1.2.1常数函数与幂函数的导数
初等函数导数公式表

初等函数导数公式表
下面是常见的初等函数导数公式表:
1.常数函数的导数为0:$(k)'=0$,其中$k$为常数。
2.幂函数的导数为幂次减1乘以原函数的导数:$(x^n)'=nx^{n-1}$,其中$n$为正整数。
3.指数函数的导数为其自身乘以常数$a$的导数:$(a^x)'=a^x\lna$,其中$a$为正实数且不等于$1$。
4.对数函数的导数为其自身的导数除以自身:$(\log_ax)'=\frac{1}{x\lna}$,其中$a$为正实数且不等于$1$。
5.正弦函数的导数为余弦函数:$(\sinx)'=\cosx$。
6.余弦函数的导数为负的正弦函数:$(\cosx)'=-\sinx$。
7.正切函数的导数为其自身的导数为:$(\tanx)'=\sec^2x$。
8.余切函数的导数为其自身的导数为:$(\cotx)'=-\csc^2x$。
9.反正弦函数的导数为:$(\arcsinx)'=\frac{1}{\sqrt{1-x^2}}$。
10.反余弦函数的导数为:$(\arccosx)'=-\frac{1}{\sqrt{1-x^2}}$。
11.反正切函数的导数为:$(\arctanx)'=\frac{1}{1+x^2}$。
12.反余切函数的导数为:$(\operatorname{arccot}x)'=-\frac{1}{1+x^2}$。
以上是一些常见的初等函数导数公式。
需要注意的是,在使用这些公式时,应该注意导数的定义域和值域,并注意使用链式法则和乘积法则等常见的求导法则。
1/ 1。
14个求导公式

14个求导公式导数是微积分中的重要概念,它描述了函数在某一点的变化率。
在求导过程中,我们遵循一些公式和规则,以便更方便地计算导数。
本文将介绍14个常见的求导公式,并解释其应用。
1. 常数函数的导数公式对于常数函数f(x) = c,其中c是一个实数常数,其导数为f'(x) = 0。
这是因为常数函数在任何点上的变化率都为0。
2. 幂函数的导数公式对于幂函数f(x) = x^n,其中n是一个实数常数,其导数为f'(x) = nx^(n-1)。
这个公式可以用来求解各种幂函数的导数。
3. 指数函数的导数公式对于指数函数f(x) = a^x,其中a是一个正实数且不等于1,其导数为f'(x) = a^x * ln(a)。
这个公式可以用来求解各种指数函数的导数。
4. 对数函数的导数公式对于对数函数f(x) = log_a(x),其中a是一个正实数且不等于1,其导数为f'(x) = 1 / (x * ln(a))。
这个公式可以用来求解各种对数函数的导数。
5. 三角函数的导数公式对于正弦函数f(x) = sin(x),其导数为f'(x) = cos(x)。
对于余弦函数f(x) = cos(x),其导数为f'(x) = -sin(x)。
对于正切函数f(x) = tan(x),其导数为f'(x) = sec^2(x)。
6. 反三角函数的导数公式对于反正弦函数f(x) = arcsin(x),其导数为f'(x) = 1 / sqrt(1 - x^2)。
对于反余弦函数f(x) = arccos(x),其导数为f'(x) = -1 / sqrt(1 - x^2)。
对于反正切函数f(x) = arctan(x),其导数为f'(x) = 1 / (1 + x^2)。
7. 双曲函数的导数公式对于双曲正弦函数f(x) = sinh(x),其导数为f'(x) = cosh(x)。
基本初等函数的导数公式及导数

基本初等函数的导数公式及导数导数是微积分的重要概念之一,它描述了函数变化的速率。
在基本初等函数中,我们可以通过一些公式来求得其导数。
下面将介绍基本初等函数的导数公式及导数。
1.常数函数的导数公式及导数:对于常数函数f(x)=c,其中c为常数,它的导数为f'(x)=0。
即常数函数的导数始终为0。
2.幂函数的导数公式及导数:对于幂函数 f(x) = x^n,其中 n 为实数,它的导数为 f'(x) =nx^(n-1)。
即幂函数的导数是幂次减1乘以系数。
特别地,对于任意实数a,常数函数f(x)=a的导数为f'(x)=0。
3.指数函数的导数公式及导数:对于指数函数 f(x) = a^x,其中 a 为正实数且a ≠ 1,它的导数为 f'(x) = a^x * ln(a)。
即指数函数的导数与函数本身成比例,比例常数为 ln(a)。
4.对数函数的导数公式及导数:对于对数函数 f(x) = ln(x),其中 x > 0,它的导数为 f'(x) =1/x。
即对数函数的导数恒为 1/x。
5.三角函数的导数公式及导数:(1) 正弦函数的导数公式及导数:f(x) = sin(x) 的导数为 f'(x) = cos(x)。
(2) 余弦函数的导数公式及导数:f(x) = cos(x) 的导数为 f'(x) = -sin(x)。
(3) 正切函数的导数公式及导数:f(x) = tan(x) 的导数为 f'(x) = sec^2(x)。
