湖南师大附中2019届高三上学期月考试卷(三)教师版数学(文)Word版含解析

合集下载

湖南省长沙市湖南师范大学附属中学2025届高三上学期月考试卷(三)语文试题(含答案)

湖南省长沙市湖南师范大学附属中学2025届高三上学期月考试卷(三)语文试题(含答案)

湖南省长沙市湖南师大附中2025届高三月考试卷(三)语文试题本试卷共四道大题,23道小题,满分150分。

时量150分钟。

得分:_一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。

对于大部分人来说,隐喻不是寻常的语言,而是诗意的想象和修辞多样性的一种策略,非同寻常。

而且,隐喻通常被看成语言文字的特征,而非思想和行为的特点。

由于这个原因,大多数人认为没有隐喻的存在,他们依然可以自如地生活,而我们发现事实恰恰相反。

不论是在语言上还是在思想和行动中,日常生活中隐喻无所不在,我们思想和行为所依据的概念系统本身是以隐喻为基础。

这些支配着我们思想的概念不仅关乎我们的思维能力,它们也同时管辖我们日常的运作,乃至一些细枝末叶的平凡细节。

这些概念建构了我们的感知,构成了我们如何在这个世界生存以及我们与其他人的关系。

因此,我们的这个概念系统在界定日常现实中扮演着举足轻重的角色。

我们的概念系统大部分是隐喻——如果我们说的没错的话,那么我们的思维方式,我们每天所经历所做的一切就充满了隐喻。

但是我们的概念系统不是我们平时能够意识到的。

我们每天所做的大部分琐事都只是按照某些方式或多或少地在自动思维和行动。

这些方式是什么却并非显而易见。

要搞清这些,一个方法就是研究语言。

既然交流是基于我们用以思考和行动的同一个概念系统,那么语言就是探明这个系统是什么样子的重要证据来源。

基于语言学证据(linguistic evidence),我们已经发现我们普通的概念系统,究其实质,大都是隐喻的,并且找到了一种方式来仔细鉴定那些建构我们如何感知、如何思考、如何行动的隐喻究竟是什么。

