时间序列分析模型实例
eviews残差分析

Eviews时间序列分析实例时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。
通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。
本节的主要内容是说明如何使用Eviews软件进行分析。
一、指数平滑法实例所谓指数平滑实际就是对历史数据的加权平均。
它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。
由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。
(-)一次指数平滑一次指数平滑又称单指数平滑。
它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。
一次指数平滑的特点是:能够跟踪数据变化。
这一特点所有指数都具有。
预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。
这样,预测值总是反映最新的数据结构。
一次指数平滑有局限性。
第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。
指数平滑预测是否理想,很大程度上取决于平滑系数。
Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。
选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。
如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。
出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。
平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。
若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。
〔例1〕某企业食盐销售量预测。
现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。
时间序列分析(3)

二、传递函数模型
• (2) 1阶过程的互相关函数 • 由Ezt=Eεt=0,有Eyt=0,使用Yule-Walker方程,得: γyz(0)=Eytzt=E[cd(zt-d+a1zt-d-1+…)zt+ztεt/(1-a1L)]=0 γyz(1)=Eytzt-1=E[cd(zt-d+a1zt-d-1+…)zt-1+zt-1εt/(1-a1L)]=0 ……… γyz(d)=Eytzt-d =E[cd(zt-d+a1zt-d-1+…)zt-d+zt-dεt/(1-a1L)]=cdσz2 γyz(d+1)=Eytzt-d-1 =E[cd(zt-d+a1zt-d-1+…)zt-d-1+zt-d-1εt/(1-a1L)]=cda1σz2 γyz(d+2)=Eytzt-d-2 =E[cd(zt-d+a1zt-d-1+…)zt-d-2+zt-d-2εt/(1-a1L)]=cda12σz2
一、干预分析
• (1) 一个简单的干预分析模型 • 将Enders等的劫机事件干预分析模型变换,得: (1-a1L)yt=a0+c0zt+εt 即: yt=a0/(1-a1)+c0Σa1izt-i+Σa1iεt , |a1|<1. 由此可进行脉冲响应分析: yt/zt=c0 yt+1/zt+1+yt+1/zt=c0+c0a1=c0(1+a1) yt+2/zt+2+yt+2/zt+1+yt+2/zt=c0(1+a1+a12) yt+j/zt+j+yt+j/zt+j-1+…+yt+j/zt=c0(1+a1+a12+…a1j)
多元时间序列模型实例

多元时间序列模型实例1. 引言1.1 背景介绍多元时间序列模型是现代经济学中重要的分析工具,它能够有效地捕捉多个经济变量之间的互动关系和动态演变规律。
在实际应用中,多元时间序列模型被广泛运用于宏观经济预测、货币政策制定、金融风险管理等领域。
随着经济全球化和金融市场的不断发展,经济变量之间的关联性不断增强,传统的单变量时间序列模型已无法满足复杂的分析需求。
多元时间序列模型的研究和应用变得尤为重要。
本文将重点讨论VAR模型和VECM模型两种典型的多元时间序列模型,分析它们的原理、优缺点以及应用范围。
通过实例分析,我们将探讨这两种模型在实际经济数据中的应用效果和结果。
并对研究过程中的局限性进行分析,为未来研究提出展望。
通过深入探讨和研究多元时间序列模型,我们可以更好地理解经济变量之间的内在联系,为经济政策制定和风险管理提供更为准确和可靠的参考依据。
1.2 研究意义多元时间序列模型在经济学、金融学、环境科学等领域具有重要的应用价值。
通过对多元时间序列数据的建模分析,可以帮助研究者更好地理解变量之间的关系和内在规律,预测未来的发展走势,制定有效的政策和决策,促进经济社会的可持续发展。
多元时间序列模型可以用来分析经济系统中不同变量之间的相互影响和作用机制。
通过构建VAR模型和VECM模型,可以揭示变量之间的联动关系,帮助研究者更好地理解经济系统内部的运行机制,从而为制定政策提供科学依据。
多元时间序列模型还可以用来预测未来的发展趋势。
基于对历史数据的建模分析,可以得出一定的预测结果,为政府、企业和个人提供决策参考,减少不确定性因素的影响,提高决策的准确性和效益。
多元时间序列模型的研究具有重要的实践意义和理论意义,对于推动经济社会的发展和提高决策的科学性都具有重要的意义。
本文将通过实例分析,探讨多元时间序列模型在实际中的应用效果和局限性,为相关研究提供参考和借鉴。
1.3 研究对象研究对象是指在本研究中所关注和研究的主体或对象。
长期趋势预测法

