上海市金山区2015届九年级下学期期中质量检测(二模)数学试题及答案
2015年上海市浦东新区初三数学二模(含答案)

2015年上海市浦东新区初三数学⼆模(含答案)浦东新区初三教学质量检测数学试卷(2015.4.21)⼀、选择题:(本⼤题共6题,每题4分,满分24分) 1.下列等式成⽴的是()(A )2222-=-;(B )236222=÷;(C )5232)2(=;(D )120=. 2.下列各整式中,次数为5次的单项式是()(A )xy 4;(B )xy 5;(C )x+y 4;(D )x+y 5.3.如果最简⼆次根式2+x 与x 3是同类⼆次根式,那么x 的值是()(A )-1;(B )0;(C )1;(D )2. 4.如果正多边形的⼀个内⾓等于135度,那么这个正多边形的边数是()(A )5;(B )6;(C )7;(D )8. 5.下列说法中,正确的个数有()①⼀组数据的平均数⼀定是该组数据中的某个数据;②⼀组数据的中位数⼀定是该组数据中的某个数据;③⼀组数据的众数⼀定是该组数据中的某个数据.(A )0个;(B )1个;(C )2个;(D )3个.6.已知四边形ABCD 是平⾏四边形,对⾓线AC 与BD 相交于点O ,那么下列结论中正确的是()(A )当AB =BC 时,四边形ABCD 是矩形;(B )当AC ⊥BD 时,四边形ABCD 是矩形;(C )当OA =OB 时,四边形ABCD 是矩形;(D )当∠ABD =∠CBD 时,四边形ABCD 是矩形.⼆、填空题:(本⼤题共12题,每题4分,满分48分)7.计算:23-= . 8.分解因式:x x 43-= . 9.⽅程43+=x x 的解是.10.已知分式⽅程312122=+++x x x x ,如果设x x y 12+=,那么原⽅程可化为关于y 的整式⽅程是.11.如果反⽐例函数的图像经过点(3,-4),那么这个反⽐例函数的⽐例系数是. 12.如果随意把各⾯分别写有数字“1”、“2”、“3”、“4”、“5”、“6”的骰⼦抛到桌⾯上,那么正⾯朝上的数字是合数的概率是.13.为了解某⼭区⾦丝猴的数量,科研⼈员在该⼭区不同的地⽅捕获了15只⾦丝猴,并在它们的⾝上做上标记后放回该⼭区.过段时间后,在该⼭区不同的地⽅⼜捕获了32只⾦丝猴,其中4只⾝上有上次做的标记,由此可以估计该⼭区⾦丝猴的数量约有只.14.已知点G 是△ABC 的重⼼,m AB =,n BC =,那么向量AG ⽤向量m 、n 表⽰为. 15.如图,已知AD ∥EF ∥BC,AE=3BE ,AD =2,EF =5,那么BC = .16.如图,已知⼩岛B 在基地A 的南偏东30°⽅向上,与基地A 相距10海⾥,货轮C 在基地A 的南偏西60°⽅向、⼩岛B 的北偏西75°⽅向上,那么货轮C 与⼩岛B 的距离是海⾥. A B C DE F (第15题图)CAD B (第18题图)17.对于函数()2b ax y +=,我们称[a ,b ]为这个函数的特征数.如果⼀个函数()2b ax y +=的特征数为[2,-5],那么这个函数图像与x 轴的交点坐标为.18.如图,已知在Rt △ABC 中,D 是斜边AB 的中点,AC =4,BC=2,将△ACD 沿直线CD 折叠,点A 落在点E 处,联结AE ,那么线段AE 的长度等于.三、解答题:(本⼤题共7题,满分78分) 19.(本题满分10分)化简并求值:12)111(22+-÷-+x x x x ,其中12+=x . 20.(本题满分10分)解不等式组:->--≥+,1262,6325x x x x 并写出它的⾮负整数解.21.(本题满分10分,其中每⼩题各5分)已知:如图,在△ABC 中,D 是边BC 上⼀点,以点D 为圆⼼、CD 为半径作半圆,分别与边AC 、BC 相交于点E 和点F .如果AB =AC =5,cos B =54,AE =1.求:(1)线段CD 的长度;(2)点A 和点F 之间的距离.22.(本题满分10分)⼩张利⽤休息⽇进⾏登⼭锻炼,从⼭脚到⼭顶的路程为12千⽶.他上午8时从⼭脚出发,到达⼭顶后停留了半⼩时,再原路返回,下午3时30分回到⼭脚.假设他上⼭与下⼭时都是匀速⾏⾛,且下⼭⽐上⼭时的速度每⼩时快1千⽶,求⼩张上⼭时的速度.C(第21题图)23.(本题满分12分,其中每⼩题各6分)如图,已知在平⾏四边形ABCD 中,AE ⊥BC ,垂⾜为点E ,AF ⊥CD ,垂⾜为点F .(1)如果AB =AD ,求证:EF ∥BD ;(2)如果EF ∥BD ,求证:AB =AD .24.(本题满分12分,其中第(1)⼩题3分,第(2)⼩题4分,第(3)⼩题5分)已知:如图,直线y =kx +2与x 轴的正半轴相交于点A (t ,0)、与y 轴相交于点B ,抛物线c bx x y ++-=2经过点A 和点B ,点C 在第三象限内,且AC ⊥AB ,tan ∠ACB =21.(1)当t =1时,求抛物线的表达式;(2)试⽤含t 的代数式表⽰点C 的坐标;(3)如果点C 在这条抛物线的对称轴上,求t 的值.(第24题图)A B C DE F(第23题图)25.(本题满分14分,其中第(1)⼩题3分,第(2)⼩题6分,第(3)⼩题5分)如图,已知在△ABC 中,射线AM ∥BC ,P 是边BC 上⼀动点,∠APD =∠B ,PD 交射线AM 于点D ,联结CD .AB =4,BC =6,∠B =60°.(1)求证:BP AD AP ?=2;(2)如果以AD 为半径的圆A 与以BP 为半径的圆B 相切,求线段BP 的长度;(3)将△ACD 绕点A 旋转,如果点D 恰好与点B 重合,点C 落在点E 的位置上,求此时∠BEP 的余切值.A B C P D (第25题图) M AB C (第25题备⽤图)M浦东新区初三教学质量检测数学试卷参考答案及评分说明⼀、选择题1.D ; 2.A ; 3.C ; 4.D ; 5.B ; 6.C .⼆、填空题7.32-; 8.)2)(2(-+x x x ; 9.4=x ; 10.0232=+-y y ; 11.12-;12.31; 13.120; 14.n m ρρ3132+; 15.6; 16.210; 17.)(0,25; 18.558.三、解答题19.解:原式=12122+-÷-x x x x x …………………………………………………………(2分) =22)1(1x x x x -?-………………………………………………………………(2分) =xx 1-.………………………………………………………………………(2分)把12+=x 代⼊,得原式=)12)(12()12(2122-+-=+………………………………………………(2分)=22-.……………………………………………………………………(2分) 20.解:由6325-≥+x x ,得4-≥x .…………………………………………………(3分)由1262->-xx ,得2∴此不等式组的⾮负整数解是0、1.…………………………………………(2分) 21.解:(1)作DH ⊥CE ,垂⾜为点H .∵D 为半圆的圆⼼,AC =5,AE =1,∴221==EC CH .……………………(2分)∵AC AB =,∴C B ∠=∠.……………………………………………………(1分)∴54cos cos ==B C .在Rt △CDH 中,∵54cos ==CD CH C ,CH =2,∴25=CD . …………………(2分)(2)作AM ⊥BC ,垂⾜为点M ,联结AF .∵25=CD ,∴5=CF .…………………………………………………………(1分)在Rt △ACM 中,∵54cos ==AC CM C ,5=AC ,∴4=CM .………………(1分)∴3452222=-=-=CM AC AM .…………………………………………(1分)∵CF =5,CM =4,∴1=FM .……………………………………………………(1分)∴10132222=+=+=FM AM AF .………………………………………(1分)22.解:设⼩张上⼭时的速度为每⼩时x 千⽶.…………………………………………(1分)根据题意,得711212=++x x .…………………………………………………(4分)化简,得 0121772=--x x .…………………………………………………(2分)解得 31=x ,742-=x .…………………………………………………………(1分)经检验:3=x ,742-=x 都是原⽅程的解,但742-=x 不符合题意,舍去.(1分)答:⼩张上⼭时的速度为每⼩时3千⽶.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平⾏四边形,∴∠ABE=∠ADF .…………………(1分)∵AE ⊥BC ,AF ⊥CD,∴∠AEB=∠AFD=90o. ……………………(1分)∵AB =AD ,∴△ABE ≌△ADF . ………………………………………(1分)∴BE =DF .…………………………………………………………………(1分)∵BC =AD =AB =CD ,∴CDDFBC BE =.……………………………………(1分)∴EF ∥BD .………………………………………………………………(1分)(2)∵∠ABE=∠ADF ,∠AEB=∠AFD ,∴△ABE ∽△ADF .…………(1分)∴ADABDF BE =.……………………………………………………………(1分)∵EF ∥BD ,∴CDDFBC BE =.……………………………………………(1分)∵四边形ABCD 是平⾏四边形,∴AB=CD ,AD=BC .∴AB DFAD BE =.……………………………………………………………(1分)∴AB ADDF BE =.∴ABADAD AB =,即22AD AB =.…………………………………………(1分)∴AB =AD .…………………………………………………………………(1分) 24.解:(1)∵t =1,y =kx +2,∴A (1,0),B (0,2).………………………………………(1分)把点A (1,0)、B (0,2)分别代⼊抛物线的表达式,得=++-=.2,10c c b …………………………………………………………(1分)解得?=-=.2,1c b∴所求抛物线的表达式为y =-x 2-x +2.……………………………………(1分)(2)作CH ⊥x 轴,垂⾜为点H ,得∠AHC =∠AOB =90°.∵AC ⊥AB ,∴∠OAB +∠CAH =90°.⼜∵∠CAH +∠ACH =90°,∴∠OAB =∠ACH .∴△AOB ∽△CHA .…………………………………………(1分)∴ACABAH OB CH OA ==.∵tan ∠ACB =21=AC AB ,∴21==AH OB CH OA .…………………(1分)∵OA =t ,OB =2,∴CH =2t ,AH =4.…………………………(1分)∴点C 的坐标为(t -4,-2t ).…………………………(1分)(3)∵点C (t -4,-2t )在抛物线y =-x 2+bx +c 的对称轴上,∴24bt =-,即82-=t b .………………………………………(1分)把点A (t ,0)、B (0,2)代⼊抛物线的表达式,得-t 2+bt +2=0. …………(1分)∴02)82(2=+-+-t t t ,即0282=+-t t . ………………(1分)解得t =144±.………………………………………………(1分)∵点C (t -4,-2t )在第三象限,∴t =144+不符合题意,舍去.∴t =144-.……………………………………………………(1分)25.解:(1)∵AM ∥BC ,∴∠PAD =∠APB .∵∠APD =∠B ,∴△APD ∽△PBA .…………………………(1分)∴BPAPAP AD =.………………………………………………………(1分)∴BP AD AP ?=2.………………………………………………(1分)(2)过点A 作AH ⊥BC ,垂⾜为点H .∵∠B =60°,AB =4,∴BH =2,32=AH .………………(1分)设BP =x ,那么2-=x PH .∴164)32()2(2222+-=+-=x x x AP .………………………(1分)∴xx x BP AP AD 16422+-==.…………………………(1分)⽽AB =4,BP =x ,因此(i )如果两圆外切,那么41642=++-x xx x .整理,得0842=+-x x .∵08442(ii )如果两圆内切,那么41642=-+-x xx x .解得x =2.…………………………………………………………(1分)或41642=+--xx x x .此⽅程⽆解.………………………………………………(1分)综上所述,如果两圆相切,那么BP =2.(3)过点A 作AH ⊥BC ,垂⾜为点H .由题意,可知AD =AB =4,即41642=+-xx x .…………………(1分)∴x =4.………………………………………………………(1分)⼜∵BC =6,BH =2,∴CH =4.∴AD =CH .∵AD ∥CH ,∴四边形AHCD 是平⾏四边形.∵∠AHC =90°,∴平⾏四边形AHCD 是矩形.∴∠ABE =∠ADC =90°,…………………………………(1分)EB =CD =32.……………………………(1分)过点P 作PK ⊥BE ,垂⾜为点K .∵∠ABC =60°,∴∠PBK =30°.⼜∵BP =4,∴PK =2,BK =32.∴EK =34.∴cot ∠BEP =32.………………………………(1分)。