为了说明什么样的概念是隐喻,这样的概念又如何建构我们的日常活动,让我们从“争论”(ARGUMENT)以及“争论是战争”这个概念隐喻开始阐述吧。

日常生活中总是能见到这类表达:争论是战争你的观点无法防御。

他攻击我观点中的每一个弱点。

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案

大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

(优辅资源)湖南师大附中高三月考试卷(六)(教师版)数学(理)Word版含解析

湖南师大附中2018届高三月考试卷(六)数 学(理科)命题人:吴锦坤 张汝波 审题人:黄祖军本试题卷包括选择题、填空题和解答题三部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题的四个选项中,只有一项是符合题目要求的.(1)已知集合A ={x |x 2+x -2≤0,x ∈Z },B ={a ,1},A ∩B =B ,则实数a 等于(D) (A)-2 (B)-1 (C)-1或0 (D)-2或-1或0(2)设p :ln(2x -1)≤0,q :(x -a )[x -(a +1)]≤0,若q 是p 的必要而不充分条件,则实数a 的取值范围是(A)(A)⎣⎡⎦⎤0,12 (B)⎝⎛⎭⎫0,12 (C)(-∞,0]∪⎣⎡⎭⎫12,+∞ (D)(-∞,0)∪⎝⎛⎭⎫12,+∞ 【解析】由p 得: 12<x ≤1 ,由q 得:a ≤x ≤a +1,又q 是p 的必要而不充分条件,所以a ≤12且a +1≥1,∴0≤a ≤12. (3)某学校的两个班共有100名学生,一次考试后数学成绩ξ(ξ∈N )服从正态分布N (100,102),已知P (90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为(A)(A)20 (B)10 (C)14 (D)21【解析】由题意知,P (ξ>110)=1-2P (90≤ξ≤100)2=0.2,∴该班学生数学成绩在110分以上的人数为0.2×100=20.(4)某几何体的三视图如图所示,则其体积为(C) (A)83 (B)2 (C)43 (D)23【解析】该几何体是:在棱长为2的正方体中,连接相邻面的中心,以这些线段为棱的一个正八面体.可将它分割为两个四棱锥,棱锥的底面为正方形且边长为2,高为正方体边长的一半,∴V =2×13(2)2×1=43.(5)我国古代数学著作《九章算术》有如下问题:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问,米几何?”如图是解决该问题的程序框图,执行该程序框图,若输出的S =2.5 (单位:升),则输入k 的值为(D)(A)4.5 (B)6 (C)7.5 (D)10【解析】模拟程序的运行,可得n =1,S =k , 满足条件n <4,执行循环体,n =2,S =k -k 2=k2,满足条件n <4,执行循环体, n =3,S =k 2-k 23=k3,满足条件n <4,执行循环体, n =4,S =k 3-k 34=k4,此时,不满足条件n <4,退出循环,输出S 的值为k4,根据题意可得:k4=2.5,计算得出:k =10.所以D 选项是正确的.(6)将函数f ()x =cosωx 2⎝⎛⎭⎫2sin ωx 2-23cos ωx 2+3,()ω>0的图像向左平移π3ω个单位,得到函数y =g ()x 的图像,若y =g ()x 在⎣⎡⎦⎤0,π4上为增函数,则ω的最大值为(B)(A)1 (B)2 (C)3 (D)4【解析】由题意,f ()x =2sin ⎝⎛⎭⎫ωx -π3()ω>0,先利用图像变换求出g ()x 的解析式:g ()x =f ⎝ ⎛⎭⎪⎫x +π3ω=2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π3ω-π3,即g ()x =2sin ωx ,其图像可视为y =sin x 仅仅通过放缩而得到的图像.若ω最大,则要求周期T 取最小,由⎣⎡⎦⎤0,π4为增函数可得:x =π4应恰好为g ()x 的第一个正的最大值点,∴π4ω=π2ω=2.(7)已知x ,y 满足约束条件⎩⎨⎧x -2y -2≤0,2x -y +2≥0,x +y -2≤0,若ax +y 取得最大值的最优解不唯一,则实数a 的值为(C)(A)12或-1 (B)2或12(C)-2或1 (D)2或-1【解析】由题中约束条件作可行域如右图所示:令z =ax +y ,化为y =-ax +z ,即直线y =-ax +z 的纵截距取得最大值时的最优解不唯一.当-a >2时,直线y =-ax +z 经过点A (-2,-2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =2时,直线y =-ax +z 与y =2x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-1<-a <2时,直线y =-ax +z 经过点B (0,2)时纵截距最大,此时最优解仅有一个,故不符合题意;当-a =-1时,直线y =-ax +z 与y =-x +2重合时纵截距最大,此时最优解不唯一,故符合题意;当-a <-1时,直线y =-ax +z 经过点C (2,0)时纵截距最大,此时最优解仅有一个,故不符合题意.综上,当a =-2或a =1时最优解不唯一,符合题意.故本题正确答案为C.(8)若直线ax +by -2=0(a >0,b >0)始终平分圆x 2+y 2-2x -2y =2的周长,则12a +1b 的最小值为(D)(A)3-224 (B)3-222(C)3+222 (D)3+224【解析】直线平分圆周,则直线过圆心f (1,1),所以有a +b =2,12a +1b =12(a +b )⎝⎛⎭⎫12a +1b=12⎝⎛⎭⎫32+b 2a +a b ≥12⎝⎛⎭⎫32+2b 2a ·a b =3+224(当且仅当b =2a 时取“=”),故选D. (9)把7个字符a ,a ,a ,b ,b ,α,β排成一排,要求三个“a ”两两不相邻,且两个“b ”也不相邻,则这样的排法共有(B)(A)144种 (B)96种 (C)30种 (D)12种【解析】先排列b ,b ,α,β,若α,β不相邻,有A 22C 23种,若α,β相邻,有A 33种,共有6+6=12种,从所形成的5个空中选3个插入a ,a ,a ,共有12C 35=120种,若b ,b 相邻时,从所形成的4个空中选3个插入a ,a ,a ,共有6C 34=24,故三个“a ”两两不相邻,且两个“b ”也不相邻,这样的排法共有120-24=96种.(10)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足F A →·FB →=0,|FB |≤|F A |≤2|FB |,则椭圆C 的离心率的取值范围是(A)(A)⎣⎡⎦⎤22,53 (B)⎣⎡⎭⎫53,1 (C)⎣⎡⎦⎤22,3-1 (D)[3-1,1) 【解析】作出椭圆左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又F A →·FB →=0,即F A ⊥FB ,故平行四边形AFBF ′为矩形,所以|AB |=|FF ′|=2c .设AF ′=n ,AF =m ,则在直角三角形ABF 中m +n =2a ,m 2+n 2=4c 2 ①,得mn =2b 2 ②,①÷②得m n +n m =2c 2b 2,令m n =t ,得t +1t =2c 2b2.又由|FB |≤|F A |≤2|FB |得m n =t ∈[1,2],∴t +1t =2c 2b2∈⎣⎡⎦⎤2,52,故离心率的取值范围是⎣⎡⎦⎤22,53.(11)在△ABC 中,AB =2m ,AC =2n ,BC =210,AB +AC =8,E ,F ,G 分别为AB ,BC ,AC 三边中点,将△BEF ,△AEG ,△GCF 分别沿EF 、EG 、GF 向上折起,使A 、B 、C 重合,记为S ,则三棱锥S -EFG 的外接球面积最小为(D)(A)292π (B)233π (C)14π (D)9π【解析】根据题意,三棱锥S -EFG 的对棱分别相等,将三棱锥S -EFG 补充成长方体, 则对角线长分别为m ,n ,10, 设长方体的长宽高分别为x ,y ,z,则x 2+y 2=m ,y 2+z 2=10,x 2+z 2=n ,∴x 2+y 2+z 2=5+m +n2,∴三棱锥S -EFG 的外接球直径的平方为5+m +n2,而m +n =4,m +n 2≥⎝ ⎛⎭⎪⎫m +n 22=4,∴5+m +n2≥9, ∴三棱锥S -EFG 的外接球面积最小为4π·94=9π,所以D 选项是正确的.(12)已知函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0,若x 1<x 2且f (x 1)=f (x 2),则x 2-x 1的取值范围是(B)(A)⎝⎛⎦⎤23,ln 2 (B)⎝⎛⎦⎤23,ln 32+13 (C)⎣⎡⎦⎤ln 2,ln 32+13 (D)⎝⎛⎭⎫ln 2,ln 32+13【解答】作出函数f (x )=⎩⎪⎨⎪⎧-32x +1,x ≥0,e -x -1,x <0的图像如右,由x 1<x 2,且f (x 1)=f (x 2),可得0≤x 2<23,-32x 2+1=e -x 1-1,即为-x 1=ln ⎝⎛⎭⎫-32x 2+2, 可得x 2-x 1=x 2+ln ⎝⎛⎭⎫-32x 2+2,令g (x 2)=x 2+ln ⎝⎛⎭⎫-32x 2+2,0≤x 2<23, g ′(x 2)=1+-32-32x 2+2=3x 2-13x 2-4.当0≤x 2<13时,g ′(x 2)>0,g (x 2)递增;当13<x 2<23时,g ′(x 2)<0,g (x 2)递减.则g (x 2)在x 2=13处取得极大值,也为最大值ln 32+13,g (0)=ln 2,g ⎝⎛⎭⎫23=23,由23<ln 2,可得x 2-x 1的范围是⎝⎛⎦⎤23,ln 32+13.故选B. 第Ⅱ卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(23)题为选考题,考生根据要求作答.二、填空题,本大题共4小题,每小题5分,共20分. (13)将八进制数705(8)化为三进制的数是__121210(3)__.【解析】705(8)=7×82+0×8+5×80=453, 根据除k 取余法可得453=121210(3).(14)计算:2cos 10°-23cos (-100°)1-sin 10°=.(15)已知P 是双曲线x 216-y 28=1右支上一点,F 1,F 2分别是双曲线的左、右焦点,O 为坐标原点,点M ,N 满足F 1P →=λPM →()λ>0,PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|,PN →·F 2N →=0.若|PF 2→|=3,则以O 为圆心,ON 为半径的圆的面积为__49π__.【解析】由PN →=μ⎝ ⎛⎭⎪⎫PM →|PM →|+PF 2→|PF 2→|知PN 是∠MPF 2的角平分线,又PN →·F 2N →=0,故延长F 2N 交PM 于K ,则PN 是△PF 2K 的角平分线又是高线,故△PF 2K 是等腰三角形,|PK |=|PF 2|=3,因为|PF 2→|=3,故|PF 1→|=11,故|F 1K →|=14,注意到N 还是F 2K 的中点,所以ON 是△F 1F 2K 的中位线,|ON →|=12|F 1K →|=7,所以以O 为圆心,ON 为半径的圆的面积为49π.(16)如图,在△ABC 中,BE 平分∠ABC ,sin ∠ABE =33,AB =2,点D 在线段AC 上,且AD →=2DC →,BD =433,则BE =56__.【解析】由条件得cos ∠ABC =13,sin ∠ABC =223.在△ABC 中,设BC =a ,AC =3b ,则9b 2=a 2+4-43a ①.因为∠ADB 与∠CDB 互补,所以cos ∠ADB =-cos ∠CDB ,4b 2+163-41633b =-b 2+163-a 2833b ,所以3b 2-a 2=-6 ②,联立①②解得a =3,b =1,所以AC =3,BC =3. S △ABC =12·AC ·AB sin A =12×3×2×223=22,S △ABE =12·BE ·BA sin ∠EBA =12×2×BE ×33=33BE .S △BCE =12·BE ·BC sin ∠EBC =12×3×BE ×33=32BE .由S △ABC =S △ABE +S △BCE ,得22=33BE +32BE ,∴BE =456.70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)设数列{a n }满足a 2n =a n +1a n -1+λ(a 2-a 1)2,其中n ≥2,且n ∈N ,λ为常数.(Ⅰ)若{a n }是等差数列,且公差d ≠0,求λ的值;(Ⅱ)若a 1=1,a 2=2,a 3=4,且数列{b n }满足a n ·b n =n -7对任意的n ∈N *都成立. ①求数列{}b n 的前n 项之和S n ;②若m ·a n ≥n -7对任意的n ∈N *都成立,求m 的最小值.【解析】(Ⅰ)由题意,可得a 2n =(a n +d )(a n -d )+λd 2,(2分)化简得(λ-1)d 2=0,又d ≠0,所以λ=1.(3分)(Ⅱ)①将a 1=1,a 2=2,a 3=4代入条件,可得4=1×4+λ,解得λ=0,(4分) 所以a 2n =a n +1a n -1,则数列{}a n 是首项为1,公比q =2的等比数列,所以a n =2n -1,从而b n =n -72n -1,(6分)所以S n =-620+-521+-422+…+n -72n -1,12S n =-621+-522+-423+…+n -72n , 两式相减得:12S n =-620+121+122+…+12n -1-n -72n =-5+5-n 2n ;所以S n =-10+5-n2n -1.(8分)②m ·2n -1≥n -7,所以m ≥n -72n -1对任意n ∈N *都成立.由b n =n -72n -1,则b n +1-b n =n -62n -n -72n -1=8-n2n ,所以当n >8时,b n +1<b n ; 当n =8时,b 9=b 8; 当n <8时,b n +1>b n . 所以b n 的最大值为b 9=b 8=1128,所以m 的最小值为1128.(12分) (18)(本小题满分12分)阿尔法狗(AlphaGo)是第一个击败人类职业围棋选手、第一个战胜围棋世界冠军的人工智能程序,由谷歌(Google)公司的团队开发.其主要工作原理是“深度学习”.2017年5月,在中国乌镇围棋峰会上,它与排名世界第一的世界围棋冠军柯洁对战,以3比0的总比分获胜.围棋界公认阿尔法围棋的棋力已经超过人类职业围棋顶尖水平.为了激发广大中学生对人工智能的兴趣,某市教育局组织了一次全市中学生“人工智能”软件设计竞赛,从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按五个等级进行了统计,得到如下数据表:(Ⅰ)根据上面的统计数据,试估计从本市参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率;(Ⅱ)根据(Ⅰ)的结论,若从该地区参加比赛的学生(参赛人数很多)中任选3人,记X 表示抽到成绩等级为“A 或B ”的学生人数,求X 的分布列及其数学期望EX ;(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于1分”的概率. 【解析】(Ⅰ)根据统计数据可知,从本地区参加比赛的30名中学生中任意抽取一人,其成绩等级为“A 或B ”的概率为:430+630=13,(2分)即从本地区参加比赛的学生中任意抽取一人,其成绩等级为“A 或B ”的概率为13.(3分)(Ⅱ)由题意知随机变量X 可取0,1,2,3,则X ~B ⎝⎛⎭⎫3,13. P (x =k )=C k 3⎝⎛⎭⎫13k ⎝⎛⎭⎫233-k(k =0,1,2,3),(5分)所以X 的分布列为:(6分)则E (x )=3×13=1,所求期望值为1.(7分)(Ⅲ)设事件M :从这30名学生中,随机选取2人,这两个人的成绩之差大于1分. 设从这30名学生中,随机选取2人,记两个人的成绩分别为m ,n , 则基本事件的总数为C 230,不妨设m >n ,当m =5时,n =3,2,1,基本事件的个数为C 14(C 110+C 17+C 13); 当m =4时,n =2,1,基本事件的个数为C 16(C 17+C 13); 当m =3时,m =1,基本事件的个数为C 110C 13;P (M )=3487.(12分)(19)(本小题满分12分)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(Ⅰ)求二面角F -AE -B 的余弦值;(Ⅱ)若点M 为线段AC 上异于点A 的一点,BE ⊥OM ,求a 的值. 【解析】(Ⅰ)因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF , 又因为平面AEF ⊥平面EFCB ,平面AEF ∩平面EFCB =EF , AO平面AEF ,所以AO ⊥平面EFCB ,取BC 的中点G ,连结OG ,由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF , 由AO ⊥平面EFCB ,又GO平面EFCB ,所以AO ⊥GO ,建立如图所示空间直角坐标系,则E ()a ,0,0,A ()0,0,3a ,B ()2,3()2-a ,0,EA →=()-a ,0,3a , BE →=()a -2,3()a -2,0,设平面AEB 的法向量为n =()x ,y ,z , 则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0,()a -2x +3()a -2y =0.令z =1,则x =3,y =-1,于是n =()3,-1,1,又平面AEF 的一个法向量为p =()0,1,0,设二面角F -AE -B 为θ,所以cos θ=cos 〈n ,p 〉=n ·p |n ||p |=-55.(6分) (Ⅱ)由(Ⅰ)知AO ⊥平面EFCB ,又BE 平面EFCB ,所以AO ⊥BE ,又OM ⊥BE ,AO ∩OM =O ,所以BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=()a -2,3()a -2,0,OC →=()-2,3()2-a ,0, 所以BE →·OC →=-2()a -2-3()a -22, 由BE →·OC →=0及0<a <2,解得a =43.(12分)(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(3,0),A 为椭圆C 的右顶点,以A 为圆心的圆与直线y =b ax 相交于P ,Q 两点,且AP →·AQ →=0,OP →=3OQ →.(Ⅰ)求椭圆C 的标准方程和圆A 的方程;(Ⅱ)不过原点的直线l 与椭圆C 相交于M ,N 两点,设直线OM ,直线l ,直线ON 的斜率分别为k 1,k ,k 2,且k 1,k ,k 2成等比数列.①求k 的值;②是否存在直线l 使得满足OD →=λOM →+μON →(λ2+μ2=1,λ·μ≠0)的点D 在椭圆C 上?若存在,求出直线l 的方程;若不存在,请说明理由.【解析】(Ⅰ)如图,设T 为线段PQ 的中点,连接AT , 则AT ⊥PQ ,∵AP →·AQ →=0, 即AP ⊥AQ , 则|AT |=12|PQ |,又OP →=3OQ →,则|OT |=|PQ |, ∴|AT ||OT |=12,即b a =12, 由已知c =3,则a 2=4,b 2=1, 故椭圆C 的方程为x 24+y 2=1;(2分)又|AT |2+|OT |2=4,则|AT |2+4|AT |2=4|AT |=255,r =|AP |=2105, 故圆A 的方程为(x -2)2+y 2=85.(4分)(Ⅱ)①设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2), 由⎩⎪⎨⎪⎧x 24+y 2=1y =kx +m (1+4k 2)x 2+8kmx +4(m 2-1)=0,(5分) 则x 1+x 2=-8km 1+4k 2,x 1x 2=4(m 2-1)1+4k 2,(6分)由已知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m )(kx 2+m )x 1x 2=k 2+km (x 1+x 2)+m2x 1x 2,(7分)则km (x 1+x 2)+m 2=0,即-8k 2m 21+4k2+m 2=0k 2=14k =±12.(8分)②假设存在直线l 满足题设条件,且设D (x 0,y 0), 由OD →=λOM →+μON →,得x 0=λx 1+μx 2,y 0=λy 1+μy 2, 代入椭圆方程得:(λx 1+μx 2)24+(λy 1+μy 2)2=1,即:λ2⎝⎛⎭⎫x 214+y 21+μ2⎝⎛⎭⎫x 224+y 22+λμx 1x 22+2λμy 1y 2=1,则x 1x 2+4y 1y 2=0,即x 1x 2+4(kx 1+m )(kx 2+m )=0, 则(1+4k 2)x 1x 2+4km (x 1+x 2)+4m 2=0, 所以(1+4k 2)·4(m 2-1)1+4k 2-32k 2m 21+4k2+4m 2=0, 化简得:2m 2=1+4k 2,而k 2=14,则m =±1,(11分)此时,点M ,N 中有一点在椭圆的上顶点(或下顶点),与k 1,k ,k 2成等比数列相矛盾, 故这样的直线不存在.(12分) (21)(本小题满分12分)已知函数f (x )=a x +x 2-x ln a (a >0,a ≠1). (Ⅰ)讨论函数f (x )的单调性;(Ⅱ)若存在x 1,x 2∈[-1,1],使得|f (x 1)-f (x 2)|≥e -1(e 为自然对数的底数),求a 的取值范围.【解析】(Ⅰ)f ′(x )=a x ln a +2x -ln a =2x +(a x -1)ln a ,(1分) 当a >1时,ln a >0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减;(2分) 当0<a <1时,ln a <0,x ∈(0,+∞),f ′(x )>0,f (x )单调递增, x ∈(-∞,0),f ′(x )<0,f (x )单调递减.(3分)综上:x ∈(0,+∞)时,f (x )单调递增,x ∈(-∞,0)时,f (x )单调递减.(4分)(Ⅱ)不等式等价于:|f (x 1)-f (x 2)|max ≥e -1, 即f (x )max -f (x )min ≥e -1,(5分)由(Ⅰ)知,函数的最小值为f (0)=1,f (x )max =max {}f (-1),f (1), 而f (1)-f (-1)=(a +1-ln a )-⎝⎛⎭⎫1a +1+ln a =a -1a -2ln a , 设g (a )=a -1a -2ln a ,则g ′(a )=1+1a 2-2a =⎝⎛⎭⎫1-1a 2>0,所以g (a )=a -1a -2ln a 在(0,+∞)单调递增,而g (1)=0,故a >1时,g (a )>0,即f (1)>f (-1);(7分) 0<a <1时,g (a )<0,即f (1)<f (-1).(8分) 所以当a >1时,原不等式即为:f (1)-f (0)≥e -1a -ln a ≥e -1,设h (a )=a -ln a (a >1),h ′(a )=1-1a =a -1a >0,故函数h (a )单调递增,又h (e)=e -1,则a ≥e ;(10分)当0<a <1时,原不等式即为:f (-1)-f (0)≥e -11a+ln a ≥e -1, 设m (a )=1a +ln a (0<a <1),m ′(a )=-1a 2+1a =a -1a 2<0,故函数m (a )单调递减,又m ⎝⎛⎭⎫1e =e -1,则0<a ≤1e.(11分) 综上,所求a 的取值范围是⎝⎛⎦⎤0,1e ∪[e ,+∞).(12分) 请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-t ,y =2+t (t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42cos ⎝⎛⎭⎫θ-π4.(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)设曲线C 与直线l 的交点为A ,B, Q 是曲线上的动点,求△ABQ 面积的最大值.【解析】(Ⅰ)由⎩⎪⎨⎪⎧x =3-t ,y =2+t 消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42cos ⎝⎛⎭⎫θ-π4=4cos θ+4sin θ,得ρ2=4ρcos θ+4ρsin θ.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入上式,得x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8.所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(5分)(Ⅱ)由(Ⅰ)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过定点P (3,2),P 在圆内,将直线的参数方程代入圆的普通方程,得2t 2-2t -7=0,t 1+t 2=1,t 1·t 2=-72.所以|AB |=|t 1-t 2|=15,又因为圆心到直线的距离d =|2+2-5|2=22,故△ABQ 面积的最大值为S △ABQ =12×15×⎝⎛⎭⎫22+22=5304.(10分)(23)(本小题满分10分) 已知函数f (x )=|2x +1|+|2x -1|. (Ⅰ)求f (x )的值域;(Ⅱ)若对任意实数a 和b ,|2a +b |+|a |-12|a +b |·f (x )≥0,求实数x 的取值范围.【解析】(Ⅰ)∵f (x )=⎩⎪⎨⎪⎧-4x ,x ≤-12,2,-12<x <12,4x ,x ≥12,∴f (x )≥2.∴f (x )的值域为[2,+∞).(5分)(Ⅱ)当a +b =0,即a =-b 时,|2a +b |+|a |-12|a +b |f (x )≥0可化为2|b |-0·f (x )≥0,即2|b |≥0恒成立,∴x ∈R .当a +b ≠0时,∵|2a +b |+|a |=|2a +b |+|-a |≥|(2a +b )-a |=|a +b |, 当且仅当(2a +b )(-a )≥0,即(2a +b )a ≤0时,等号成立, 即当(2a +b )a ≤0时,|2a +b |+|a ||a +b |=1.∴|2a +b |+|a ||a +b |的最小值等于1.∵|2a +b |+|a |-12|a +b |·f (x )≥0|2a +b |+|a ||a +b |≥12f (x ),∴12f (x )≤1,即f (x )≤2. 由(Ⅰ)知f (x )≥2,∴f (x )=2.当且仅当-12≤x ≤12时,f (x )=2.综上所述,实数x 的取值范围是⎣⎡⎦⎤-12,12.(10分)。