(4) 余切函数的导数公式及导数:f(x) = cot(x) 的导数为 f'(x) = -csc^2(x)。
6.反三角函数的导数公式及导数:(1) 反正弦函数的导数公式及导数:f(x) = arcsin(x) 的导数为f'(x) = 1/√(1-x^2)。
(2) 反余弦函数的导数公式及导数:f(x) = arccos(x) 的导数为f'(x) = -1/√(1-x^2)。
八年级数学导数公式

数学中的导数是一个非常重要的概念,也是微积分的基础。
在八年级的数学学习中,我们可以开始学习一些基本的导数公式。
接下来,我将为你详细介绍一些八年级数学导数公式。
1.导数定义:导数是一个函数关于自变量的变化率。
数学上用符号 f'(x) 或dy/dx 来表示。
2.常数函数的导数:对于常数函数f(x)=C,其中C是一个常数,它的导数等于0,即f'(x)=0。
3.幂函数的导数:对于幂函数f(x)=x^n,其中n是一个正整数,它的导数等于n*x^(n-1),即f'(x)=n*x^(n-1)。
4.指数函数的导数:对于指数函数 f(x) = a^x,其中 a 是一个正实数且不等于1,它的导数等于 a^x * ln(a),即 f'(x) = a^x * ln(a)。
5.对数函数的导数:对于对数函数 f(x) = log_a(x),其中 a 是一个正实数且不等于1,它的导数等于 1 / (x * ln(a)),即 f'(x) = 1 / (x * ln(a))。
6.三角函数的导数:对于正弦函数 f(x) = sin(x),它的导数等于 cos(x),即 f'(x) = cos(x)。
对于余弦函数 f(x) = cos(x),它的导数等于 -sin(x),即 f'(x) = -sin(x)。
对于正切函数 f(x) = tan(x),它的导数等于 sec^2(x),即 f'(x)= sec^2(x)。
7.求导法则:(1)加法法则:如果f(x)和g(x)是两个函数,它们的导数分别为f'(x)和g'(x),那么(f+g)'(x)=f'(x)+g'(x)。
(2)减法法则:如果f(x)和g(x)是两个函数,它们的导数分别为f'(x)和g'(x),那么(f-g)'(x)=f'(x)-g'(x)。
导数的基本公式14个推导

导数的基本公式14个推导1.常数函数的导数公式假设函数f(x)是常数C,那么f(x)的导数f'(x)等于0。
2.幂函数的导数公式假设函数f(x) = x^n,其中n是正整数,那么f(x)的导数f'(x)等于nx^(n-1)。
3.指数函数的导数公式假设函数f(x) = a^x,其中a是常数且大于0且不等于1,那么f(x)的导数f'(x)等于a^xln(a)。
4.对数函数的导数公式假设函数f(x) = log_a(x),其中a是常数且大于0且不等于1,那么f(x)的导数f'(x)等于1/(xln(a))。
5.正弦函数的导数公式函数f(x) = sin(x)的导数f'(x)等于cos(x)。
6.余弦函数的导数公式函数f(x) = cos(x)的导数f'(x)等于-sin(x)。
7.正切函数的导数公式函数f(x) = tan(x)的导数f'(x)等于sec^2(x)。
8.反正弦函数的导数公式函数f(x) = arcsin(x)的导数f'(x)等于1/√(1-x^2)。
9.反余弦函数的导数公式函数f(x) = arccos(x)的导数f'(x)等于-1/√(1-x^2)。
10.反正切函数的导数公式函数f(x) = arctan(x)的导数f'(x)等于1/(1+x^2)。
11.双曲正弦函数的导数公式函数f(x) = sinh(x)的导数f'(x)等于cosh(x)。
12.双曲余弦函数的导数公式函数f(x) = cosh(x)的导数f'(x)等于sinh(x)。
13.双曲正切函数的导数公式函数f(x) = tanh(x)的导数f'(x)等于sech^2(x)。
14.反双曲正弦函数的导数公式函数f(x) = arcsinh(x)的导数f'(x)等于1/√(x^2+1)。
以上是导数的基本公式的14个推导,可以用来求各种函数的导数。
高中数学新人教B版选修1-1第三章导数及其应用3.2.1常数与幂函数的导数3.2.2导数公式表课件

3.2.1 常数与幂函数的导数 3.2.2 导数公式表
学习目标
XUEXIMUBIAO
1.能根据定义求函数y=C,y=x,y=x2,y=1x 的导数. 2.能利用给出的基本初等函数的导数公式求简单函数的导数.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测
解
y′=(5
3
x3)′= (x5 )
3
3 1
x5
3
2
x5
=Hale Waihona Puke 3.55
55 x2
(4)y=2sin 2xcos 2x;
解
∵y=2sin
x 2cos
2x=sin x,∴y′=cos x.