2015年上海中考各区二模数学试题及答案汇总

BC OC = ∴ OC ,∴ OD
2 2
x r 2 − x2
2
=
r 2 − x2 r
2
,…………………(1 分)
∴ xr = r − x , x + rx − r − 0 , 5 ∵ r ≠ 0 , ( rx ) + rx − 1 ≠ 0 , rx = − 1 ± (负值舍去) ,………………………(1 分) 2 BC x 5 −1 ∴sin∠ODC=sin∠COB = OB .……………(1 分) = = r 2
2 2 2 2
年长宁区初三数学教学质量检测试卷 长宁区初三数学教学质量检测试卷参考答案 初三数学教学质量检测试卷参考答案
2
x
2
2
2
∆ADE
2
∆ADE
1
2
D
E
H
F
C
P
G R
O
A
Q
B
初三数学基础考试卷—3—
2015
年上海各区县中考二模试题及答案
∴DE=CF. (1 分) (2)据题意,设 DP=t,PA=10-t,AQ=3t,QB=12-3t,BR=1.5t(0 < t < 4). (1 分) ∵矩形 ABCD ∴∠A=∠B=90° 若△PAQ 与△QBR 相似,则有 AP AQ 10 - t 3t 14 ① QB = (2 分) = t= BR 12 - 3t 1.5t 5
25
D P E F C
O R
A
Q
B
第 25 题图
初三数学基础考试卷—2—
2015
年上海各区县中考二模试题及答案
2015 18. 1
或 11 . 6 24.(本题满分 12 分) 解:(1) y = x − 2tx + t − 2 = (x - t ) - 2 ∴A(t,-2)(2 分) y ∵点 C 的横坐标为 1,且是线段 AB 的中点 ∴t =2 (1 分) ∴ y = (x - 2 ) - 2 D ∴P(1,-1).(1 分) O (2)据题意,设 C(x,-2)(0< x < t),P(x, ( x − t ) − 2 )E P B C A AC= t-x,PC= ( x − t ) (1 分) 第 24 题图 ∵AC=PC ∴t-x = ( x − t ) ∵x < t ∴ t - x=1 即 x = t - 1 ∴AC=PC=1 (2 分) AC ∵DC//y 轴 ∴ PC ∴EB= t ∴OE=2-t = EB AB 1 1 3 ∴S = 1 (OE + DP) × OD = (3 − t )(t − 1) = − t + 2t − (1< t <2). (2 分) 2 2 2 2 1 1 1 (3) S = 2 DP × AB = 2 ×1× t = 2 t (1 分) 1 3 ∵ S = 2S ∴ 1 t = 2( − t + 2t − ) 2 2 2 3 解得 t = 3 , t = 2 (不合题意)∴ t = .(2 分) 2 2 25.(本题满分 14 分) (1)证:作 OH⊥DC 于点 H,设⊙O 与 BC 边切于点 G,联结 OG. (1 分) ∴∠OHC=90° ∵⊙O 与 BC 边切于点 G ∴OG=6,OG⊥BC ∴∠OGC=90° ∵矩形 ABCD ∴∠C=90° ∴四边形 OGCH 是矩形 ∴CH=OG ∵OG=6 ∴CH=6 (1 分) ∵矩形 ABCD ∴AB=CD 第 25 题图(1) ∵AB=12 ∴CD=12 ∴DH=CD﹣CH=6 ∴DH= CH ∴O 是圆心且 OH⊥DC ∴EH=FH (2 分)
2015九年级期中数学试卷(沪科)

期中测试一、选择题1、二次函数的最小值是A.1 B.-1 C.3 D.-32、将抛物线向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为A. B.C. D.3、二次函数y=x2-2x-3的图象如图1.当y<0时,自变量x的取值范围是( )A.-1<x<3 B.x<-1 C.x>3 D.x<-1或x>34、已知二次函数的图象(0≤x≤3)如图2.关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值5、抛物线的解析式为y=(x-2)2+1,则抛物线的顶点坐标是( )A.(-2,1) B.(2,1) C.(2,-1) D.(1,2)6、把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为( ) A.y=320(x-1) B.y=320(1-x) C.y=160(1-x2) D.y=160(1-x)27、把长度为4m的铝线材料按黄金分割切割后,其中较长的一段长度是()A.、B.、C.、D.、8、两个三角形周长之比为9∶5,则面积比为()A.9∶5 B.81∶25 C.3∶ D.不能确定9、如图,在□ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF︰FC等于()A.3︰2B.3︰1C.1︰1D.1︰210、如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数图象大致是A. B. C.D.二、填空题11、有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴相交的两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数,且以这三个点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数的表达式__________________.12、已知二次函数,下列说法中错误的是________.(把所有你认为错误的序号都写上)①当时,随的增大而减小;②若图象与轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位长度,再向左平移3个单位长度后过点,则.13、如图,在中,,,,,则.14、如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是________.15、如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论:①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.其中正确的结论是.(填写所有正确结论的序号)三、作图题16、如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2).(1)画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;(3)如果点D(a,b)在线段AB上,请直接写出经过(2)的变化后D的对应点D2的坐标.四、简答题17、已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.18、已知:,求的值19、在平面直角坐标系中,反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,k).(1)当k=-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围.20、如图,在正方形中,分别是边上的点,连接并延长交的延长线于点(1)求证:;(2)若正方形的边长为4,求的长.21、九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y元.(1)求出y与x的函数关系式.(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4 800元?请直接写出结果.22、已知:如图,在△中,∥,点在边上,与相交于点,且∠.求证:(1)△∽△;(2)23、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线的“抛物线三角形”是直角三角形,求的值;(3)若抛物线与x轴交与原点O和点B,抛物线的顶点坐标为A,△是的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由.参考答案一、选择题1、A2、 C3、A4、D5、B6、D7、A8、B9、D 解析:∵AD∥BC,∴,,∴△DEF∽△BCF,∴.又∵,∴,∴10、.D二、填空题11、本题答案不唯一,只要符合题意即可,如12、7.513、③解析:①因为函数图象的对称轴为,又抛物线开口向上,所以当时,随的增大而减小,故正确;②若图象与轴有交点,则Δ,解得,故正确;③当时,不等式的解集是,故不正确; ④因为抛物线,将图象向上平移1个单位长度,再向左平移3个单位长度后为,若过点,则,解得.故正确.只有③不正确.14、14415、①③④解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴=,∵点E是AB的中点,∴AE=BE,∴=,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=DH,在△AEF和△HEF中,,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE=====2×=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故答案为:①③④.三、作图题16、解:(1)如图所示:△A1B1C1,即为所求,C1点坐标为:(3,2);(2)如图所示:△A2B2C2,即为所求,C2点坐标为:(﹣6,4);(3)如果点D(a,b)在线段AB上,经过(2)的变化后D的对应点D2的坐标为:(2a,2b).四、简答题17、解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).18、7:3:819、(1)当k=-2时,点A(1,-2),(2分)设反比例函数的解析式为y=,∵点A在反比例函数的图象上,∴将A点坐标代入上式,可得m=-2,∴y=-.(6分)(2)要使反比例函数满足y随着x的增大而增大,只需k<0.(8分)而对于二次函数y=kx2+kx-k,其对称轴为x=-,要使二次函数满足y随着x的增大而增大,在k<0的情况下,即当x<-时,才能使得y随着x的增大而增大.综上所述,需满足的条件是k<0,且x<-.(12分)20、(1)证明:在正方形中,,.∵∴,∴,∴.(2)解:∵∴.由(1)知,∴,∴.由∥,得,∴△∽△,∴,∴.21、解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2 000;当50≤x≤90时,y=(90-30)(200-2x)=-120x+12 000.综上,y=(2)当1≤x<50时,y=-2x2+180x+2 000=-2(x-45)2+6 050.∵a=-2<0,∴当x=45时,y有最大值,最大值为6 050元.当50≤x≤90时,y=-120x+12 000,∵k=-120<0,∴y随x的增大而减小.∴当x=50时,y有最大值,最大值为6 000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6 050元.(3)当1≤x<50时,由,解得20≤x≤70,故20≤x<50;当50≤x≤90时,由,解得x≤60,故50≤x≤60.综上可知,20≤x≤60.所以该商品在销售过程中,共有41天每天销售利润不低于4 800元22、证明:(1)∵,∴∠.∵∥,∴,.∴.∵,∴△∽△.(2)由△∽△,得,∴.由△∽△,得.∵∠∠,∴△∽△.∴.∴.∴.23、(1)“抛物线三角形”一定是等腰三角形; (1)分(2)(图略)∵的“抛物线三角形”是直角三角形,∴此“物线三角形”是等腰直角三角形,抛物线的顶点坐标为(b,),把y=0代入得解得x=0或b根据题意得=∴b=0或2(0舍去)∴b=2 ……………………3分(3)存在.当b<0时,作AH⊥OB于H点,如图,把y=0代入y=x2+bx得解得x1=0,x2=-b′,∴B点坐标为(-b′,0),∴A点坐标为()∵矩形ABCD以原点O为对称中心,∴OA=OB=OC=OD,∴△OAB为等边三角形,∴AH=解得b1′=0,b2∴A点坐标为(,-3),B点坐标为(,0)∴C点坐标为(),D点坐标为(设过O、C、D三点的抛物线的解析式为y=ax(x-2),把C(,3)代入得a=-1,∴所求抛物线的表达式为y=-x2+2……………………5分同理,当b>0时,y=-x2-2……………………3分。