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师范大学附属中学2019届高三上学期月考(四)数学(文)试卷(带答案)

湖南师大附中2019届高三月考试卷(四)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合M ={} |x 2x <1,集合N ={} |x log 2x >1,则下列结论中成立的是(C) A .M ∩N =M B .M ∪N =N C .M ∩()∁U N =M D.()∁U M ∩N =【解析】由2x <1=20,得x <0,由log 2x >1=log 22,∴x >2,∴M ∩()∁U N ={}x |x <0∩{}x |x ≤2=M ,故答案为C.2.已知三条不重合的直线m 、n 、l ,两个不重合的平面α、β,下列四个命题中正确的是(A) A .若l ⊥α,m ⊥β,且l ∥m ,则α∥β B .若m ∥n ,n α,则m ∥αC .若m α,n α,m ∥β,n ∥β,则α∥βD .若α⊥β,α∩β=m ,n β,则n ⊥α【解析】∵m 与α的位置关系不确定,∴m ∥α不一定成立,B 不成立;由于m 与n 几何位置关系不确定,∴α∥β的条件不具备,C 不成立;D 也不成立,∴选A.3.已知P (1,3)在双曲线x 2a 2-y 2b 2=1()a >0,b >0的渐近线上,则该双曲线的离心率为(A)A.10 B .2 C. 5 D. 3【解析】根据点P (1,3)在双曲线的渐近线上,所以双曲线的一条渐近线方程为y =3x ,所以有ba =3,即b =3a ,根据双曲线中a ,b ,c 的关系,可以得c =10a ,所以有e =10,故选A.4.已知f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象如图所示,则y =f (x )的解析式是(B)A .f (x )=sin ⎝⎛⎭⎫2x -π6B .f (x )=sin ⎝⎛⎭⎫2x +π3C .f (x )=sin ⎝⎛⎭⎫2x +π6D .f (x )=sin ⎝⎛⎭⎫x +π3【解析】由函数f (x )=A sin(ωx +φ)(A >0,ω>0,||φ<π2,x ∈R )在一个周期内的图象可得:A =1,14T =14·2πω=π12+π6,解得ω=2,再把点⎝⎛⎭⎫π12,1代入函数的解析式可得:1=sin ⎝⎛⎭⎫2×π12+φ,即sin ⎝⎛⎭⎫π6+φ=1.再由||φ<π2可得:φ=π3,所以函数f (x )=sin ⎝⎛⎭⎫2x +π3.故应选B.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为(参考数据:sin 15°=0.258 8,sin 7.5°=0.130 5)(C)A .12B .16C .24D .48【解析】由程序框图可列表如下:n 6 12 24 S332336-32因为36-32≈3.106>3.10,所以输出n 的值为24,故选C.6.已知数列{}a n 的前n 项和为S n ,通项公式a n =log 2n +1n +2(n ∈N *),则满足不等式S n <-6的n的最小值是(D)A .62B .63C .126D .127【解析】因为S n =log 2⎝ ⎛⎭⎪⎫23×34×…×n +1n +2=log 2⎝⎛⎭⎫2n +2<-6,所以2n +2<2-6,n >126,故应选D. 7.设A 、B 、C 为圆O 上三点,且AB =3,AC =5,则AO →·BC →=(D) A .-8 B .-1 C .1 D .8【解析】取BC 的中点D ,连接AD ,OD ,因为O 为三角形ABC 外接圆的圆心,则AD →=12(AB →+AC →),OD →·BC →=0.所以AO →·BC →=(AD →+DO →)·BC →=AD →·BC →=12(AB →+AC →)·(AC →-AB →)=12(|AC →|2-|AB →|2)=8,选D.8.已知定义在R 上的奇函数f (x )满足f (x )=f (x +2),数列{}a n 的前n 项和为S n ,且S n =2a n +2,则f (a n )=(A)A .0B .0或1C .-1或0D .1或-1【解析】∵f (x )=f (x +2),所以f (x )函数周期为2,∵数列{}a n 满足S n =2a n +2,∴a 1=-2,S n -1=2a n -1+2,∴a n =2a n -2a n -1,即a n =2a n -1,∴{a n }以-2为首项,2为公比的等比数列,∴a n =-2n ,∴f (a n )=f (-2n )=f ()0=0,故选A.9.设定义域为R 的函数f (x )=⎩⎨⎧||lg ||x -2,x ≠2,0,x =2,若b <0,则关于x 的方程[f (x )]2+bf (x )=0的不同实数根共有(C)A .4个B .5个C .7个D .8个【解析】由[f (x )]2+bf (x )=0,得f (x )=0或f (x )=-b .所以方程[f (x )]2+bf (x )=0的根的个数转化为函数y =f (x )与函数y =0,y =-b (b <0)的图象的交点个数.因为函数f (x )的图象大致如图所示,数形结合可知,f (x )=0有3个实数根,f (x )=-b (b <0)有4个实数根,所以[f (x )]2+bf (x )=0共有7个不同的实数根,故答案选C.10.一个圆锥被过顶点的平面截去了较少的一部分几何体,余下的几何体的三视图如下,则余下部分的几何体的体积为(D)A.8π3+15B.16π3+ 3C.8π3+233D.16π9+233【解析】由已知中的三视图,圆锥母线为l =(5)2+⎝⎛⎭⎫2322=22,圆锥的高h =(5)2-12=2,圆锥底面半径为r =l 2-h 2=2,截去的底面弧的圆心角为120°,故底面剩余部分为S =23πr 2+12r 2sin 120°=83π+3,故几何体的体积为:V =13Sh =13×⎝⎛⎭⎫83π+3×2=169π+233,故选D. 11.本周星期日下午1点至6点学校图书馆照常开放,甲、乙两人计划前去自习,其中甲连续自习2小时,乙连续自习3小时.假设这两人各自随机到达图书馆,则下午5点钟时甲、乙两人都在图书馆自习的概率是(B)A.19B.16C.13D.12【解析】据题意,甲、乙应分别在下午4点、3点之前到达图书馆,设甲、乙到达图书馆的时间分别为x ,y ,则⎩⎨⎧1≤x ≤4,1≤y ≤3,所对应的矩形区域的面积为6.若下午5钟点时甲、乙两人都在自习,则⎩⎨⎧3≤x ≤4,2≤y ≤3,所对应的正方形区域的面积为1,所以P =16,选B.12.设函数d (x )与函数y =log 2x 关于直线y =x 对称.已知f (x )=⎩⎨⎧d (x )-a ,x <1,4(x 2-3ax +2a 2),x ≥1,若函数f (x )恰有2个不同的零点,则实数a 的取值范围是(A)A.⎣⎡⎭⎫12,1∪[2,+∞)B.⎣⎡⎭⎫14,1∪⎣⎡⎭⎫32,+∞ C.⎣⎡⎭⎫14,+∞ D.⎝⎛⎦⎤-∞,32 【解析】因为函数d (x )与函数y =log 2x 关于直线y =x 对称,所以d (x )=2x ;设g (x )=4(x -a )(x -2a ),x ≥1,h (x )=2x -a ,x <1,因为f (x )恰有2个不同的零点,又因为h (x )至多有一个零点,故:①若g (x )有两个零点,h (x )没有零点,则⎩⎨⎧a ≥1,h (1)=2-a ≤0,得a ≥2②若g (x )和h (x )各有1个零点,则⎩⎪⎨⎪⎧a <1,2a ≥1且⎩⎨⎧-a <0,h (1)=2-a >0,得12≤a <1.综上,a ∈⎣⎡⎭⎫12,1∪[2,+∞).故答案选A.选择题答题卡题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案CAABCDDACDBA本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.已知圆C 1:(x -a )2+y 2=1与圆C 2:x 2+y 2-6x +5=0外切,则a 的值为__0或6__. 【解析】圆C 1:(x -a )2+y 2=1的圆心为()a ,0,半径为1,圆C 2:x 2+y 2-6x +5=0的圆心为()3,0,半径为2,两圆外切,所以||a -3=3,∴a =0,6,故a 的值为0或6.14.如果复数z 满足关系式z +||z -=2+i ,那么z 等于__34+i__. 【解析】设z =a +b i(a ,b ∈R ),则z -=a -b i ,||z -=a 2+b 2,所以a +b i +a 2+b 2=2+i , 所以得:⎩⎨⎧a +a 2+b 2=2,b =1,解得:⎩⎪⎨⎪⎧a =34,b =1所以z =34+i.15.已知2a =5b =10,则a +bab=__1__.【解析】由已知,a =log 210=1lg 2,b =log 510=1lg 5.所以a +b ab =1a +1b =lg 2+lg 5=lg 10=1.16.已知定义在R 上的函数f (x )满足:对任意实数a 、b 都有f (a +b )=f (a )+f (b )-1,且当x >0时f (x )>1.若f (4)=5,则不等式f (3x 2-x -2)<3的解集为__⎝⎛⎭⎫-1,43__. 【解析】设x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>1.所以f (x 1)-f (x 2)=f [(x 1-x 2)+x 2]-f (x 2)=f (x 1-x 2)-1>0,即f (x 1)>f (x 2),所以f (x )是增函数.因为f (4)=5,即f (2)+f (2)-1=5,所以f (2)=3.所以原不等式化为f (3x 2-x -2)<f (2)3x 2-x -2<23x 2-x -4<0-1<x <43.故不等式的解集是⎝⎛⎭⎫-1,43. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知函数f (x )=a sin x +b cos x ,a ≠0,x ∈R ,f (x )的最大值是2,且在x =π6处的切线与直线x -y=0平行.(1)求a 、b 的值;(2)先将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,已知g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2,求cos 2α的值.【解析】(1)f ′(x )=a cos x -b sin x ,1分由已知有:⎩⎪⎨⎪⎧a 2+b 2=2a cos π6-b sin π6=1,解之得:⎩⎨⎧a =3,b =1.4分 (2)由(1)有f (x )=3sin x +cos x =2sin ⎝⎛⎭⎫x +π6,6分因为将f (x )的图象上每点的横坐标缩小为原来的12,纵坐标不变,再将其向右平移π6个单位得到函数g (x )的图象,则g (x )=2sin ⎝⎛⎭⎫2x -π6,8分由g ⎝⎛⎭⎫α+π4=1013,α∈⎝⎛⎭⎫π6,π2得sin ⎝⎛⎭⎫2α+π3=513,且2α+π3∈⎝⎛⎭⎫2π3,π,则cos ⎝⎛⎭⎫2α+π3=-1213,10分cos 2α=cos ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=cos ⎝⎛⎭⎫2α+π3cos π3+sin ⎝⎛⎭⎫2α+π3sin π3=-1213·12+513·32=53-1226.12分18.(本题满分12分)如图,已知三棱柱ABC -A ′B ′C ′的侧棱垂直于底面,AB =AC ,∠BAC =90°,点M ,N 分别是A ′B 和B ′C ′的中点。

