同点为形状、大小都相同,参数间的关系都有a>b>0和,a2=b2+c2;不同点为两种椭圆的位置不同,它们的焦点坐标也不相同。