15年(二模)九年级数学试题

2014—2015学年度第二学期教学质量阶段性检测九年级数学试题(满分:120分时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题、认真答题,你就会有出色的表现!第Ⅰ卷一、选择题:(本题满分24分,共有8道小题,每小题3分)请把唯一正确答案的字母标号涂在答题卡的相应位置1.12-的倒数是().A.2 B.12C.-2 D.12-2.下列图形中,中心对称图形有()个A .1 B. 2 C. 3 D.43.一种病毒的长度约为0.0000046mm,用科学记数法表示为().A.0.46×105-B.4.6 × 106-C. 46 ×106-D. 4.6×106 4.如图,AB是⊙O的直径,C、D是⊙O上的点,若∠ABC=64°,则∠BDC等于().A.26° B.64° C. 52° D. 128°D FECBA5.如图,在四边形ABCD中,∠A=90°,对角线BD平分∠ABC,若BC=5,AD=4,则△BCD 的面积为().A.6 B.10 C.12 D.20第4题OBDCAAB CD第5题图6.如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的。
如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )。
A .(5, 2) B .(2, 5) C .(2, 1) D .(1, 2)7.若反比例函数()0ky k x =≠的图象经过点A (-2, 1),则当x <-1时,函数值y 的取值范围是( ) .A .y >2 B. -2<y <0 C .y >-2 D .0<y <2 8.已知函数ax ax y +=2与函数y =xa,则它们在同一坐标系中的大致图象是( )第Ⅱ卷二、填空题:(本题满分18分,共有6道小题,每小题3分) 请把正确答案填写在答题卡的相应位置9.化简:01127(3.14)3π---+=() .10.某工厂生产某种产品,今年产量为200件,计划通过技术革新,使今后两年的产量都比前一年增长相同的百分数,这样三年的产量达到1400件,设这个百分数为x ,根据题意,可列方程为 __________________.11.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12 3 4 5 6 7 8 9 10 黑棋数 132342113根据以上数据,估算袋中的白棋子数量为 枚.12.如图,将边长为3cm 的正方形ABCD 沿 其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A 1B 1C 1,若两个三角形 重叠部分的面积是49cm 2,则△ABC 移动 的距离A A 1是 cm . 第12题图第8题1 3.如图所示的图案(阴影部分)是这样设计的:在△ABC 中,AB =AC =2cm ,∠ABC =30°,以A 为圆心,以AB 为半径作弧BEC ,以BC 为直径作半圆BFC ,则图案(阴影部分)的面积是 .(结果保留π)14.在直角坐标系中,正方形A 1B 1C 1O 1、A 2B 2C 2C 1、A 3B 3C 3C 2、…、A n B n C n C n -1按如图所示的方式放置,其中点A 1、A 2、A 3、…、A n 均在一次函数y kx b =+的图象上,点C 1、C 2、C 3、…、C n 均在x 轴上。
上海金山中考二模数学试题含答案

金山区初三中考模拟考试数 学 试 卷(满分150分,考试时间100分钟) 4月一、选择题(共6道小题,每小题4分,共24分)1.14-的绝对值等于……………………………………………………………………( )(A )4(B )4-(C )14(D )14-2.下列计算正确的是……………………………………………………………………( ) (A )248a a a ⋅= (B )224a a a +=;(C )22(2)2a a =;(D )633a a a ÷=.3.二次函数2(1)2y x =--+图象的顶点坐标是……………………………………( ) (A )(1,2) (B )(1,2)- (C )(1,2)--(D )(1,2)-4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,30,120.这组数据的众数和中位数分别是…………………………………………………………………………………( ) (A )120,50(B )50,20 (C )50,30(D )50,505.若一个多边形的内角和等于900,则这个多边形的边数是…………………… ( ) (A )8(B )7(C )6(D )56.在下列命题中,真命题是……………………………………………………………( ) (A )两条对角线相等的四边形是矩形 (B )两条对角线互相垂直的四边形是菱形 (C )两条对角线互相平分的四边形是平行四边形 (D )两条对角线互相垂直且相等的四边形是正方形 二、填空题(共12道小题,每小题4分,共48分) 7.在函数2y x =-中,自变量x 的取值范围是 . 8.分解因式:2x xy -= .9.如果线段AB =4cm ,点P 是线段AB 的黄金分割点,那么较长的线段BP= cm . 102x x -=的根是 . 11.不等式组10230x x -≤⎧⎨+>⎩的整数解为 .12.如果方程2210kx x ++=有两个不等实数根,则实数k 的取值范围是 . 13.点11(,)A x y ,点22(,)B x y 是双曲线2y x=-上的两点,若120x x <<,则1y2y (填“=”、“>”、“<”).14.有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .15.如图,梯形ABCD 中,AB ∥CD ,CD AB 2=,AD a= ,AB b =,请用向量b a、表示向量AC = .16.已知两圆的圆心距为4,其中一个圆的半径长为3,那么当两圆内切时,另一圆的半径为 .17.如图,已知AD 为△ABC 的角平分线,//DE AB 交AC 于E ,如果23AE EC =,那么 ABAC = .18. 在Rt △ABC 中,∠C =90º ,BC =4 ,AC =3,将△ABC 绕着点B 旋转后点A 落在直线BC上的点A ',点C 落在点C '处,那么'tan AAC 的值是 . 三、解答题(共7道小题,共78分)19.(本题满分1010212sin 45(2)321-⎛⎫-+-π- ⎪-⎝⎭20.(本题满分10分)解方程:281242x x x x -=--+ 21.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图,在平行四边形ABCD 中,以点A 为圆心,AB 为半径的圆,交BC 于点E . (1)求证:ABC ∆≌EAD ∆;(2)如果AC AB ⊥,6=AB ,53cos =∠B , 求EC 的长.ECBAB CDABCDEA第15题图第17题图22.(本题满分10分,第(1)(2)小题满分各3分,第(3)小题满分4分)今年3月5日,光明中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道、去敬老院服务和到社区文艺演出三项。
2024届上海市金山区初三二模数学试题及答案

上海市金山区2024届初三二模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.单项式22a b 的系数和次数分别是().A 2 和2;.B 2 和3;.C 2和2;.D 2和3.2.下列多项式分解因式正确的是().A 222a b a b ;.B 222a b a b ;.C 22323a a a a ;.D 2422a a .3.如果关于x 的一元二次方程220x x a 有实数根,那么a 的取值范围是().A 1a ;.B 1a ;.C 1a ;.D 1a .4.在气象学上,每天在规定时段采集若干气温的平均数是当天的平均气温,连续5天的平均气温在10C 以上,这5天中的第1个平均气温大于10C 以上的日期即为春天的开始,那么下列表述正确的是().A 这5天中每天采集的若干气温中最高气温一定都大于10C ;.B 这5天中每天采集的若干气温中最低气温一定都大于10C ;.C 这5天中每天采集的若干气温的中位数一定都大于10C ;.D 这5天中每天采集的若干气温的众数一定都大于10C .5.在四边形ABCD 中,//AD BC ,AB AD ,对角线AC 、BD 相交于点O .下列说法能使四边形ABCD 为菱形的是().A AB CD ;.B ACB ACD ;.C BAC DAC ;.D AC BD .6.下列命题中真命题是().A 相等的圆心角所对的弦相等;.B 正多边形都是中心对称图形;.C 如果两个图形全等,那么他们一定能通过平移后互相重合;.D 如果一个四边形绕对角线的交点旋转90 后,所得图形与原来的图形重合,那么这个四边形是正方形.二、填空题:(本大题共12题,每题4分,满分48分)7.计算:23a a .8.已知 11f x x,则f.9.已知关于x 2 ,则x.10.不等式1102x 的解集是.11.反比例函数的图像经过点 1,2 ,则这个反比例函数的解析式是.12.从1到10这十个自然数中抽取一个数,这个数是素数的概率是.13.在ABC 中,如果A 和B 互余,那么C .14.如果正n 边形的内角等于外角的5倍,那么n .15.如图,已知平行四边形ABCD 中,AB a ,AC b ,E 为AD 上一点,2AE ED ,那么用a 、b 表示AE.16.17.B 落在点18.C ,P 是AB 上的的取值范围是.19.(本题满分10分)计算:212142sin 6023.20.(本题满分10分)解方程:2411x xx x x .21.如射线1l (1)(2)(3)第22题图2上海中心大厦位于中国上海浦东陆家嘴金融贸易区核心区,是一幢集商务、办公、酒店、商业、娱乐、观光等功能的超高层建筑.它的附近有一所学校的数学兴趣小组在讨论建筑物的高度测量问题,讨论发现要测量学校教学楼的高度可以用“立杆测影”的方法,他们在平地上立一根2米长并且与地面垂直的测量杆,量得影子长为1.6米,同时量得教学楼的影子长为24米,这样就可以计算出教学楼的高度.进而在讨论测量上海中心大厦高度时,由于距离远和周围建筑密集等因素,发现用“立杆测影”的方法不可行,要采用其他方法,经讨论提出两个方案(测角仪高度忽略不计):方案1:如图1所示,利用计算所得的教学楼(AB )高度,分别在教学楼的楼顶(点A )和楼底地面(点B 方案2的长厦的高度..(1)(2)第23题图第24题图如图,已知:D 是ABC 的边BC 上一点,点E 在ABC 外部,且BAE CAD ,ACD ADCADE ,DE 交AB 于点F .