湖南师大附中高三第三次月考数学(理)试卷(含解析)

湖南师大附中高三第三次月考数学(理)试卷(含解析)

高三月考试卷(三)理科数学湖南师大附中高三数学备课组组稿命题人:李莉 苏萍 周正安 审题人:贺忠良 邓仁辉时量:120分钟 满分:150分一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知集合A ={y ∈R |y =lg x , x >1},B ={x |0<|x |≤2, x ∈Z },则下列结论正确的是 (D )A .A ∩B ={-2,-1} B .(C R A )∪B =(-∞,0] C .A ∪B =[0,+∞]D .(C R A )∩B ={-2,-1} 2.设a 是实数,且2i 1i 1+++a 是实数,则a = (B ) A .21B .1C .23 D .23.“ac =b 2”是“a ,b ,c 成等比数列”的 (B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.3)141(-+xx 展开式中的常数项为 (A ) A .25- B .25C .-1D .15.已知0<b <a <1,则下列不等式成立的是 (C ) A .ab <b 2<1 B .21log b <21log a <0C .2b <2a <2D .a 2<ab <16.若奇函数f (x )(x ∈R )满足f (2)=1,f (x +2)=f (x )+f (2),则f (5)= (C ) A .0 B .1 C .25 D .5 7.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 (B ) A .1241222=-y x B .1241222=-x yC .1122422=-x yD .1122422=-y x8.在锐角三角形△ABC 中,tan A =t +1,tan B =t -1,则t 的取值范围是 (A ) A .(2,+∞) B .(1,+∞) C .(1,2) D .(-1,1)9.一个质地均匀且形状为正方体的骰子,它的六个面上的点数依次为1、2、3、4、5、6,连续掷此骰子3次,正面朝上的点数之和为10的不同抛掷结果有 (A )A .27种B .30种C .33种D .36种 10.已知无穷等比数列{a n }的前n 项的积为T n ,且a 1>1,a 2008a 2009>1,(a 2008-1)(a 2009-1) <0,则这个数列中使T n >1成立的最大正整数n 的值等于 (C )A .2008B .2009C .4016D .4017选择题答题卡11.已知函数f (x )=log sin1(x 2-6x +5)在(a ,+ ∞)上是减函数,则实数a 的取值范围为 [5,+∞) .12.四面体ABCD 中,共顶点A 的三条棱两两相互垂直,且其长分别为1、6、3,四面体的四个顶点在同一个球面上,则这个球的体积为 332π. 13.若动直线x =m 与函数f (x )=2cos(65π-x )、g (x )=4sin x 的图像分别交于点M 、N ,则|MN | 的最大值为 32 .14.已知A (x 1,y 1)是抛物线y 2=4x 上的一个动点,B (x 2,y 2)是椭圆13422=+y x 上的一个动点,N (1,0)是一定点.若AB ∥x 轴,且x 1<x 2,则△NAB 的周长l 的取值范围是 )4,310(. 15.在平面上,OC 是平行四边形OACB 的对角线,设=a , =b , BH ⊥OC 于点H . (1)若|a |=|b |=1,∠AOB =60°,则|OC |= 3 ;(2)若∠AOB <90°,请你用a ,b 表示OH = )(||)(2b a b a bb a ++∙+.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)在△ABC 中,sin B +sin C =sin(A -C ). (1)求A 的大小;(2)若BC =3,求△ABC 的周长l 的最大值. 解:(1)将sin B +sin C =sin(A -C )变形得sin C (2cos A +1)=0, (2分) 而sin C ≠0,则cos A =21-,又A ∈(0,π),于是A =32π; (6分) (2)记B =θ,则C =3π-θ(0<θ<3π),由正弦定理得⎪⎩⎪⎨⎧-π==)3sin(32sin 32θAB θAC , (8分) 则△ABC 的周长l =23[sin θ+sin(3π-θ)]+3=23sin(θ+3π)+3≤23+3, (10分) 当且仅当θ=6π时,周长l 取最大值23+3. (12分)某单位有三辆汽车参加某种事故保险,年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车每年最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为91、101、111,且各车是否发生事故相互独立,求一年内该单位在此保险中:(1)获赔的概率;(2)获赔金额ξ的分布列与期望.解:设A k 表示第k 辆车在一年内发生此种事故,k =1,2,3.由题意知A 1、A 2、A 3相互独立,且P (A 1)=91,P (A 2)=101,P (A 3)=111. (1)该单位一年内获赔的概率为 1-P (1A 2A 3A )=1-P (1A )P (2A )P (3A )=1-113111010998=⨯⨯. (5分) (2)ξ的所有可能值为0,9000,18000,27000. (6分) P (ξ=0)=P (1A 2A 3A )=P (1A )P (2A )P (3A )=118111010998=⨯⨯, (7分) P (ξ=9000)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3) =P (A 1)P (2A )P (3A )+P (1A )P (A 2)P (3A )+P (1A )P (2A )P (A 3) =451199024211110998111010198111010991==⨯⨯+⨯⨯+⨯⨯, (8分) P (ξ=18000)=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3) =P (A 1)P (A 2)P (3A )+P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =1103990271111019811110991111010191==⨯⨯+⨯⨯+⨯⨯, (9分) P (ξ=27000)=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3)=990111110191=⨯⨯. (10分) 综上知,ξ(11分)由ξ的分布列得 E ξ=18.27181129900990127000110318000451190001180≈=⨯+⨯+⨯+⨯(元). (12分)如图,P —ABCD 是正四棱锥,ABCD —A 1B 1C 1D 1是正方体,其中AB =2,P A =6.(1)求证:P A ⊥B 1D 1;(2)求平面P AD 与平面BDD 1B 1所成的锐二面角θ的大小; (3)求B 1到平面P AD 的距离. 解:解法一:(1)连结AC ,交BD 于点O ,连结PO , 则PO ⊥面ABCD ,又∵AC ⊥BD ,∴P A ⊥BD ,∵BD ∥B 1D 1,∴P A ⊥B 1D 1. (4分) (2)∵AO ⊥BD ,AO ⊥PO , ∴AO ⊥面PBD ,过点O 作OM ⊥PD 于点M ,连结AM , 则AM ⊥PD ,∴∠AMO 就是二面角A —PD —O 的平面角, (6分) 又∵AB =2,P A =6, ∴OD =2,PO =226=-, OM =32622=⨯=∙PD OD PO , ∴tan ∠AMO =26322==OM AO , 即二面角的大小为arctan26. (8分)(3)分别取AD ,BC 中点E ,F ,作平面PEF ,交底面于两点S ,S 1,交B 1C 1于点B 2,过点B 2作B 2B 3⊥PS 于点B 3,则B 2B 3⊥面P AD ,又B 1C 1∥AD ,∴B 2B 3的长就是点B 1到平面P AD 的距离. (10分) ∵PO =AA 1=2,∴EF =221=SS ,tan ∠PSS 1=224=,sin ∠PSS 1=52, ∴B 2B 3=B 2S sin ∠PSS 1=556523=⨯. (12分 ) 解法二:以A 1B 1为x 轴,A 1D 1为y 轴,A 1A 为z 轴建立空间直角坐标系, (1)设E 是BD 的中点,∵P —ABCD 是正四棱锥, ∴PE ⊥ABCD .又AB =2,P A =6,∴PE =2, ∴P (1,1,4),∴11D B =(-2,2,0),=(1,1,2) (2分)∴11D B ·AP =0,即P A ⊥B 1D 1。