(5)y=log1 x;
2
解 y′=(log1 x )′= 1 1=-xln1 2.
2
xln 2
(6)y=3x.
解 y′=(3x)′=3xln 3.
f′(x)=__xl_n_a__ 1
f′(x)=__x_
2 题型探究
PART TWO
题型一 利用导数公式求函数的导数
例1 求下列函数的导数.
(1)y=x12;
解 y′=(x12)′=12x12-1=12x11.
(2)y=x14; 解 y′=(x-4)′=-4x-4-1=-4x-5=-x45. (3)y=5 x3;
导函数 f′(x)=__0_ f′(x)= nxn-1 (n为自然数) f′(x)=_c_o_s__x_ f′(x)=-__s_i_n_x__
f(x)=ax(a>0,a≠1)
f′(x)=_a_x_ln__a_
f(x)=ex f(x)=logax (a>0,a≠1,x>0)
基础函数求导公式大全
基础函数求导公式大全1. 常数函数的导数公式:对于常数c,它的导数为0。
即d/dx (c) = 0。
2. 幂函数的导数公式:对于幂函数y = x^n,其中n是实数,它的导数为dy/dx = nx^(n-1)。
3. 指数函数的导数公式:对于指数函数y = a^x,其中a是正实数且不等于1,它的导数为dy/dx = (ln a) * a^x。
4. 对数函数的导数公式:对于对数函数y = log_a x,其中a是正实数且不等于1,它的导数为dy/dx = 1 / (x * ln a)。
5.三角函数的导数公式:- 正弦函数的导数公式:dy/dx = cos(x)。
- 余弦函数的导数公式:dy/dx = -sin(x)。
- 正切函数的导数公式:dy/dx = sec^2(x)。
- 余切函数的导数公式:dy/dx = -csc^2(x)。
- 反正弦函数的导数公式:dy/dx = 1 / sqrt(1 - x^2)。
- 反余弦函数的导数公式:dy/dx = -1 / sqrt(1 - x^2)。
- 反正切函数的导数公式:dy/dx = 1 / (1 + x^2)。
- 反余切函数的导数公式:dy/dx = -1 / (1 + x^2)。
6.双曲函数的导数公式:- 双曲正弦函数的导数公式:dy/dx = cosh(x)。
- 双曲余弦函数的导数公式:dy/dx = sinh(x)。
- 双曲正切函数的导数公式:dy/dx = sech^2(x)。
- 双曲余切函数的导数公式:dy/dx = -csch^2(x)。
- 反双曲正弦函数的导数公式:dy/dx = 1 / sqrt(x^2 + 1)。
- 反双曲余弦函数的导数公式:dy/dx = 1 / sqrt(x^2 - 1)。
- 反双曲正切函数的导数公式:dy/dx = 1 / (1 - x^2)。
- 反双曲余切函数的导数公式:dy/dx = 1 / (1 - x^2)。
导数微分积分公式大全
导数微分积分公式大全导数微分公式:1.常数函数的导数:f(x)=C,则f'(x)=0。
2. 幂函数的导数:f(x) = x^n,则f'(x) = nx^(n-1)。
3. 指数函数的导数:f(x) = a^x,则f'(x) = a^x * ln(a)。
4. 对数函数的导数:f(x) = ln(x),则f'(x) = 1/x。
5.三角函数的导数:- 正弦函数的导数:f(x) = sin(x),则f'(x) = cos(x)。
- 余弦函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。
- 正切函数的导数:f(x) = tan(x),则f'(x) = sec^2(x)。
6.反三角函数的导数:- 反正弦函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
- 反余弦函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
- 反正切函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
7.当两个函数相加时,其导数为两个函数的导数之和。
8.当两个函数相乘时,其导数为一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以一个函数。
9.当一个函数的导数与一个常数相乘时,其导数等于常数乘以函数的导数。
10.当一个函数的导数与一个指数函数的底数e相乘时,其导数等于函数的导数。