(1)求证:AB AE ;(2)如果AD AF ,求证:2EF BF AB .24.(本题满分12分,第(1)小题4分,第(2)①小题4分,第(2)②小题4分)已知:抛物线2y x bx c 经过点 3,0A 、 0,3B ,顶点为P .(1)求抛物线的解析式及顶点P 的坐标;(2)平移抛物线,使得平移后的抛物线顶点Q 在直线AB 上,且点Q 在y 轴右侧.①若点B 平移后得到的点C 在x 轴上,求此时抛物线的解析式;②若平移后的抛物线与y 轴相交于点D ,且BDQ 是直角三角形,求此时抛物线的解析式.第25题图1第25题图225.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,已知:等腰梯形ABCD 中,//AD BC ,AB DC ,以A 为圆心,AB 为半径的圆与BC 相交于点E ,与CD 相交于点F ,联结AE 、AC 、BF ,设AE 、AC 分别与BF 相交于点G 、H ,其中H 是AC 的中点.(1)求证:四边形AECD 为平行四边形;(2)如图1,如果AE BF ,求ABBC的值;(3)如图2,如果BG GH ,求ABC 的余弦值.=上海市金山区2024届初三二模数学试卷-简答2023学年第二学期模拟检测初三数学试卷参考答案与评分意见一、选择题(本大题6小题,每小题4分,满分24分)1.B ;2.D ;3.A ;4.A ;5.C ;6.D. 二、填空题:(本大题共12题,每题4分,满分48分) 7.5a ; 81; 9.-3; 10.x <-2; 11.2y x=−; 12.25; 13.90;14.12; 15.2233b a −; 16. 378; 17. 18.1057BP ≤≤. 三、解答题:(本大题共7题,满分78分) 19.解:原式=(2292−−,-------------------------------------------------------(8分) =9−.--------------------------------------------------------------------------------------(2分) 20.解:()()()241111x xx x x x x x x x x +⋅−−⋅−=−−−----------------------------------------(2分) 224x x x x +−=−220x x −−=-------------------------------------------------------------------------------------(3分) 解得:121,2x x =−=,.------------------------------------------------------------------(2分) 经检验:121,2x x =−=都是原方程的根.----------------------------------------------(2分) 原方程的根是121,2x x =−=.-------------------------------------------------------------(1分)21.解:(1)当销售量为 20 千克时,销售额和成本相等;-----------------------------------(3分) (2)每千克草莓的销售价格是 20 元;-------------------------------------------------------(3分) (3)设11y k x =,222y k x b =+. 由题意,得120400k =,22220020400b k b =⎧⎨+=⎩,解得:120k =,2220010b k =⎧⎨=⎩,∴1l 的解析式是120y x =,2l 的解析式是210200y x =+,---------------------------------(2分) ∵销售利润为2000元,∴()20102002000x x −+=,解得220x =,∴如果销售利润为2000元,那么销售量为220千克.-----------------------------------------(2分)22. 解:(1)教学楼(AB )的高度为 30 米;--------------------------------------------(4分) (2)方案1.设SH x =米,过点A 作AE ⊥SH ,垂足为点E ,∴∠ABH=∠EHB=∠AEH=90°,∴四边形EHBA 是矩形,∴EA=HB ,EH=AB=30,--(1分) 在Rt △AES 中,∠AES =90°,()cot 10.66730AE SE SAE x =⋅∠=−,-----------------------(1分) 在Rt △BHS 中,∠BHS =90°,cot 10.161BH SH SBH x =⋅∠=,-----------------------------(1分) ∴()10.6673010.161x x −=,---------------------------------------------------------------------(1分) 解得:632x ≈,---------------------------------------------------------------------------------------(1分) ∴上海中心大厦(SH )的高度为632米. --------------------------------------------------------(1分) 方案2.设SH x =米,在Rt △SHC 中,∠SHC =90°,cot 10.159CH SH SCH x =⋅∠=,--------------------------(1分) 在Rt △SHD 中,∠SHD =90°,cot 10.254DH SH SDH x =⋅∠=,--------------------------(1分) ∴10.25410.15960x x −=,----------------------------------------------------------------------------(2分) 解得:632x ≈,----------------------------------------------------------------------------------------(1分) ∴上海中心大厦(SH )的高度为632米. -------------------------------------------------------(1分)23.证明:(1)∵∠ACD =∠ADC ,∴AC =AD ,-------------------------------------------------(1分) ∵∠BAE =∠CAD ,∴∠BAC =∠EAD ,-------------------------------------------------------------(1分) ∵∠ACD =∠ADE , ∴△ABC ≌△AED ,-------------------------------------------------------------------------------------(2分) ∴AB =AE . ------------------------------------------------------------------------------------------------(2分)(2)∵AD =AF ,∴∠ADF =∠AFD ,∴∠DAF =180°-2∠ADF ,-----------------------------(1分) ∵∠ACD =∠ADC ,∴∠CAD =180°-2∠ADC , ∵∠ADC =∠ADE ,∴∠CAD =∠DAF ,∵∠BAE =∠CAD ,∴∠DAF =∠BAE ,-----------------------------------------------------------(1分) ∵△ABC ≌△AED ,∴AB =AE , ∴△ABD ≌△AEF ,∴BD =EF ,---------------------------------------------------------------------(1分) ∵∠BDF =180°-2∠ADF ,∴∠BDF =∠BAD ,∵∠B =∠B ,∴△BDF ∽△BAD ,-------(1分) ∴BD BFBA BD=,∴2BD BF AB =⋅,∴2EF BF AB =⋅.-----------------------------------------(2分)24.解:(1)由题意得:9303b c c ++=⎧⎨=−⎩,∴2,3b c =−=−,抛物线的解析式为223y x x =−−,----------------------------------------(2分) ()222314y x x x =−−=−−,顶点P 的坐标是(1,-4).-------------------------------------(2分) (2)①设直线AB 的解析式是y mx n =+,∴303m n n +=⎧⎨=−⎩,∴1,3m n ==−,∴直线AB 的解析式是3y x =−,-----------------------------------------------------------------(2分)设Q 点的坐标是(t ,t -3),其中t >0,此时抛物线的解析式是()23y x t t =−+−, ∵点B 平移后得到的点C 在x 轴上,∴抛物线向上平移了3个单位, ∴31t −=−,即2t =,--------------------------------------------------------------------------------(1分) ∴此时抛物线的解析式是()2223y x =−+−,即243y x x =−+. ---------------------------(1分) ②抛物线()23y x t t =−+−,与y 轴的交点是D (0,23t t +−),如果∠BDQ=90°,即DQ ⊥y 轴不合题意,------------------------------------------------------(1分) 如果∠BQD=90°,∵∠AOB =90°,AO=BO ,∴∠OAB =∠OBA =45°,∴∠QBD =∠BDQ =45°,∴QB =QD , 作QE ⊥y 轴,则BE =DE ,∴QE=12BD ,------------------------------------------------------(1分) ∵QE=t ,BD=2t t +,∴()212t t t =+, 解得10t =(不合题意,舍去)或21t =,∴1t =,----------------------------------------------(1分) 此时抛物线的解析式是()2113y x =−+−,即221y x x =−−. ------------------------------(1分) 25.(1)证明:∵AB=AE ,∴∠ABE =∠AEB ,---------------------------------------------------(1分) ∵等腰梯形ABCD 中,AD ∥BC ,AB =DC ,∴∠ABC =∠BCD ,----------------------------(1分) ∴∠AEB =∠BCD ,∴.AE ∥DC ,--------------------------------------------------------------------(1分) ∴四边形AECD 为平行四边形.