湖南师范大学附属中学2020-2021学年高三第一学期月考数学试卷(三)(word版含解析)

湖南师范大学附属中学2020-2021学年高三第一学期月考数学试卷(三)(word版含解析)

湖南师大附中2021届高三月考试卷(三)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共10页.时量120分钟.满分150分.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知R 是实数集,M =⎩⎨⎧⎭⎬⎫x |2x <1,N ={y |y =x -1},则∁R (N ∩M )=A .(1,2)B .[0,2]C .∅D .(-∞,2]2.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是z 1,z 2,则|z 1-z 2|=A. 2B .2 2C .2D .83.若l ,m 为两条不同的直线,α为平面,且l ⊥α,则“m ∥α”是“m ⊥l ”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.历史上,最伟大的数学家一直都热衷于寻找质数的“分布规律”,法国数学家马林·梅森就是研究质数的数学家中成就很高的一位,正因为他的卓越贡献,现在人们将形如“2p -1(p 是质数)”的质数称为梅森数,迄今为止共发现了51个梅森数,前4个梅森数分别是22-1=3,23-1=7,25-1=31,27-1=127,3,7是1位数,31是2位数,127是3位数.已知第10个梅森数为289-1,则第10个梅森数的位数为(参考数据:lg2≈0.301)A .25B .29C .27D .285.为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这三种题型进行改编,则每种题型至少指派1名教师的不同分派方法种数为A .150B .180C .200D .2806.已知定义在R 上的偶函数f (x ),对任意x ∈R ,都有f (2-x )=f (x +2),且当x ∈[-2,0]时f (x )=2-x -1.若在a >1时,关于x 的方程f (x )-log a (x +2)=0恰有三个不同的实数根,则实数a 的取值范围是A .(1,2) B.⎝⎛⎭⎫223,2 C .(-∞,223)∪(2,+∞) D .(2,+∞) 7.已知O 为△ABC 的外心,OA →+2OB →+6OC →=0,则∠ACB 的正弦值为A.64B.14C.12D.388.l 是经过双曲线C :x 2a 2-y 2b2=1()a>0,b>0焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =45°,则双曲线离心率的最大值为A. 2B. 3 C .2 D .3二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.下列命题正确的是A .若随机变量X ~B(100,p),且E(X)=20,则D ⎝⎛⎭⎫12X +1=5B .在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则A 与B ∪C ∪D 是互斥事件,也是对立事件C .一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,P(ξ=2)等于(n -m )A 2m A 3nD .由一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到回归直线方程y =bx +a ,那么直线y =bx +a 至少经过(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点10.若非零实数a ,b 满足a<b ,则下列不等式不一定成立的是A.a b <1B.b a +a b ≥2C.1ab 2<1a 2bD .a 2+a<b 2+b 11.如图,矩形ABCD 中,M 为BC 的中点,将△ABM 沿直线AM 翻折成△AB 1M ,连结B 1D ,N 为B 1D 的中点,则在翻折过程中,下列说法中所有正确的是A .存在某个位置,使得CN ⊥AB 1B .翻折过程中,CN 的长是定值C .若AB =BM ,则AM ⊥B 1DD .若AB =BM =1,当三棱锥B 1-AMD 的体积最大时,三棱锥B 1-AMD 的外接球的表面积是4π12.已知曲线C n :x 2-2nx +y 2=0(n =1,2,…).从点P(-1,0)向曲线C n 引斜率为k n (k n >0)的切线l n ,切点为P n (x n ,y n ).则下列结论正确的是A .数列{x n }的通项为x n =n n +1B .数列{y n }的通项为y n =n 2n +1n +1C .当n>3时,x 1·x 3·x 5·…·x 2n -1>1-x n 1+x n D.1-x n 1+x n<2sin x n y n 第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.若(2+x)17=a 0+a 1(1+x)+a 2(1+x)2+…+a 17(1+x)17,则a 0+a 1+a 2+a 3+…+a 16=__.14.已知抛物线C :y 2=4x 与圆E :(x -1)2+y 2=9相交于A ,B 两点,点M 为劣弧AB︵上不同于A ,B 的一个动点,平行于x 轴的直线MN 交抛物线于点N ,则△MNE 的周长的取值范围为___.。

湖南师范大学附属中学2021届高三第一学期数学月考试卷及答案(三)