积分公式:1. 幂函数的积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中C为常数。
2.三角函数的积分:- 正弦函数的积分:∫sin(x) dx = -cos(x) + C。
- 余弦函数的积分:∫cos(x) dx = sin(x) + C。
- 正切函数的积分:∫tan(x) dx = -ln,cos(x), + C。
3.反三角函数的积分:- 反正弦函数的积分:∫arcsin(x) dx = x * arcsin(x) + √(1-x^2) + C。
常用微积分式导数公式
常用微积分式导数公式微积分是数学中重要的分支,它涉及到诸多的概念和公式。
其中导数是微积分的基本概念之一,它描述了函数的变化率。
在实际应用中,导数常常用于求解最优化问题、解微分方程、描述曲线的性质等等。
下面将介绍一些常用的微积分导数公式。
一、基本函数的导数公式:1.常数函数导数公式:如果c是一个常数,那么对于常数函数f(x)=c,它的导数为f'(x)=0。
2. 幂函数导数公式:对于幂函数f(x) = x^n,其中n是任意实数,它的导数为f'(x) = nx^(n-1)。
3. 指数函数导数公式:对于指数函数f(x) = a^x,其中a是一个正实数且a≠1,它的导数为f'(x) = a^x * ln(a)。
4. 对数函数导数公式:对于自然对数函数f(x) = ln(x),其中x>0,它的导数为f'(x) = 1/x。
5.三角函数导数公式:- 正弦函数的导数公式:f'(x) = cos(x)- 余弦函数的导数公式:f'(x) = -sin(x)- 正切函数的导数公式:f'(x) = sec^2(x)- 余切函数的导数公式:f'(x) = -csc^2(x)-反正弦函数的导数公式:f'(x)=1/√(1-x^2)-反余弦函数的导数公式:f'(x)=-1/√(1-x^2)-反正切函数的导数公式:f'(x)=1/(1+x^2)-反余切函数的导数公式:f'(x)=-1/(1+x^2)二、基本运算法则:1. 变量替换法则:如果y=f(u),且u=g(x)是可导函数,那么由链式法则可得dy/dx = (dy/du)*(du/dx)。
2.和、差、积法则:-和差法则:[f(x)±g(x)]'=f'(x)±g'(x)-积法则:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)3.乘幂法则:[f(x)^n]'=n*f'(x)*f(x)^(n-1)。
16个基本导数公式详解
16个基本导数公式详解在微积分中,导数是指函数在其中一点的切线斜率或变化率。
它在计算斜率、切线和极值时起着重要作用。
以下是16个基本导数公式的详解。
1. 常数函数导数:对于常数函数y=c,导数为dy/dx = 0。
这是因为常数函数在任何点的斜率都是零。
2. 幂函数导数:对于幂函数y=x^n(这里n是常数),其导数为dy/dx = nx^(n-1)。
这个公式可以通过使用极限定义导数来证明。
例如,对于y=x^2,导数为dy/dx = 2x。
3. 指数函数导数:对于指数函数y=a^x(这里a是常数且a>0),其导数为dy/dx = a^x * ln(a)。
这个公式可以通过使用极限定义导数和对数函数的导数来证明。
4. 对数函数导数:对于自然对数函数y=ln(x),其导数为dy/dx =1/x。
对数函数的导数是指数函数导数的倒数。
这个公式也可以通过使用极限定义导数来证明。
5. 正弦函数导数:对于正弦函数y=sin(x),其导数为dy/dx =cos(x)。
这个公式可以通过使用极限定义导数和三角函数的定义来证明。
6. 余弦函数导数:对于余弦函数y=cos(x),其导数为dy/dx = -sin(x)。
这个公式可以通过使用极限定义导数和三角函数的定义来证明。
7. 正切函数导数:对于正切函数y=tan(x),其导数为dy/dx =sec^2(x)。
这个公式可以通过使用sin(x)和cos(x)的导数公式来证明。
8. 反正弦函数导数:对于反正弦函数y=arcsin(x),其导数为dy/dx = 1/√(1 - x^2)。
这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。
9. 反余弦函数导数:对于反余弦函数y=arccos(x),其导数为dy/dx = -1/√(1 - x^2)。
这个公式可以通过使用反三角函数的定义和导数的链式法则来证明。
10. 反正切函数导数:对于反正切函数y=arctan(x),其导数为dy/dx = 1/(1 + x^2)。