---------------------------------------------------------------------(1分) (2)∵AE ⊥BF ,∴BG =GF ,-----------------------------------------------------------------------(1分) ∵AE ∥DC ,∴12BG BE EG BF EC CF ===,-----------------------------------------------------------(1分)设GE=a ,则CF=2a , ∵AE ∥DC ,∴AH AGCH CF=,∵AH =CH ,∴AG=CF=2a ,∴AB=AE=3a ,-----------------(1分)在Rt △ABG 中,∠AGB=90°,∴BG =;在Rt △BGE 中,∠BEG=90°,∴BE =,∴BC =,------------------------------------------------------------------------------------------(1分)∴AB BC ==---------------------------------------------------------------------------------(1分) (3)∵AE ∥DC ,∴AH AG GHCH CF HF==,∵AH =CH ,∴GH=HF ,AG =CF , ∵BG=GH ,∴BG=GH=HF ,∵AE ∥DC ,∴13EG BG BE CF BF BC ===,∴13EG AG =,------(1分)作AI ⊥BC ,垂足为点I ,联结AF ,∵AB=AE ,∴BI=IE ,设AB=x ,BI=a ,则34AG x =,IC=5a , ∵AB=AF ,∴∠ABG =∠AFH ,∴△ABG ≌△AFH ,∴AG =AH 34x =,∴32AC x =,--(1分) 在Rt △ABI 中,∠AIB=90°,∴22222AI AB BI x a =−=−,在Rt △ACI 中,∠AIC=90°,∴222229254AI AC CI x a =−=−, ∴22229254x a x a −=−,------------------------------------------------------------------------------(1分)∴a x =,在Rt △ABI 中,∠AIB=90°,∴cos a ABC x ∠==-------------------(2分)。
2024年上海市金山区中考数学二模试卷+答案解析
2024年上海市金山区中考数学二模试卷一、选择题:本题共6小题,每小题4分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.单项式的系数和次数分别是()A.和2B.和3C.2和2D.2和32.下列多项式分解因式正确的是()A. B.C. D.3.关于x的一元二次方程有实数根,那么a的取值范围是()A. B. C. D.4.在气象学上,每天在规定时段采集若干气温的平均数是当天的平均气温,连续5天的平均气温在以上,这5天中的第1个平均气温大于以上的日期即为春天的开始,那么下列表述正确的是()A.这5天中每天采集的若干气温中最高气温一定都大于B.这5天中每天采集的若干气温中最低气温一定都大于C.这5天中每天采集的若干气温的中位数一定都大于D.这5天中每天采集的若干气温的众数一定都大于5.在四边形ABCD中,,,对角线AC、BD相交于点下列说法能使四边形ABCD为菱形的是ㅤㅤA. B.C. D.6.下列命题中真命题是()A.相等的圆心角所对的弦相等B.正多边形都是中心对称图形C.如果两个图形全等,那么他们一定能通过平移后互相重合D.如果一个四边形绕对角线的交点旋转后,所得图形与原来的图形重合,那么这个四边形是正方形二、填空题:本题共12小题,每小题4分,共48分。
7.计算:______.8.已知,______.9.已知关于x的方程,则______.10.不等式的解集是______.11.若反比例函数的图象经过点,则该反比例函数的解析式解析式也称表达式为__________.12.从1到10这十个自然数中抽取一个数,这个数是素数的概率是______.13.在中,和互余,那么______14.正n边形的内角等于外角的5倍,那么______.15.如图,已知平行四边形ABCD中,,,E为AD上一点,,那么用,表示______.16.数据显示,2023年全球电动汽车销量约1400万辆,其中市场份额前三的品牌和其它品牌的市场份额扇形统计图如图所示,那么其它品牌的销量约为______万辆.17.如图,在中,,,D是AB的中点,把沿CD所在的直线翻折,点B落在点E处,如果,那么______.18.如图,在中,,,,以点C为圆心作半径为1的圆C,P是AB上的一个点,以P为圆心,PB为半径作圆P,如果圆C和圆P有公共点,那么BP的取值范围是______.三、解答题:本题共7小题,共78分。
上海市2015各区初三数学二模考试第18题详细解析
1.黄浦OP r外一点,如图,点为半径的圆是以18.2??r??OPOP OPP在线段,则点上,若满足?OPP是点的反演点,如图,在称点关于圆??O?BO?4ABO?B?90BAB?2A分,圆、,Rt△的半径为中,2,如果点,??OBBAA;别是点、关于圆的反演点,那么的长是2.奉贤18.如图,已知钝角三角形ABC,∠A=35°,OC为边AB上的中线,将△AOC ''',处,A处,点落在点联结绕着点O顺时针旋转,点C落在BC边上的点ABA CC '、在同一直线上,如果点A、C A;那么∠的度数为''CBABAO(第18题图)3.普陀4杨3?BAC tan?,,18. 如图,△中,ABC?90?ABC?4,将三角形绕着点旋转,点落在直线C A4?BC??处,若、、上的点处,点落在点CC BBBAB?恰好在一直线上,则的长为;BAB5.松江A,BC=6cmAB=AC=5cm,△18.如图,在ABC中,如果将D.交AC于点BD 平分∠BDABC,D处,A沿BD翻折,点落在点A′ABD△2.的面积为△那么D A′C_______________cm CBC6.崇明F中,18.如图,在,,点是DCBABC??CA??C?90BCD与点重合,的中点,将沿着直线EF折叠,使点ABC?DABAE ,那么的值于点折痕交于点,交BED sin?ABACFE 18题图)(第.为7.浦东徐汇8闵行9.ABC点D在边BC上,将△C=90o18. 如图,已知在Rt△ABC中,∠,AC=BC=1,CB AC 1与边处,联结AC 1,直线落在点沿直线AD翻折,使点CC 1 BF= ▲的延长线相交于点F.如果∠DAB=∠BAF,那么10.静安、青浦外切、O⊙.18如图,⊙O的半径为1,O的半径为2,O=5,⊙O分别与⊙O12121.半径内切,那么⊙O的取值范围是O与⊙r2OO 虹口11.1A2,. 18在中,,(如图)若将绕点顺时针方向旋转到的位置,.联结,则的长为D BC长宁12.ADEF如图,18.△ABC≌△(点A、、B分别与点D △,BC=6,ABC固定不动,AB=AC=5对应)E,F边从在△DEF运动,并满足点EBCB移动向C M EF DE重合)、不与(点EBC,始终经过点,A BEC是等腰三角形时,△,当MAC与边交于点AEM.BE=13金山A DM ,把矩形中,,.在矩形188AB?6ABCD?AD上的点沿直线翻折,点落在边MNABCDADEB BCN处,若,那么的长等于ENAMAE?2嘉定、宝山14.GDA上,中,,点在边18.在矩形DC15ABCD?ADE,翻折后点落到点联结,△沿直线FADEAEDAE E,如果作,垂足为点,如图5过点GAD?FGF.,那么GD3AD??DE F CB5图解析答案1.黄浦2.奉贤3.普陀4.杨浦5.松江6.崇明7.浦东徐汇89.闵行10.静安、青浦虹口11.12.长宁13.金山嘉定、宝山14.。
2015年上海市金山区中考数学二模试卷及答案解析
2015年上海市金山区中考数学二模试卷一、选择题(本题共6小题,每题4分,满分24分,下列各题的四个选项中,有且只有一个选项是正确的,)1.(4分)(2015•金山区二模)下列各数中与是同类二次根式的是()A.B.C.D.2.(4分)(2015•金山区二模)下列代数式中是二次二项式的是()A.xy﹣1 B.C.x2+xy2D.3.(4分)(2015•金山区二模)若直线y=x+1向下平移2个单位,那么所得新直线的解析式是()A.y=x+3 B.y=x﹣3 C.y=x﹣1 D.y=﹣x+14.(4分)(2015•金山区二模)一次数学单元测试中,初三(1)班第一小组的10个学生的成绩分别是:58分、72分、76分、82分、82分、89分、91分、91分、91分、98分,那么这次测试第一小组10个学生成绩的众数和平均数分别是()A.82分、83分B.83分、89分C.91分、72分D.91分、83分5.(4分)(2015•金山区二模)如图,AB∥CD,∠D=13°,∠B=28°,那么∠E等于()A.13°B.14°C.15°D.16°6.(4分)(2015•金山区二模)在Rt△ABC中,∠C=90°,AC=BC,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于()A.2cm B.2cm C.2cm D.4cm二、填空题(本题共12题,每小题4分,满分48分)7.(4分)(2015•金山区二模)计算:|﹣|﹣= .8.(4分)(2015•金山区二模)已知函数f(x)=,那么f(3)= .9.(4分)(2015•呼和浩特)分解因式:x3﹣x= .10.(4分)(2015•金山区二模)已知不等式≥3,那么这个不等式的解集是.11.(4分)(2015•金山区二模)已知反比例函数y=(k≠0)的图象经过点(1,2),那么反比例函数的解析式是.12.(4分)(2015•金山区二模)方程﹣=1的解是.13.(4分)(1997•辽宁)方程的解为.14.(4分)(2015•金山区二模)有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是.15.(4分)(2015•金山区二模)已知关于x的一元二次方程mx2+x+1=0有两个不相等的实数根,那么m的取值范围是.16.(4分)(2015•金山区二模)在△ABC中,点D,E分别在边AB,AC上,AD=BD,AE=2EC.设=,=,那么= (用、的式子表示)17.(4分)(2015•金山区二模)在平面直角坐标系中,我们把半径相等且外切、连心线与直线y=x平行的两个圆,称之为“孪生圆”;已知圆A的圆心为(﹣2,3),半径为,那么圆A的所有“孪生圆”的圆心坐标为.18.(4分)(2015•金山区二模)在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处.若AE=2AM,那么EN的长等于.三、(本题共有7题,满分78分)19.(10分)(2015•金山区二模)化简:(﹣)÷+.20.(10分)(2015•金山区二模)解方程组.21.(10分)(2015•金山区二模)如图,点P表示某港口的位置,甲船在港口北偏西30°方向距港口50海里的A处,乙船在港口北偏东45°方向距港口60海里的B处,两船同时出发分别沿AP,BP方向匀速驶向港口P,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.22.(10分)(2015•金山区二模)为了解本区初中学生的视力情况,教育局有关部门采用抽根据图表完成下列问题:(1)填完整表格及补充完整图一;(2)“类型D”在扇形图(图二)中所占的圆心角是度;(3)本次调查数据的中位数落在类型内;(4)视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人.23.(12分)(2015•金山区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E在边AC上,延长BC至D点,使CE=CD,延长BE交AD于F,过点C作CG∥BF,交AD于点G,在BE上取一点H,使∠HCE=∠DCG.(1)求证:△BCE≌△ACD;(2)求证:四边形FHCG是正方形;[注:若要用∠1、∠2等,请不要标在此图,要标在答题纸的图形上].24.