湖南师大附中2021届高三月考试卷(三)一、单项选择题(共8小题,每小题5分,共40分)1.已知R 是实数集,21M x x ⎧<⎫=⎨⎬⎩⎭,{}1N x y y ==-,则()N M =R( )A.()1,2B.[]0,2C.∅D.(],2-∞2.如图,在复平面内,网格中的每个小正方形的边长都为1,点A ,B 对应的复数分别是1z ,2z ,则12z z -=( )A.2B.22C.2D.83.若l ,m 为两条不同的直线,α为平面,且l α⊥,则“m//α”是“m l ⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.历史上,最伟大的数学家一直都热衷于寻找质数的“分布规律”,法国数学家马林·梅森就是研究质数的数学家中成就很高的一位,正因为他的卓越贡献,现在人们将形如“21p -(p 是质数)”的质数称为梅森数,迄今为止共发现了51个梅森数,前4个梅森数分别是2213-=,3217-=,52131-=,721127-=,3,7是1位数,31是2位数,127是3位数.已知第10个梅森数为8921-,则第10个梅森数的位数为( )(参考数据:lg20.301≈)A.25B.29C.27D.285.为防止部分学生考试时用搜题软件作弊,命题组指派5名教师对数学卷的选择题、填空题和解答题这三种题型进行改编,则每种题型至少指派1名教师的不同分派方法种数为( )A.150B.180C.200D.2806.已知定义在R 上的偶函数()f x ,对任意x ∈R ,都有()()22f x f x -=+,且当[]2,0x ∈-时()21xf x -=-.若在1a >时,关于x 的方程()()log 20a f x x -+=恰有三个不同的实数根,则实数a 的取值范围是( )A.()1,2B.232,2⎛⎫⎪⎝⎭C.()23,2,2⎛⎫-∞+∞ ⎪⎝⎭D.()2,+∞7.已知O 为ABC △的外心,26OA OB OC ++=0,则ACB ∠的正弦值为( )A.64B.14C.12D.388.l 是经过双曲线()2222:10,0x y C a b a b-=>>焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使45APB ∠=︒,则双曲线离心率的最大值为( )A.2B.3C.2D.3二、多项选择题(本题共4小题,每小题5分,共20分) 9.下列命题正确的是( )A.若随机变量()~100,X B p ,且()20E X =,则1152D X ⎛⎫+= ⎪⎝⎭B.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别为0.2,0.2,0.3,0.3,则A 与B C D 是互斥事件,也是对立事件C.一只袋内装有m 个白球,n m -个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,()2P ξ=等于()23m nn m A A -D.由一组样本数据()11,x y ,()22,x y ,…,(),n n x y 得到回归直线方程y bx a =+,那么直线y bx a =+至少经过()11,x y ,()22,x y ,…,(),n n x y 中的一个点10.若非零实数a ,b 满足a b <,则下列不等式不一定成立的是( )A.1ab< B.2b aa b+≥ C.2211ab a b<D.22a ab b +<+11.如图,矩形ABCD 中,M 为BC 的中点,将ABM △沿直线AM 翻折成1AB M △,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A.存在某个位置,使得1CN AB ⊥B.翻折过程中,CN 的长是定值C.若AB BM =,则1AM B D ⊥D.若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π12.已知曲线()22:201,2,n C x nx y n -+==.点()1,0P -向曲线n C 引斜率为()0n n k k >的切线n l ,切点为(),n n n P x y .则下列结论正确的是( )A.数列{}n x 的通项为1n nx n =+ B.数列{}n y 的通项为211n n n y n +=+C.当3n >时,1352111nn nx x x x x x --⋅⋅⋅⋅>+ D.12sin 1n n n n x x x y -<+三、填空题(本题共4小题,每小题5分,共20分) 13.若()()()()17217012172111x a a a x x a x +=+++++++,则012316a a a a a +++++=_______.14.已知抛物线2:4C y x =与圆()22:19E x y -+=相交于A ,B 两点,点M 为劣弧AB 上不同于A ,B 的一个动点,平行于x 轴的直线MN 交抛物线于点N ,则MNE △的周长的取值范围为________.15.既要金山银山,又要绿水青山,说明了既要发展经济,又要保护环境,两者兼得,社会才能又快又好的发展.现某风景区在践行这一理念下,计划在如图所示的以AB 为直径的半圆形山林中设计一条休闲小道AC (C 与A ,B 不重合),A ,B 相距400米,在紧邻休闲小道AC 的两侧及圆弧CB 上进行绿化,设BAC θ∠=,则绿化带的总长度()fθ的最大值约为________米.(参考数据:3 1.7≈,3π≈)16.定义在R 上的函数()f x 的导函数为()f x ',()00f =,若对任意x ∈R ,都有()()1f x f x '->,则使得()11exf x +>成立的x 的取值范围为________.四、解答题(本题共6小题,共70分) 17.(本小题满分10分) 在①222sin 2cos 2cos cos 122C B C B C B -+++=,②2tan tan tan B bA B c=+a=()sin C C 三个条件中任选一个,补充在下面问题中,并加以解答.在ABC △中,内角A ,B ,C 所对的边长分别为a ,b ,c,且满足a =,3b =,________,求ABC△的面积.18.(本小题满分12分) 在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状的这一阶段称为潜伏期.各种传染疾病的潜伏期不同,数小时、数天、甚至数月不等.某市疾病预防控制(2)将200期是否超过6天相互独立.为了深入研究,该市疾病预防控制中心随机调查了该地区30名患者,其中潜伏期超过6天的人数为X ,求随机变量X 的期望和方差:附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.已知,如图四棱锥P ABCD -中,底面ABCD 为菱形,60ABC ∠=︒,2AB PA ==,PA ⊥平面ABCD ,E ,M 分别是BC ,PD 中点,点F 在棱PC 上移动.(1)证明:无论点F 在PC 上如何移动,都有平面AEF ⊥平面PAD ; (2)当直线AF 与平面PCD 所成的角最大时,确定点F 的位置.20.(本小题满分12分)已知数列{}n a 的首项12a =,前n 项和为n S ,且数列n S n ⎧⎫⎨⎬⎩⎭是以12为公差的等差数列.(1)求数列{}n a 的通项公式;(2)设2n n n b a =,*n ∈N ,数列{}n b 的前n 项和为n T .①求证:数列n T n ⎧⎫⎨⎬⎩⎭为等比数列; ②若存在整数(),1m n m n >>,使得()()m m n n m S T T n S λλ+=+,其中λ为常数,且2λ≥-,求λ的所有可能值.在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为2,过2F 的直线与椭圆C 交于P ,Q 两点,若1F PQ △的周长为8.(1)求椭圆C 的方程;(2)动直线():0l y kx m m =+≠交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,N的半径为NO .设D 为AB 的中点,DE ,DF 与N 分别相切于点E ,F ,求EDF ∠的最小值.已知函数()1ln(1)x f x x ++=,()()1mg x m x =∈+R .(1)判断函数()f x 在()0,+∞上的单调性; (2)若()()f x g x >在()0,+∞上恒成立,求整数m 的最大值;(3)求证:()()()2311212311en n n -+⨯+⨯++>⎡⎤⎣⎦(其中e 为自然对数的底数).湖南师大附中2021届高三月考试卷(三)数学参考答案三、填空题 13.1721-14.()6,815.88016.()0,+∞三、解答题17.【解析】选①因为222sin 2cos 2cos cos 122C B C BC B -+++=, 所以()()()1cos 1cos 2cos cos 22cos 22cos 1C B C B C B C B A --++++=++=-=, 所以1cos 2A =, 因为C 为三角形的内角, ∴A π=,又∵a =,3b =,∴由余弦定理2222cos a b c bc A =+-,可得:21139232c c =+-⨯⨯⨯,可得:2340c c --=, 解得4c =,或1-(舍去),∴11sin 3422ABC S bc A ==⨯⨯=△ 选②∵2tan tan tan B bA B c=+, ∴由正弦定理可得:2tan sin tan tan sin B BA B C =+, 可得:sin 2sin cos sin sin sin cos cos B B B A B CA B⨯=+, 可得:2sin 2sin 2sin cos sin cos cos sin cos sin cos sin sin sin cos cos cos cos B B B A B B B A B B A C C CA B A B==+, ∵sin 0B ≠,sin 0C ≠,∴解得1cos 2A =,∵()0,A π∈, ∴3A π=.选③由正弦定理得sin sin a bA B=,∵()3sin sin sin 3cos B A C C =+,∴()3sin sin sin 3sin cos A C A C A C +=+, ∴3cos sin sin sin A C A C =, ∵sin 0C ≠,即3cos sin A A =,tan 3A =,又()0,A π∈, ∴3A π=.潜伏期≤6天潜伏期>6天总计50岁以上(含50岁) 7525 100 50岁以下 45 55 100 总计 12080200由上表可得()22007555254518.75 6.63512080100100K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为该传染病的潜伏期与患者年龄有关. (2)由题意可知,一名患者潜伏期超过6天的概率为8022005P ==, 随机变量服从2~30,5X B ⎛⎫ ⎪⎝⎭, ∴()230125E X =⨯=. ()2236301555D X ⎛⎫=⨯⨯-= ⎪⎝⎭.答:随机变量X 的期望和方差分别为12与365. 19.【解析】(1)证明:连接AC ,∵底面ABCD 为菱形,60ABC ∠=︒, ∴ABC △为正三角形, ∵E 是BC 的中点,∴AE BC ⊥,又AD//BC , ∴AE AD ⊥,∵PA ⊥平面ABCD ,AE ⊂平面ABCD , ∴PA AE ⊥,∵PA AD A =,PA AD ⊂、平面PAD , ∴AE ⊥平面PAD , ∵AE ⊂平面AEF ,∴平面AEF ⊥平面PAD .(2)由(1)知,AE 、AD 、AP 两两垂直,故以AE 、AD 、AP 所在直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则()0,0,0A ,()3,1,0B -,()3,1,0C,()0,2,0D ,()0,0,2P ,()0,1,1M ,()3,0,0E,∴()3,1,2PC =-,()0,2,2PD =-,()0,0,2AP =.设()3,,2PF PC λλλλ==-,()3,,22AF AP PF λλλ=+=-.设平面PCD 的法向量为()111,,x y z =m ,则1111132022PC x y z PD y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩m m,令1z =11x =,1y =∴(=m .设直线AF 与平面PCD 所成的角为θ,则sin cos ,AF AF AF θ⋅====⋅m m m当12λ=时,sin θ最大,此时F 为PC 的中点. 20.【解析】(1)∵12a =,∴121S=, ∴()11321222n S n n n =+-=+,即21322n S n n =+,当2n ≥时,()()22113111112222n S n n n n -=-+-=+-,∴()112n n n a S S n n -=-=+≥, 当1n =时,12a =符合上式, ∴()*1n a n n =+∈N .(2)①证明:∵()*1n a n n =+∈N , ∴()21nn b n =+,∴()2322232421n n T n =⨯+⨯+⨯++⨯+, 则()2341222232421n n T n +=⨯+⨯+⨯++⨯+,两式相减,可整理得12n n T n +=⋅,∴11242n n nT n+-==⨯, ∴数列n T n ⎧⎫⎨⎬⎩⎭是以4为首项,2为公比的等比数列.②由①可知,12n n T n +=⋅,且由(1)知21322n S n n =+,代入()()m m n n m S T T n S λλ+=+, 可得21121322213222m n m m m m n n n n λλ++⎛⎫++ ⎪⋅⎝⎭=⋅⎛⎫++ ⎪⎝⎭, 整理得22232232m n m m n n λλ++=++,即22323222n mn n m m λλ++++=, 设2322n nn n c λ++=,则m n c c =,则()()22211113123224222n nn n n n n n n n n c c λλλ+++++++++---+-=-=. ∵2λ≥-,∴当3n ≥时,2112402n n n n n c c λ++---+-=<, 即1n n c c +<,∵1m n >>,且24514360288c c λλλ+++-=-=≥,∴()25n c c n >≥, ∴24c c =或23c c =,即2n =,4m =或3.当2n =,4m =时,2λ=-,当2n =,3m =时,1λ=-. 故λ的所有可能值为1-,2-.21.【解析】(1)由椭圆的定义可知,1F PQ △的周长为4a ,∴48a =,2a =, 又离心率为22, ∴2c =,222422b a c =-=-=,因此椭圆方程为22142x y +=. (2)设()11,A x y ,()22,B x y ,联立方程2224y kx mx y =+⎧⎨+=⎩, 得()222214240k x kmx m +++-=, 由0∆>,得2242m k <+(*)且122421kmx x k -+=+, 因此122221my y k +=+,所以222,2121kmm D k k ⎛⎫- ⎪++⎝⎭,又()0,N m -,所以2222222121km m ND m k k ⎛⎫⎛⎫=-++ ⎪ ⎪++⎝⎭⎝⎭,整理得:()()22422241321m k k ND k ++=+, 因为NF m =, 所以()()()2422222224318312121k k ND k kkNF+++==+++.令283t k =+,3t ≥,故21214t k ++=, 所以()222161611112NDt N t t tF =+=++++. 令1y t t =+, 所以211y t'=-. 当3t ≥时,0y '>,从而1y t t =+在[)3,+∞上单调增, 因此1103t t +≥,等号当且仅当3t =时成立,此时0k =, 所以22134NF ND ≤+=, 由(*)得m <<且0m ≠, 故设12NFND ≥, 设2EDF θ∠=,则1sin 2NFND θ=≥, 所以θ的最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率为0. 综上所述:当0k =,()()0,2m ∈时,EDF ∠取得最小值为3π. 22.【解析】(1)因为()()()1ln 10x f x x x ++=>,所以()()21ln 11x x f x x --++'=,()0x >, 又因为0x >,所以101x>+,()ln 10x +>, 所以()0f x '<, 即函数()f x 在()0,+∞上为减函数.(2)由()()f x g x >在()0,+∞上恒成立,即()()11ln 1x x x m x++++<在()0,+∞上恒成立,即()()min11ln 1x x x m x ++++⎛⎫< ⎪⎝⎭, 设()()()11ln 1x x x h x x++++=, 所以()()21ln 1x x h x x --+'=,()0x >,令()()1ln 1g x x x =--+,则()11011x g x x x '=-=>++, 即()g x 在()0,+∞为增函数,又()21ln30g =-<,()322ln20g =->,即存在唯一的实数根a ,满足()0g a =,且()2,3a ∈,()1ln 10a a --+=, 当x a >时,()0g x >,()0h x '>,当0x a <<时,()0g x <,()0h x '<,即函数()h x 在()0,a 为减函数,在(),a +∞为增函数,则()()()()()min 11ln 113,4a a a h a a a h x ++++===+∈,故整数m 的最大值为3.(3)由(2)知,()213ln 1211x x x x -+>=-++,()0x >, 令()1x n n =+,则()()()3311ln 1122231111n n n n n n n n ⎛⎫++>->-=--⎡⎤ ⎪⎣⎦++++⎝⎭, ()()()11111ln 112ln 123ln 1123123232231n n n n ⎛⎫⎛⎫⎛⎫+⨯++⨯++++>--+--++--⎡⎤ ⎪ ⎪ ⎪⎣⎦+⎝⎭⎝⎭⎝⎭1231231n n n ⎛⎫=-->- ⎪+⎝⎭, 故()()()2311212311e n n n -+⨯+⨯++>⎡⎤⎣⎦.。

湖南师大附中2019届高三上学期月考试卷(二)教师版英语Word版含解析

炎德·英才大联考湖南师大附中2019届高三月考试卷(二)英语命题人:蒋立耘欧阳红英谭硕邓云浩李江平李艳祝琳丽何畅舒陈小虎罗毅审题人:尹一兵本试题卷分为听力、阅读理解、语言知识运用和写作四个部分,共14页。