(12分)(2015•金山区二模)已知抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx﹣8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.25.(14分)(2015•金山区二模)如图,已知在△ABC中,AB=AC=10,tan∠B=(1)求BC的长;(2)点D、E分别是边AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM,交于点O,设MN=x,四边形ADOE的面积为y.①求y关于x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.2015年上海市金山区中考数学二模试卷参考答案与试题解析一、选择题(本题共6小题,每题4分,满分24分,下列各题的四个选项中,有且只有一个选项是正确的,)1.(4分)(2015•金山区二模)下列各数中与是同类二次根式的是()A.B.C.D.【考点】同类二次根式.【分析】化简各选项后根据同类二次根式的定义判断.【解答】解:A.正确;B.与不是同类二次根式,故错误;C.,故错误;D.=2,故错误;故选:A.【点评】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.2.(4分)(2015•金山区二模)下列代数式中是二次二项式的是()A.xy﹣1 B.C.x2+xy2D.【考点】多项式.【分析】只要次数为2,项数为2即可作出选择.【解答】解:A、xy﹣1是二次二项式,正确;B、是分式,不是整式,错误;C、x2+xy2是三次二项式,错误;D、是根式,不是整式,错误;故选A.【点评】考查了多项式,注意多项式中次数最高项的次数是这个多项式的次数,每个单项式叫做多项式的项.3.(4分)(2015•金山区二模)若直线y=x+1向下平移2个单位,那么所得新直线的解析式是()A.y=x+3 B.y=x﹣3 C.y=x﹣1 D.y=﹣x+1【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移规律解答即可.【解答】解:由题意得:平移后的解析式为:y=x+1﹣2=x﹣1,即所得直线的表达式是y=x﹣1.故选C.【点评】本题考查一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.4.(4分)(2015•金山区二模)一次数学单元测试中,初三(1)班第一小组的10个学生的成绩分别是:58分、72分、76分、82分、82分、89分、91分、91分、91分、98分,那么这次测试第一小组10个学生成绩的众数和平均数分别是()A.82分、83分B.83分、89分C.91分、72分D.91分、83分【考点】众数;加权平均数.【分析】根据众数和平均数的概念求解.【解答】解:这组数据中91出现的次数最多,故众数为91分,平均数为:=83.故选D.【点评】本题考查了众数和平均数的知识,一组数据中出现次数最多的数据叫做众数,众数可能不唯一.5.(4分)(2015•金山区二模)如图,AB∥CD,∠D=13°,∠B=28°,那么∠E等于()A.13°B.14°C.15°D.16°【考点】平行线的性质;三角形的外角性质.【分析】先根据平行线的性质求出∠BCD的度数,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥CD,∠B=28°,∴∠BCD=∠B=28°.∵∠BCD是△CDE的外角,∠D=13°,∴∠E=∠BCD﹣∠D=28°﹣13°=15°.故选C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.6.(4分)(2015•金山区二模)在Rt△ABC中,∠C=90°,AC=BC,若以点C为圆心,以2cm长为半径的圆与斜边AB相切,那么BC的长等于()A.2cm B.2cm C.2cm D.4cm【考点】直线与圆的位置关系.【分析】根据题意画出图形,再根据勾股定理求出BC的长即可.【解答】解:如图所示,∵在Rt△ABC中,∠C=90°,AC=BC,CD⊥AB,∴△ABC是等腰直角三角形.∵以点C为圆心,以2cm长为半径的圆与斜边AB相切,∴CD=2cm,∵∠B=45°,∴CD=BD=2,∴BC===2(cm).故选B.【点评】本题考查的是直线与圆的位置关系,根据题意画出图形,利用数形结合求解是解答此题的关键.二、填空题(本题共12题,每小题4分,满分48分)7.(4分)(2015•金山区二模)计算:|﹣|﹣= 0 .【考点】二次根式的加减法.【分析】先进行绝对值的化简,然后合并.【解答】解:原式=﹣=0.故答案为:0.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握绝对值的化简以及二次根式的加法法则.8.(4分)(2015•金山区二模)已知函数f(x)=,那么f(3)= 1 .【考点】函数值.【分析】把x的值代入函数关系式进行计算即可得解.【解答】解:f(3)==1.故答案为:1.【点评】本题考查了函数值求解,是基础题,准确计算是解题的关键.9.(4分)(2015•呼和浩特)分解因式:x3﹣x= x(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.10.(4分)(2015•金山区二模)已知不等式≥3,那么这个不等式的解集是x≥7 .【考点】解一元一次不等式.【分析】去分母,移项,合并同类项,系数化成1即可.【解答】解:≥3,x﹣1≥6,x≥7.故答案为:x≥7.【点评】本题考查了解一元一次不等式的应用,解此题的关键是能根据不等式的性质正确解一元一次不等式,难度适中.11.(4分)(2015•金山区二模)已知反比例函数y=(k≠0)的图象经过点(1,2),那么反比例函数的解析式是y=.【考点】待定系数法求反比例函数解析式.【分析】因为函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.【解答】解:∵反比例函数y=(k≠0)的图象经过点(1,2),∴k=xy=1×2=2,∴反比例函数的解析式是y=.故答案为y=.【点评】此题比较简单,考查了用待定系数法求反比例函数的解析式,是中学阶段的重点.12.(4分)(2015•金山区二模)方程﹣=1的解是x=﹣2 .【考点】解分式方程.【专题】计算题.【分析】已知方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程变形得:+=1,去分母得:1+2x=x﹣1,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(1997•辽宁)方程的解为3 .【考点】无理方程.【分析】首先把方程两边分别平方,然后解一元二次方程即可求出x的值.【解答】解:两边平方得:2x+3=x2∴x2﹣2x﹣3=0,解方程得:x1=3,x2=﹣1,检验:当x1=3时,方程的左边=右边,所以x1=3为原方程的解,当x2=﹣1时,原方程的左边≠右边,所以x2=﹣1不是原方程的解.故答案为3.【点评】本题主要考查解无理方程,关键在于首先把方程的两边平方,注意最后要把x的值代入原方程进行检验.14.(4分)(2015•金山区二模)有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是.【考点】概率公式;轴对称图形.【分析】由有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同),其中轴对称图案的是等边三角形、正方形、圆,直接利用概率公式求解即可求得答案.【解答】解:∵有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同),其中轴对称图案的是等边三角形、正方形、圆,∴从中任意抽取一张,抽到有轴对称图案的卡片的概率是:.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2015•金山区二模)已知关于x的一元二次方程mx2+x+1=0有两个不相等的实数根,那么m的取值范围是m<且m≠0 .【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义以及根的判别式的意义可得△=1﹣4m>0且m≠0,求出m 的取值范围即可.【解答】解:∵一元二次方程mx2+x+1=0有两个不相等的实数根,∴△>0且m≠0,∴1﹣4m>0且m≠0,∴m<且m≠0,故答案为:m<且m≠0.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.16.(4分)(2015•金山区二模)在△ABC中,点D,E分别在边AB,AC上,AD=BD,AE=2EC.设=,=,那么= ﹣(用、的式子表示)【考点】*平面向量.【分析】首先根据题意画出图形,然后由在△ABC 中,点D ,E 分别在边AB ,AC 上,AD=BD ,AE=2EC ,求得与,再利用三角形法则求解即可求得答案.【解答】解:如图,∵在△ABC 中,点D ,E 分别在边AB ,AC 上,AD=BD ,AE=2EC ,∴==,==,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.注意三角形法则的应用. 17.(4分)(2015•金山区二模)在平面直角坐标系中,我们把半径相等且外切、连心线与直线y=x 平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(﹣2,3),半径为,那么圆A 的所有“孪生圆”的圆心坐标为 (﹣4,1),(0,5) . 【考点】相切两圆的性质;坐标与图形性质.【分析】如图,与⊙A 外切半径相等且连心线与直线y=x 平行的两个圆分别为⊙B ,⊙C ,运用两圆外切的性质和点的坐标特点,运用数形结合求出图形中AE 、BE 、AF 、CF 的长,进而得到两圆心的坐标.【解答】解:点A 的坐标为(﹣2,3过点A 的直线与y=x 平行并过点A , ∴过点A 的直线与y=x 平行,∴过点A 的直线与两坐标轴围成等腰直角三角形,∴与⊙A 外切半径相等且连心线与直线y=x 平行的两个圆分别为⊙B ,⊙C如图,△AEB △AFC 都是等腰直角三角形,AB=AC=2,∴AE=BE=AF=CF=2, ∴B (﹣4,1),C (0,5). 故答案为:(﹣4,1),C (0,5)【点评】本题主要考查了两圆外切的性质,点的坐标特征,等腰直角三角形,熟练的运用数形结合思想是解决问题的关键.18.(4分)(2015•金山区二模)在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处.若AE=2AM,那么EN的长等于3.【考点】翻折变换(折叠问题).【分析】设AM=x,表示出EM=BM=6﹣x,AE=2x,再利用勾股定理列出方程求出x,然后求出BM,AE,过点N作NF⊥AD于F,求出△AME和△FEN,再利用相似三角形对应边成比例列式求解即可.【解答】解:设AM=x,则EM=BM=6﹣x,AE=2AM=2x,在Rt△AME中,由勾股定理得,AM2+AE2=EM2,即x2+(2x)2=(6﹣x)2,整理得,x2﹣3x+9=0,解得x1=,x2=(舍去),所以,BM=6﹣=,AE=﹣3+3,过点N作NF⊥AD于F,易求△AME∽△FEN,所以,=,即=,解得EN=3.故答案为:3.【点评】本题考查了翻折变换的性质,勾股定理,相似三角形的判定与性质,作辅助线构造出相似三角形是解题的关键,难点在于利用勾股定理列方程求出AM的长度.三、(本题共有7题,满分78分)19.(10分)(2015•金山区二模)化简:(﹣)÷+.【考点】分式的混合运算.【专题】计算题.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后合并即可得到结果.【解答】解:原式=[﹣]•x+=•x+=﹣+==.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.20.(10分)(2015•金山区二模)解方程组.【考点】高次方程.【分析】用代入法即可解答,即把①化为x=y﹣1,把x=y﹣1代入②得关于y的一元二次方程,解方程求出y,把y代入x=y﹣1求出x即可.