时量120分钟。

满分150分。

第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

(B)1.How will the man go to the train station tonight?A. By car.B. By bus.C. On foot.(C)2.How did the woman feel about her life?A. Worried.B. Satisfied.C. Bored.(B)3.What has led Amy to success?A. Her intelligence.B. Her effort.C. Her luck.(C)4.What do we know about the woman?A. She works as a tutor at night.B. She has a well­paid job.C. She got a pay raise recently.(B)5.What hat is the man looking for?A. The cowboy hat.B. The one with stars.C. The one with a baseball logo.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

湖南师大附中2019届高三上学期月考试卷(三) 教师版 数学(文)

湖南师大附中2019届高三月考试卷(三)数 学(文科)★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎭⎫y =⎝⎛12x,x ≥1,则满足A ∩B =B 的集合B 可以是(C) A.⎩⎨⎧⎭⎬⎫0,12 B .{x |-1≤x ≤1} C.⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12 D .{x |x >0} 【解析】∵x ≥1,∴0<y =⎝⎛⎭⎫12x ≤⎝⎛⎭⎫121=12,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪0<y ≤12.则满足A ∩B =B 的集合B A ,故B 可以是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.故选C. 2.已知角α的终边上有一点P (2,4),则sin (π-α)2cos (α-2π)的值为(D)A .2B .-12C .-1D .1【解析】sin (π-α)2cos (α-2π)=sin α2cos α=tan α2,又因为角α终边上有一点P (2,4),所以tanα=2,所以原式=22=1,故选D.3.已知命题p :m =-2;命题q :直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直.则命题p 是命题q 成立的(D)A .充要条件B .既非充分又非必要条件C .必要不充分条件D .充分不必要条件【解析】因为l 1⊥l 2,则2(m +1)(m -3)+2(m -3)=0,解得m =3或-2,故选D. 4.已知各项不为0的等差数列{}a n 满足a 6-a 27+a 8=0,数列{}b n 是等比数列,且b 7=a 7,则b 2·b 8·b 11等于(C)A .1B .2C .8D .4【解析】∵a 6+a 8-a 27=0,∴2a 7-a 27=0,∴a 7=2,∴b 7=2,∴b 2b 8b 11=b 3b 7b 11=b 37=8,故选C.5.对满足不等式组⎩⎪⎨⎪⎧x +1≥0x +y -4≤0x -y ≤0的任意实数x 、y ,则z =x 2+y 2-4x 的最小值(A)A .-2B .0C .1D .6【解析】:∵z =x 2+y 2-4x 表示点(x ,y )到点(2,0)的距离的平方减去4,故z 的最小值等于点(2,0)到直线x -y =0的距离的平方减去4.z min =⎝ ⎛⎭⎪⎫||222-4=-2,故选A.6.如图,在△ABC 中,∠B =45°,D 是边BC 上一点,AC =7,AD =5,DC =3,则AB 的长为(A)A.562B.522C .2 2 D.463【解析】由余弦定理得cos C =1114,sin C =5314,在△ABC 中,由正弦定理得AB =562,故选A.7.在区间[0,4]上随机地选取一个数t ,则方程x 2-tx +3t -8=0有两个正根的概率为(A)A.13B.23C.12D.14【解析】方程x 2-tx +3t -8=0有两个正根,则有⎩⎪⎨⎪⎧Δ≥0x 1+x 2>0x 1x 2>0t ≥8或83<t ≤4,又t ∈[0,4],则所求概率为P =13,故选A.8.下列函数中,y 的最小值为4的是(D)A .y =x +4x B .y =2(x 2+3)x 2+2C .y =sin x +4sin x(0<x <π) D .y =e x +4e -x 【解析】y =x +4x ,当x >0时y ≥4;当x <0时y ≤-4,故A 错误;y =2(x 2+3)x 2+2=2⎝⎛⎭⎪⎫x 2+2+1x 2+2.设t =x 2+2(t ≥2),则y =2⎝⎛⎭⎫t +1t 易知函数在t ∈[2,+∞)时单调递增,所以y ≥32,故B 错误;设t =sin x (0<x <π)则y =t +4t (0<t ≤1),易知函数在t ∈(0,1]上单调递减,所以y ≥5,故答案C 错误;y =e x +4e -x ≥4,故选D.9.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有(A)A .10个B .9个C .8个D .1个【解析】作出两个函数的图象如下,∵函数y =f (x )的周期为2,在[-1,0]上为减函数,在[0,1]上为增函数,∴函数y =f (x )在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y =|lg x |,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x =1时y =0;x =10时y =1,再结合两个函数的草图,可得两图象的交点一共有10个,故选A.10.长方体ABCD -A 1B 1C 1D 1中,AB =1,B 1C 、C 1D 与底面ABCD 所成的角分别为45°、60°,则长方体ABCD -A 1B 1C 1D 1的外接球的体积为(A)A.776πB.73πC.473πD.76π【解析】∵长方体ABCD -A 1B 1C 1D 1中,AB =1,B 1C 、C 1D 与底面ABCD 所成的角分别为45°、60°,∴BC =DD 1=3,∵长方体ABCD -A 1B 1C 1D 1的各顶点都在同一球面上,∴球的一条直径为7,可得半径R =72,因此,该长方体ABCD -A 1B 1C 1D 1的外接球的体积为V =43πR 3=776π,故选A.11.已知双曲线C :x 2a 2-y 2b 2=1的左、右焦点分别是F 1、F 2,正三角形AF 1F 2的一边AF 1与双曲线左支交于点B ,且AF 1→=2BF 1→,则双曲线C 的离心率为(B)A.32+1 B.3+1 C.33+1 D.3+12【解析】由AF 1→=2BF 1→可知:B 为AC 之中点.∴BF 2⊥AC ,∴||F 1F 2=2c ,||BC =c ,||BF 2=3c ,∴e =c a =c 3c -c 2=23-1=3+1.故选B.12.定义在R 上的奇函数f ()x 对任意x 1,x 2()x 1≠x 2都有f ()x 1-f ()x 2x 1-x 2<0.若x ,y 满足不等式f ()x 2-2x ≤-f ()2y -y 2,则当1≤x ≤4时,y -2x x +y的取值范围是(D)A.⎣⎡⎭⎫-3,-12B.⎣⎡⎦⎤-3,-12 C.⎣⎡⎭⎫-5,-12 D.⎣⎡⎦⎤-5,-12 【解析】设x 1<x 2,则x 1-x 2<0.由f (x 1)-f (x 2)x 1-x 2<0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),所以函数f (x )为减函数.又因为y =f (x )为奇函数,所以f (x 2-2x )≤-f (2y -y 2)=f (y 2-2y ),所以x 2-2x ≥y 2-2y ,即(x -y )(x +y -2)≥0.因为y -2x x +y =1-3x x +y=1-31+y x,而在条件⎩⎪⎨⎪⎧(x -y )(x +y -2)≥01≤x ≤4下,易求得y x ∈⎣⎡⎦⎤-12,1,所以1+y x ∈⎣⎡⎦⎤12,2,所以31+y x∈⎣⎡⎦⎤32,6,所以1-31+y x∈⎣⎡⎦⎤-5,-12,即y -2x x +y ∈⎣⎡⎦⎤-5,-12,故选D. 选择题答题卡第Ⅱ卷本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.13.将某班参加社会实践编号为:1,2,3,…,48的48名学生,采用系统抽样的方法抽取一个容量为6的样本,已知4号,20号,28号,36号,44号学生在样本中,则样本中还有一名学生的编号是__12__.【解析】根据系统抽样的概念,所取的6个样本的编号应成等差数列,故所求编号为12.14.在△ABC 中,||AB →=4,||AC →=3,l 为BC 的垂直平分线且交BC 于点D ,E 为l 上异于D 的任意一点,则AE →·(AB →-AC →)的值为__72__.【解析】AE →·(AB →-AC →)=(AD →+DE →)·(AB →-AC →)=AD →·(AB →-AC →)+DE →·(AB →-AC →)=AD →·(AB →-AC →)=12(AB →+AC →)·(AB →-AC →)=12(AB →2-AC →2)=12×(16-9)=72.15.过点()2,1且在x 轴上截距是在y 轴上截距的两倍的直线的方程为__x -2y =0或x +2y -4=0__.【解析】截距都为零时直线过原点,斜率为k =12,直线为x -2y =0,当截距不为零时,设方程为x 2a +ya=1,代入点()2,1得a =2,所以方程为x +2y -4=0.16.小张和小王两位同学课余时间玩一种类似于古代印度的“梵塔游戏”.有甲、乙、丙3个柱子,甲柱子上有n (n ≥3)个盘子,从上往下大小不等,大的在下,小的在上(如图),把这n 个盘子从甲柱子全部移到乙柱子上游戏结束,在移动过程中每次只能够移动一个盘子,甲、乙、丙3个柱子都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为a n ,则:(1)a 3=__7__;(2)当n ≥3时,a n +1,a n 的关系可表示为__a n +1=2a n +1__. 【解析】(1)易求a 3=23-1=7;(2)当n ≥3时,要将n 个盘子从甲柱子全部移到乙柱子上,只需将上面n -1个盘子转移到丙柱子上,最少需要移动a n -1次,再将最大的那个盘子转移到乙柱子上,最少需要移动1次,最后将丙柱子上的n -1个盘子移动到乙柱子上,最少需要移动a n -1次,即a n =2a n -1+1次,所以a n +1=2a n +1.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85.(1)计算甲班7位学生成绩的方差s 2;(2)从成绩在90分以上的学生中随机抽取两名学生,求甲班,乙班各一人的概率. 【解析】(1)∵甲班学生的平均分是85, ∴92+96+80+80+x +85+79+787=85,∴x =5.3分则甲班7位学生成绩的方差为 s 2=17[]()-62+()-72+()-52+02+02+72+112=40.6分(2)甲班成绩在90分以上的学生有两名,分别记为A ,B , 乙班成绩在90分以上的学生有三名,分别记为C ,D ,E .从这五名学生任意抽取两名学生共有10种情况:()A ,B ,()A ,C ,()A ,D ,()A ,E ,()B ,C ,()B ,D ,()B ,E ,()C ,D ,()C ,E ,()D ,E .8分其中两人均来自甲班(或乙班)共有4种情况:()A ,B ,()D ,C ,()E ,D ,(C ,E ).10分 记“甲班,乙班各一人”为事件M ,则P ()M =1-410=35,故从成绩在90分以上的学生中随机抽取两名学生,甲班,乙班各一人的概率为35.12分18.(本小题满分12分)如图,P A ⊥平面ABCD ,矩形ABCD 的边长AB =1,BC =2,E 为BC 的中点. (1)证明:PE ⊥DE ;(2)如果异面直线AE 与PD 所成的角的大小为π3,求P A 的长及三棱锥A -PED 的体积.【解析】(1)证明:连接AE ,由AB =BE =1,得AE =2,1分 同理DE =2,AE 2+DE 2=4=AD 2,由勾股定理逆定理得∠AED =90°,DE ⊥AE 3分 ∵P A ⊥平面ABCD ,∴P A ⊥DE ,又P A ∩AE =A ,∴DE ⊥平面P AE ,5分∴PE ⊥DE .6分(2)取P A 的中点M ,AD 的中点N ,连MC ,NC ,MN ,AC ,∵NC ∥AE ,MN ∥PD ,∴∠MNC 的大小等于异面直线PD 与AE 所成的角或其补角的大小,即∠MNC =2π3或π3.(或者由观察可知,∠MNC =2π3,不需分类讨论)设P A =x ,则NC =2,MN =1+x 24,MC =5+x 24.若∠MNC =2π3,由cos ∠MNC =1+x 24+2-5-x 2421+x24·2=-12,得P A =2.9分 ∴V A -PDE =V P -DAE =13×12×2×2×2=23.10分若∠MNC =π3,由cos ∠MNC =1+x 24+2-5-x 2421+x24·2=12,显然不适合题意.11分 综上所述,P A =2,三棱锥A -PED 的体积为23.12分19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且满足a 1=-2,a n +1+3S n +2=0(n ∈N *). (1)求数列{}a n 的通项公式;(2)是否存在整数对(m ,n ),使得等式a 2n -m ·a n =4m +8成立?若存在,请求出所有满足条件的(m ,n );若不存在,请说明理由.【解析】(1)当n ≥2时,(a n +1-a n )+3(S n -S n -1)=0, 即(a n +1-a n )+3a n =0,a n +1=-2a n (n ≥2),2分 另由a 2=-2a 1得a n +1=-2a n ,所以数列{a n }是首项为-2,公比为-2的等比数列,3分∴a n =(-2)n .4分(2)把a n =(-2)n 代入a 2n -m ·a n =4m +8中得(-2)2n -m ·(-2)n =4m +8, m =(-2)2n -8(-2)n +4,∴m =(-2)2n -16+8(-2)n+4=(-2)n -4+8(-2)n +4,6分 要使m 是整数,则须有8(-2)n+4是整数,∴(-2)n +4能被8整除,7分 当n =1时,(-2)n +4=2,8(-2)n +4=4,此时m =-2,8分当n =2时,(-2)n +4=8,8(-2)n +4=1,此时m =1,9分当n =3时,(-2)n +4=-4,8(-2)n +4=-2,此时m =-14,10分当n ≥4,|(-2)n +4|≥20,8(-2)n +4不可能是整数,11分综上所述,所求满足条件的整数对有(-2,1),(1,2),(-14,3).12分 20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为 3.(1)求椭圆C 的方程;(2)若椭圆C 有一个内接的平行四边形,其一组对边分别过椭圆C 的左右两焦点F 1和F 2,求这个平行四边形面积的最大值.【解析】(1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为3,∴依题意⎩⎨⎧a 2=b 2+c 2,a ∶b ∶c =2∶3∶1,bc =3,解得a =2,b =3,c =1,∴椭圆C 的方程为:x 24+y 23=1.4分(2)设过椭圆右焦点F 2的直线l :x =ty +1与椭圆交于A ,B 两点,则⎩⎨⎧x =ty +1,3x 2+4y 2=12,整理,得:(3t 2+4)y 2+6ty -9=0, 由韦达定理,得:y 1+y 2=-6t 3t 2+4,y 1y 2=-93t 2+4,6分∴|y 1-y 2|=(y 1+y 2)2-4y 1y 2=144t 2+1443t 2+4=12t 2+13t 2+4,∴S △OAB =S △OF 2A +S △OF 2B =12×|OF 2|×|y 1-y 2|=6t 2+13t 2+4,椭圆C 的内接平行四边形面积为S =4S △OAB =24t 2+13t 2+4,10分令m =1+t 2≥1,则S =f (m )=243m +1m,注意到S =f (m )在[1,+∞)上单调递减,∴S max =f (1)=6, 当且仅当m =1,即t =0时等号成立. 故这个平行四边形面积的最大值为6.12分 21.(本小题满分12分) 设f (x )=e x (ax 2+x +1).(1)若a >0,讨论f (x )的单调性;(2)x =1时,f (x )有极值,证明:当θ∈⎣⎡⎦⎤0,π2时,|f (cos θ)-f (sin θ)|<2.【解析】(1)f ′(x )=e x (ax 2+x +1)+e x (2ax +1)=a e x ⎝⎛⎭⎫x +1a (x +2),1分 当a =12时,由f ′(x )=12e x (x +2)2≥0,所以f (x )在R 上单增递增;2分当0<a <12时,由f ′(x )>0,得x >-2或x <-1a ;由f ′(x )<0,得-1a<x <-2,∴f (x )在⎝⎛⎭⎫-∞,-1a 和(-2,+∞)上单调递增,在⎝⎛⎭⎫-1a ,-2上单调递减.4分 当a >12时,由f ′(x )>0,得x >-1a 或x <-2,由f ′(x )<0,得-2<x <-1a,∴f (x )在(-∞,-2)和⎝⎛⎭⎫-1a ,+∞上单调递增,在⎝⎛⎭⎫-2,-1a 上单调递减.6分 (2)证明:∵x =1时,f (x )有极值,∴f ′(1)=3e(a +1)=0,∴a =-1,7分∴f (x )=e x (-x 2+x +1),f ′(x )=-e x (x -1)(x +2).8分 由f ′(x )>0,得-2<x <1,∴f (x )在[-2,1]上单增.9分 ∵θ∈⎣⎡⎦⎤0,π2,∴cos θ,sin θ∈[0,1],10分∴||f (cos θ)-f (sin θ)≤f (1)-f (0)=e -1<2.12分请考生在第22~23两题中任选一题作答,如果多做,则按所做的第一题计分。

湖南师大附中2025届高三上学期月考(二)数学试卷(原卷版)

湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( ) A. 1 B. 12 C. 12− D. 1−2. 已知a 是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4 C. 3 D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( ) A. 23− B. 13− C. 23 D. 134. 已知函数()2e 33,0,x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( ) A 34a ≤ B. 34a ≥ C. 1a ≤ D. 1a ≥ 5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB. 9π2C. 4πD. 8π 6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A. 52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1 B. 2 C. 3 D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3n n n a n b =−=, (i )判断数列{}{},n n a b 是否具有性质P ,并说明理由; (ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南师大附中2019届高三月考试卷(三)
数 学(文科)
命题人:王朝霞 洪利民 钱华 审题人:文科数学备课组
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页。

时量120分钟。

满分150分。

第Ⅰ卷
一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A =⎩⎨⎧⎭
⎬⎫y ⎪⎪⎭⎫y =⎝⎛12x ,x ≥1,则满足A ∩B =B 的集合B 可以是(C) A.⎩⎨⎧⎭⎬⎫0,12 B .{x |-1≤x ≤1} C.⎩⎨⎧⎭
⎬⎫x ⎪⎪0<x <12 D .{x |x >0} 【解析】∵x ≥1,∴0<y =
⎝⎛⎭⎫12x ≤⎝⎛⎭⎫121
=12,∴A =⎩⎨⎧⎭⎬⎫y ⎪
⎪0<y ≤12.则满足A ∩B =B 的集合B A ,故B 可以是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <12.故选C. 2.已知角α的终边上有一点P (2,4),则sin (π-α)2cos (α-2π)
的值为(D) A .2 B .-12
C .-1
D .1 【解析】sin (π-α)2cos (α-2π)=sin α2cos α
=tan α2,又因为角α终边上有一点P (2,4),所以tan α=2,所以原式=22
=1,故选D. 3.已知命题p :m =-2;命题q :直线l 1:2(m +1)x +(m -3)y +7-5m =0与直线l 2:(m -3)x +2y -5=0垂直.则命题p 是命题q 成立的(D)
A .充要条件
B .既非充分又非必要条件
C .必要不充分条件
D .充分不必要条件
【解析】因为l 1⊥l 2,则2(m +1)(m -3)+2(m -3)=0,解得m =3或-2,故选D.
4.已知各项不为0的等差数列{}a n 满足a 6-a 27+a 8=0,
数列{}b n 是等比数列,且b 7=a 7,则b 2·b 8·b 11等于(C)
A .1
B .2
C .8
D .4
【解析】∵a 6+a 8-a 27=0,∴2a 7-a 27=0,∴a 7=2,∴b 7=2,∴b 2b 8b 11=b 3b 7b 11=b 37=8,故
选C.
5.对满足不等式组⎩⎪⎨⎪⎧x +1≥0x +y -4≤0x -y ≤0
的任意实数x 、y ,则z =x 2+y 2-4x 的最小值(A)
A .-2
B .0
C .1
D .6
【解析】:∵z =x 2+y 2-4x 表示点(x ,y )到点(2,0)的距离的平方减去4,故z 的最小值等
于点(2,0)到直线x -y =0的距离的平方减去4.z min =⎝ ⎛⎭
⎪⎫||222-4=-2,故选A.
6.如图,在△ABC 中,∠B =45°,D 是边BC 上一点,AC =7,AD =5,DC =3,则AB 的长为(A) A.562 B.522
C .2 2 D.463
【解析】由余弦定理得cos C =1114,sin C =5314,在△ABC 中,由正弦定理得AB =562
,故选A.
7.在区间[0,4]上随机地选取一个数t ,则方程x 2-tx +3t -8=0有两个正根的概率为(A) A.13 B.23 C.12 D.14
【解析】方程x 2-tx +3t -8=0有两个正根,则有⎩⎨⎧Δ≥0
x 1+x 2>0x 1x 2>0t ≥8或83
<t ≤4,又t ∈[0,4],则所求概率为P =13
,故选A. 8.下列函数中,y 的最小值为4的是(D)
A .y =x +4x
B .y =2(x 2+3)x 2+2
C .y =sin x +4sin x
(0<x <π) D .y =e x +4e -x 【解析】y =x +4x ,当x >0时y ≥4;当x <0时y ≤-4,故A 错误;y =2(x 2+3)x 2+2
=2⎝ ⎛⎭
⎪⎫x 2+2+1x 2+2.设t =x 2+2(t ≥2),则y =2⎝⎛⎭⎫t +1t 易知函数在t ∈[2,+∞)时单调递增,所以y ≥32,故B 错误;设t =sin x (0<x <π)则y =t +4t
(0<t ≤1),易知函数在t ∈(0,1]上单调递减,所以y ≥5,故答案C 错误;y =e x +4e -x ≥4,故选D.
9.已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有(A)
A .10个
B .9个
C .8个
D .1个
【解析】作出两个函数的图象如下,∵函数y =f (x )的周期为2,在[-1,0]上为减函数,。

相关文档
最新文档