【解答】解:由①得,x=y﹣1③,把③代入②得:(y﹣1)2﹣4(y﹣1)×y+4y2=4,即y2+2y﹣3=0,解得:y1=1,y2=﹣3,把y1=1,y2=﹣3代入①得,x1=0,x2=﹣4,故原方程组的解为:,.【点评】本题考查的是二元二次方程组的解法,把二元一次方程变形,即用一个未知数表示另一个未知数,代入二元二次方程,得到一个一元二次方程,再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中解方程即可.21.(10分)(2015•金山区二模)如图,点P表示某港口的位置,甲船在港口北偏西30°方向距港口50海里的A处,乙船在港口北偏东45°方向距港口60海里的B处,两船同时出发分别沿AP,BP方向匀速驶向港口P,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.【考点】解直角三角形的应用-方向角问题.【分析】根据题意画出图形,求出PC的长,利用三角函数求出PE的长,再根据勾股定理求出DP的长,从而得到BD的长,进而求出船的速度.【解答】解:设一小时后甲船位于C处,乙船位于D处,∵AC=1×10=10海里,∴PC=50﹣10=40海里,∴PE=40×cos30°=40×=20海里,∴PD==20海里,∴BD=(60﹣20)海里,(60﹣20)÷1=(60﹣20)海里/小时.【点评】本题考查了解直角三角形的应用﹣﹣方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.22.(10分)(2015•金山区二模)为了解本区初中学生的视力情况,教育局有关部门采用抽根据图表完成下列问题:(1)填完整表格及补充完整图一;(2)“类型D”在扇形图(图二)中所占的圆心角是162 度;(3)本次调查数据的中位数落在C 类型内;(4)视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计11000 人.【考点】条形统计图;用样本估计总体;扇形统计图;中位数. 【分析】(1)根据C 类人数除以C 类所占的百分比,可得总人数,根据有理数的减法,可得答案;(2)根据圆周角乘以D 类所占抽测人数的百分比,可得答案; (3)根据中位数的定义,可得答案;(4)根据有理数的加法,可得A 、B 、C 所占的百分比,根据总人数乘以A 、B 、C 所占百分比,可得答案.(2)162度(3)统计图(2)“类型D ”在扇形图(图二)中所占的圆心角是360°×=162°(3)本次调查数据的中位数落在C 类型内,(4)20000×(++)=11000人,故答案为:162,C ,11000.【点评】本题考查了条形统计图,观察统计图获得有效信息是解题关键.23.(12分)(2015•金山区二模)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点E在边AC上,延长BC至D点,使CE=CD,延长BE交AD于F,过点C作CG∥BF,交AD于点G,在BE上取一点H,使∠HCE=∠DCG.(1)求证:△BCE≌△ACD;(2)求证:四边形FHCG是正方形;[注:若要用∠1、∠2等,请不要标在此图,要标在答题纸的图形上].【考点】全等三角形的判定与性质;正方形的判定.【专题】证明题.【分析】(!)根据已知条件利用两边及夹角对应相等得到三角形全等.(2)由(1)证得△BCE≌△ACD,得到对应角相等,利用∠AFE=∠BCE=90°,推出∠BFG=90°,根据CG∥BF,证得∠CGF=∠AFE=90°,因为∠HCE=∠DCG,得到∠GCH=∠ACD=90°,推出四边形FHCG是矩形,通过三角形全等作出一组邻边相等,即可证得结果.【解答】证明:(1)∵∠ACB=90°,∴∠ACD=∠ACB=90°,∵AC=BC,CE=CD,在△BCE与△ACD中,,∴△BCE△ACD;(2)∵△BCE≌△ACD,∴∠DAC=∠EBC,∵∠AEF=∠CEB,∴∠AFE=∠BCE=90°,∴∠BFG=90°,∵CG∥BF,∴∠CGF=∠AFE=90°,∵∠HCE=∠DCG,∴∠GCH=∠ACD=90°,∴四边形FHCG是矩形,在△CDG与△CEH中,∴△CDG≌△CEH,∴CG=CH,∴四边形FHCG是正方形.【点评】本题考查了全等三角形的判定与性质,正方形的判定,等腰直角三角形的性质,平行线的性质,找准全等三角形是解题的关键.24.(12分)(2015•金山区二模)已知抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,与y轴交于点C.(1)求抛物线y=ax2+bx﹣8(a≠0)的解析式,并求出顶点P的坐标;(2)求∠APB的正弦值;(3)直线y=kx+2与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M的坐标.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,列出a 和b的二元一次方程组,求出a和b的值即可;(2)设对称轴直线x=1与x轴交于点D,过A作AH⊥BP,垂足为H,先求出AB、PD、AP和BP的长,进而求出AH的长,即可求出sin∠APB的值;(3)△MNC与△AOC相似时,分①∠MNC=∠AOC=90°和②∠NMC=∠AOC=90°,利用相似三角形的性质以及全等三角形的知识求出点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx﹣8(a≠0)经过A(﹣2,0),B(4,0)两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣8,∵y=x2﹣2x﹣8=(x﹣1)2﹣9,∴顶点P坐标为(1,﹣9);(2)设对称轴直线x=1与x轴交于点D,过A作AH⊥BP,垂足为H,如图1,∵A(﹣2,0),B(4,0),P(1,﹣9),∴AB=6,PD=9,AP=BP=3,∵AB×PD=PB×AH,∴AH=,在Rt△APH中,∴sin∠APB==;(3)∵∠ACO=∠MCN,∴△MNC与△AOC相似时,①∠MNC=∠AOC=90°,∴,∵AO=2,OC=8,NC=10,∴MN=,直线直线AC的解析式是:y=﹣4x﹣8,设M点坐标为(a,﹣4a﹣8),∵MN=,∴a=﹣,∴M(﹣,2),②∠NMC=∠AOC=90°,设MN与x轴交于点E,∵,∴△ENO≌△AOC(AAS),∴OE=OC=8,∴E(﹣8,0),∵A(﹣2,0),C(0,﹣8)∴直线MN的解析式是:y=x+2,直线AC的解析式是:y=﹣4x﹣8,联立∴M(﹣,),综上M点的坐标为(﹣,2)或(﹣,).【点评】本题主要考查了二次函数综合题的知识,此题涉及到待定系数法求二次函数的解析式、二次函数的性质、相似三角形的判定与性质、全等三角形的判定与性质以及锐角三角形函数值的定义,解答本题的关键是熟练掌握全等三角形的性质以及相似三角形的性质,此题还需要熟练运用分类思想解决问题,此题有一定的难度.25.(14分)(2015•金山区二模)如图,已知在△ABC中,AB=AC=10,tan∠B=(1)求BC的长;(2)点D、E分别是边AB、AC的中点,不重合的两动点M、N在边BC上(点M、N不与点B、C重合),且点N始终在点M的右边,联结DN、EM,交于点O,设MN=x,四边形ADOE的面积为y.①求y关于x的函数关系式,并写出定义域;②当△OMN是等腰三角形且BM=1时,求MN的长.【考点】相似形综合题.【专题】综合题.【分析】(1)作AH⊥BC于D,如图1,根据等腰三角形的性质得BH=CH,在Rt△ABH中利用正切的定义的tan∠B==,设AH=4a,BH=3a,由勾股定理得到AB=5a,则5a=10,解得a=2,所以BC=2BH=12;(2)①连结DE,过点O作OK⊥BC于K,交DE于J,如图2,利用三角形中位线性质得到DE∥MN,DE=BC=6,JK=AH=4,则△DOE∽△NOM,根据相似比得OJ=,然后利用三角形面积公式和y=S△ADE+S△DOE得y=(0<x<12);②作EF⊥BC于F,如图2,由于EF=JK=4,CE=AC=5,则CF=3,MF=8,分类讨论:当OM=ON时,根据等腰三角形性质得MK=MN=x,证明△MOK∽△MEF,利用相似比得到OK=x,然后利用△DOE∽△NOM得到=,解得x=10;当OM=MN=x,利用相似比可证得DE=EO=6,接着在Rt△MEF中利用勾股定理计算出MF=4,则x+6=4,所以x=4﹣6;当MN=ON=x时,同理得DO=DE=6,则DN=6+x,作DG⊥BC于G,如图2,易得DG=4,BG=3,GN=BM+MN﹣BG=x﹣2,然后在Rt△DNG中利用勾股定理得到∴42+(x﹣2)2=(x+6)2,解得x=﹣1(舍去),于是得到MN的长为10或4﹣6.【解答】解:(1)作AH⊥BC于D,如图1,∵AB=AC=10∴BH=CH,在Rt△ABH中,tan∠B==,设AH=4a,BH=3a,∴AB==5a,∴5a=10,解得a=2,∴BC=2BH=12;(2)①连结DE,过点O作OK⊥BC于K,交DE于J,如图2,∵点D、E分别是边AB、AC的中点,∴DE∥MN,DE=BC=6,JK=AH=4,∴△DOE∽△NOM,∴=,即=,∴OJ=,∴y=S△ADE+S△DOE=×6×4+×6×=(0<x<12);②作EF⊥BC于F,如图2,∵EF=JK=4,CE=AC=5,∴CF==3,∴BF=9,而BM=1,∴MF=8,当OM=ON时,∵OK⊥MN,∴MK=MN=x,∵OK∥EF,∴△MOK∽△MEF,∴=,即=,解得OK=x,∴△DOE∽△NOM,∴=,即=,解得x=10,即MN=10;当OM=MN=x,∵DE∥BC,∴=,∴DE=EO=6,在Rt△MEF中,∵EF=4,MF=8,∴MF==4,而ME=OM+OE,∴x+6=4,解得x=4﹣6,即MN的长为4﹣6;当MN=ON=x时,同理得DO=DE=6,∴DN=6+x,作DG⊥BC于G,如图2,易得DG=4,BG=3,∴GN=BM+MN﹣BG=x+1﹣3=x﹣2,在Rt△DNG中,∵DG2+GN2=DN2,∴42+(x﹣2)2=(x+6)2,解得x=﹣1(舍去),综上所述,MN的长为10或4﹣6.【点评】本题考查了相似形的综合题:熟练掌握相似三角形的判定与性质、等腰三角形的性质;合理添加辅助线构造相似图形,然后利用相似的性质计算相应线段的长;同时会利用勾股定理和三角形中位线定理;学会运用分类讨论的思想解决数学问题.。
2015年九年级二模数学试题及答案
2015届九年级(下)阶段测试(三)数 学 试 题(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线),请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回。
参考公式:()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴公式为2bx a =-。
一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡...上对应题目的正确答案标号涂黑。
1.实数4的倒数是( )A .4B .14C .4-D .14-2.计算32(2)x 的结果是( )A .64xB .62xC .54xD .52x3.下列商标是轴对称图形的是( )A .B .C .D .4.在代数式21x +中,x 的取值范围是( ) A .0x > B .0x ≤ C .1x ≠- D .0x ≠5.下列调查中,适合采用普查方式的是( )A .调查市场上粽子的质量情况B .调查某品牌圆珠笔芯的使用寿命C .调查乘坐飞机的旅客是否携带了违禁物品D .调查我市市民收看重庆新闻的情况 6.△ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为( )A 2B .3:4C .4:5D .9:167.如图,//a b ,将一块三角板的直角顶点放在直线a 上,若∠1=42°,则∠2的度数为( )A .46°B .48°C .56°D .72°8.如图,A 、B 、C 是O 上的三点,∠ACB=40°,则∠AOB 的度数为( )A .20°B .40°C .60°D .80°9.不等式组2201213x x x -≤⎧⎪+⎨>-⎪⎩的解集是( )A .1x ≥B .41x -<≤C .4x <D .1x ≤10.五一假期,刘老师开车自驾前往荣昌,他开车离开家时,由于车流量大,行进非常缓慢,十几分钟后,终于形势在畅通无阻的告诉公路上,大约五十分钟后,汽车顺利到达荣昌收费站,经停车缴费后,进入车流量较小的道路,很快就到达了荣昌县城。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金山区2014学年第二学期期中质量检测 初三数学试卷 2015.4(时间100分钟,满分150分)一、选择题(本题共6小题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列各数中与2是同类二次根式的是( )(A )2; (B )32; (C )4; (D )12. 2.下列代数式中是二次二项式的是( ) (A )1-xy ;(B )112+x ; (C )22xy x +; (D )14+x .3.若直线1+=x y 向下平移2个单位,那么所得新直线的解析式是( ) (A )3+=x y ;(B )3-=x y ;(C )1-=x y(D )1+-=x y .4.一次数学单元测试中,初三(1)班第一小组的10个学生的成绩分别是:58分、72分、76分、82分、82分、89分、91分、91分、91分、98分,那么这次测试第一小组10个学生成绩的众数和平均数分别是( )(A )82分、83分; (B )83分、89分; (C )91分、72分; (D )91分、83分.5.如图,AB ∥CD , 13=∠D ,28=∠B ,那么E ∠等于( ) (A )13;(B )14;(C )15; (D )16.6.在ABC Rt ∆中,︒=∠90C ,BC AC =,若以点C 为圆心,以cm 2长为半径的圆与斜边AB 相切,那么BC 的长等于( )(A )cm 2; (B )cm 22; (C )cm 32; (D )cm 4.二、填空题(本题共12题,每小题4分,满分48分) 7.计算:∣3-∣=-3 ▲B C EDA第5题图8.已知函数12)(-=x x f ,那么=)3(f ▲ 9.因式分解:=-x x 3▲10.已知不等式321≥-x ,那么这个不等式的解集是 ▲ 11.已知反比例函数xky =)0(≠k 的图像经过点)2,1(,那么反比例函数的解析式是 ▲12.方程11211=---xx x 的解是 ▲ 13.方程x x =+32的解是 ▲14.有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是 ▲15.已知关于x 的一元二次方程012=++x mx 有两个不相等的实数根,那么m 的取值范围是 ▲ 16.在ABC ∆中,点E D 、分别在边AC AB 、上,BD AD =,EC AE 2=.设=AB a →,=AC b →,那么=DE ▲ (用 a →、b →的 式子表示)17.在平面直角坐标系中,我们把半径相等且外切、连心线与直线 x y =平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(3,2-)半径为2,那么圆A 的所有“孪生圆”的圆心坐标为 ▲ 18.在矩形ABCD 中,6=AB ,8=AD ,把矩形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若AM AE 2=,那么EN 的长等于 ▲三、(本题共有7题,满分78分) 19.(本题满分10分)化简:(12122+---+x x x x x x )22)1(1-+÷x x x20.(本题满分10分)解方程组⎩⎨⎧=-+-=+-04440122y xy x y xBC DM NA 第18题图21.(本题满分10分)如图,点P 表示某港口的位置,甲船在港口北偏西30方向距港口50海里的A 处,乙船在港口北偏东45方向距港口60海里的B 处,两船同时出发分别沿AP 、BP 方向匀速驶向港口P ,1小时后乙船在甲船的正东方向处,已知甲船的速度是10海里/时,求乙船的速度.22.(本题满分10分)为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中抽查了部分学生的视力,分成以下四类进行统计视力 类型人数 视力在4.2及以下 A 10 视力在 4.3—4.5之间B20视力在 4.6—4.9之间C视力在5.0及以上D注:(4.3—4.5之间表示包括4.3及4.5)ABP 北东第21题图80100 80 60 40 20人数图一C40% DB10% A图二根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是 度; (3) 本次调查数据的中位数落在 类型内;(4) 视力在 5.0以下(不含 5.0)均为不良,那么全区视力不良的初中学生估计人 .23.(本题满分12分)已知:如图,在中ABC Rt ∆中,︒=∠90ACB ,BC AC =,点E 在边AC 上,延长BC 至D 点,使CD CE =,延长BE 交AD 于F ,过点C 作CG //BF ,交AD 于点G ,在BE 上取一点H ,使DCG HCE ∠=∠. (1)求证:ACD BCE ∆≅∆; (2) 求证:四边形FHCG 是正方形.[注:若要用1∠、2∠等,请不要标在此图,要标在答题纸的图形上]24.(本题满分12分)已知抛物线)0(82≠-+=a bx ax y 经过)0,2(-A ,)0,4(B 两点,与y 轴交于点C .第22题图G FE D BAC第23题图H(1) 求抛物线)0(82≠-+=a bx ax y 的解析式,并求出顶点P 的坐标; (2)求APB ∠的正弦值;(3)直线2+=kx y 与y 轴交于点N ,与直线AC 的交点为M ,当MNC ∆与AOC ∆相似时,求点M 的坐标.25.(本题满分14分)如图,已知在ABC ∆中,10==AC AB ,34tan =∠B (1) 求BC 的长;(2) 点D 、E 分别是边AB 、AC 的中点,不重合的两动点M 、N 在边BC 上(点M 、N 不与点B 、C 重合),且点N 始终在点M 的右边,联结DN 、EM ,交于点O ,设x MN =,四边形ADOE 的面积为y .①求y 关于x 的函数关系式,并写出定义域;②当OMN ∆是等腰三角形且1=BM 时,求MN 的长.CB A第25题图CB A 备用图Oxy2014学年第二学期期末质量检测 初三数学试卷参考答案2015.4一、选择题:(每小题4分,共24分) 1.A 2.A 3.C4.D 5.C 6.B二、填空题:(每小题4分,共48分)7.0; 8.1; 9.)1)(1(-+x x x ; 10.7≥x ;11.xy 2=; 12.2-=x ; 13.3=x ; 14.53;15.041≠m m 且 ; 16.→→-a b 2132; 17.)1,4(),5,0(-; 18.53三、解答题:19.原式=〔(2)1()1(1---+x x x x x )〕22)1(-+⨯x x x (4分) = 222)1(1---x x x x 22)1(-+⨯x x x (2分) =22)1(1--x x (3分)=11-+x x (1分) 20.由(2)得:22,22-=-=-y x y x (2分)⎩⎨⎧=-=+-2201y x y x ⎩⎨⎧-=-=+-2201y x y x (2分) ⎩⎨⎧-=-=3411y x ⎩⎨⎧==122y x (4分) ∴⎩⎨⎧-=-=3411y x⎩⎨⎧==1022y x (2分) 21.设1小时后甲船在C 处乙船在D 处,联接CD 正北交于点E (1分)由题意得,50=AP ,60=BP , 30=∠APE ,45=∠BPE ,CD PE ⊥ (3分)10=AC 40=-=PC AP PC (1分)在PCD Rt ∆中 32030cos =⨯=PC PE (1分) 在PED Rt ∆中 62045cos ==PEPD (1分)62060-=-=PD PB BD )(乙62060162060-=-=V 海里/时 (2分) 答乙船的速度是)(62060-海里/时 (1分)22.(1)略 (4分)(2) 162度 (2分) (3)C (2分) (4)11000人 (2分)23.(1)∵︒=∠90ACB ∴︒=∠=∠90ACB ACD (1分) ∵BC AC = CD CE = (2分)∴ACD BCE ∆≅∆ (1分)(2)∵ACD BCE ∆≅∆ ∴EBC DAC ∠=∠ (1分)∵CEB AEF ∠=∠ ∴︒=∠=∠90BCE AFE ︒=∠90BFG (1分)∵CG //BF ∴︒=∠=∠90AFE CGF (1分)∵DCG HCE ∠=∠ ∴︒=∠=∠90ACD GCH (1分) ∴四边形FHCG 是矩形 (1分)∵︒=∠=∠90CHE CGD DCG HCE ∠=∠ CD CE = (1分)∴CEH CDG ∆≅∆ ∴CH CG = (1分) ∴四边形FHCG 是正方形 (1分)24. (1)⎩⎨⎧-+=--=841608240b a b a⎩⎨⎧-==21b a (2分) 822--=x x y (1分)9)1(8222--=--=x x x y )9,1(-P (1分)(2) 设对称轴直线1=x 与x 轴交于点D ,过A 作BP AH ⊥垂足为H∵)0,2(-A ,)0,4(B , )9,1(-P∴6=AB 9=PD 103==BP AP (2分) ∵AH PB PD AB ⨯=⨯2121 ∴1059=AH (1分) 在APH Rt ∆中 ∴53AP AH APB sin ==∠ (1分) (3)∵MCN ACO ∠=∠∴MNC ∆与AOC ∆相似时 ①︒=∠=∠90AOC MNCOC NC AO MN = 25=MN ∴)2,25(-M (2分)②︒=∠=∠90AOC NMC 设MN 与x 轴交于点E∵2==OA ON ︒=∠=∠90AOC EON ACO NEO ∠=∠ ∴AOC ENO ∆≅∆ 8==OC OE ∴)0,8(-E∵)0,2(-A ,)0,4(B∴直线MN 的解析式是:241y +=x 直线AB 的解析式是:84y --=x∴)1724,1740(-M (2分) 25.(1)过A 作BC 的高AH 垂足为H∵10==AC AB ∴CH BH = (1分)在ABH Rt ∆中 34tan =∠B 设a AH 4= a BH 3=222AB BH AH =+ 2)4(a 2)3(a +=210 2=a (1分)∴8=AH 6=BH ∴12=BC (1分)(2) 联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I∵D 、E 分别是边AB 、AC 的中点∴DE //BC ∴DOE ∆∽MON ∆ ∴JOIOMN DE = (1分) ∵8=AH ∴4=IJ∴624+=x IO (1分) 124621=⨯⨯=∆ADE S 672624621+=+⨯⨯=∆x x S DEO (1分)∴61441267212++=++=x x x y )120( x (2分) (3)联结DE ,过O 作BC OJ ⊥垂足为J ,延长JO 交DE 于I ,过E 作BC EF ⊥垂足为F∵421==AH EF 5=EC ∴3=FC ∴8=MF ①当ON OM =时 ∵IJ //EF ∴MFMJEF OJ = ∵4=EF 8=MF 21=MJ x ∴x OJ 41=∵DE //BC ∴DOE ∆∽MON ∆ ∴MNDEOJ OI = ∴ 10=x 10=MN (2分) ②当MN OM =时 ∵DE //BC ∴OMEOMN DE =∴EO DE = 在EFM Rt ∆中 5422=+=MF EF ME654-=-=OE ME OM ∴654-=MN (2分)③当ON MN =时 6==DE DO在ABN ∆中,B ∠是一个锐角 5=BD x DN +=6BD DN ∴BND ∠一定是锐角 (1分)过D 作BC DG ⊥垂足为G 4=DG 3=BG 在DGN Rt ∆中 222DN GN DG =+222)6()2(4x x +=-+ 1-=x 不合题意 (1分)综上所述 10=MN 或 654-=MN。