(二)特点
1.调整预测值旳能力 2.预测值中包括旳信息量比一次移动平均法预测值 中丰富得多。
3.加权特点
平滑系数a旳选择需要考虑以下几种方面:
(1) a值越小,对序列旳平滑作用越强,对时 间序列旳变化反映越慢,因而序列中随机波动较 大时,为了消除随机波动旳影响,可选择较小旳 a,使序列较少受随机波动旳影响; a值越大, 对序列旳平滑作用越弱,对时间序列旳变化反映 越快,因而为了反映出序列旳变动状况,可选择 较大旳a,使数据旳变化不久反映出来。
三、参数旳求解措施
最小平措施: 用高等数学求偏导数措 施,得到下列联立方程组:
y Na b t
ty a t b t 2
为使计算以便,可设t:
奇数项:, 3, 2, 1, 0, 1, 2, 3, 偶数项:, 5, 3, 1, 1, 3, 5,
这么使
t
y 0,即上述方程组可简化为:
指以预测对象近来一组历史数据(实际值)旳平均值直接 或间接地作为预测值旳措施。
一、一次移动平均法旳概念、特点和模型 1.概念:是直接以本期(t期)移动旳平均值作为下期
(t+1)预测值旳措施。 2.特点: 1)预测值是离预测期近来旳一组历史数据(实际值)
平均旳成果。 2)参加平均旳历史数据旳个数(即跨越期数)是固
3、是移动平均法旳高级形式,能克服一次移动法 旳不足,提升预测效果。
四、二次移动平均法旳模型及其应用
(二)二次移动平均法旳应用
例:我国Y1~Y23年出口某商品到德巴 伐利亚州旳销售量为下表(2)栏所示,试 用二次移动平均法(n取3)计算Y6~ Y23年销量旳理论预测值,并预测Y23年 旳销量。
比较一下表中第(8)栏旳预测值与第 (2)栏实际值旳差别,Y6~Y23年5年 旳均方误差仅为7.48,这阐明对于斜坡型 历史数据,用二次移动平均法进行预测远 比一次移动平均法精确。
时间序列分析报告——VAR模型实验

基于VAR模型的我国房地产市场与汇率波动的因果关系————VAR模型实验第一部分实验分析目的及方法现选取人民币对美元汇率以及商品房房价作为变量构建VAR模型。
对于不满足单位根检验的序列采取对数化或差分处理,使其成为平稳序列再进行模型的拟合。
对于商品房房价这一变量,由于全国各省市差异较大,故此处采用全国房地产开发业综合景气指数这一变量。
此外,为了消除春节假期不固定因素带来的影响,增强数据的可比性,按照国家统计制度,从2012年起,不单独对1月份统计数据进行调查,1-2月份数据一起调查,一起发布。
所以国房景气指数p这一序列缺少每年一月份的相关数据,属于非随机、不可忽略缺失,在此采用平均值填充的方法,补足数据。
第二部分实验样本2.1数据来源数据来源于中经网统计数据库。
具体数据见附录表。
2.2所选数据变量由于我国于2005年7月实行第二次汇改,此次汇改以市场供求为基础、参考一篮子货币进行调节、有管理的浮动汇率制度取代了过去人民币汇率长达10年的紧盯美元的固定汇率体制。
故本实验拟选取2005年07月到2014年10月我国以月为单位的数据。
,用以上两个变量来构建VAR模型,并利用该模型进行分析预测。
第四部分模型构建4.1判断序列的平稳性4.1.1汇率E序列首先绘制出E的折线图,结果如下图:图4.1 汇率E的曲线图从图中可以看出,汇率E序列较强的趋势性,由此可以初步判断该序列是非平稳的。
为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下:图4.2 lm的曲线图对数化后的趋势性减弱,但仍存在一定的趋势性,下面对lm进行一阶差分处理,去除趋势性,得到新变量dlm,观察dlm的曲线图。
图4.3 DLE的曲线图从图中可以看出,dle序列的趋势性基本已经消除,且新变量dle基本围绕0上下波动,因此选择形式为y t=y t-1+u t进行单位根检验:表4.1 单位根输出结果Null Hypothesis: DLE has a unit rootExogenous: ConstantLag Length: 2 (Automatic - based on SIC, maxlag=12)t-Statistic Prob.*Augmented Dickey-Fuller test statistic -3.031673 0.0351Test critical values: 1% level -3.4919285% level -2.88841110% level -2.581176*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(DLE)Method: Least SquaresDate: 11/15/14 Time: 20:20Sample (adjusted): 2005M11 2014M10Included observations: 108 after adjustmentsVariable Coefficient Std. Error t-Statistic Prob.DLE(-1) -0.353005 0.116439 -3.031673 0.0031 D(DLE(-1)) -0.502730 0.115417 -4.355768 0.0000 D(DLE(-2)) -0.311531 0.093265 -3.340258 0.0012C -0.000888 0.000470 -1.887592 0.0619R-squared 0.450240 Mean dependent var 1.15E-05 Adjusted R-squared 0.434382 S.D. dependent var 0.005058S.E. of regression 0.003804 Akaike infocriterion -8.269046 Sum squared resid 0.001505 Schwarz criterion -8.169708Log likelihood 450.5285 Hannan-Quinncriter. -8.228768F-statistic 28.39119 Durbin-Watson stat 2.061613Prob(F-statistic) 0.000000单位根统计量ADF=-3.031673小于临界值,且P为0.0351,因此该序列不是单位根过程,即该序列是平稳序列。
时间序列分析课件-07-ARIMA模型、疏系数模型、季节模型

xt 0 1t at
• 考察一阶差分后序列和二阶差分序列 的平稳性与方差
比较
• 一阶差分
– 平稳
xt xt xt1
1 at at1 – 方差小
• 二阶差分(过差分)
– 平稳
2 xt xt xt1 at 2at1 at2
– 方差大
Var(xt ) Var(at at1)
• 参数估计
(1 0.44746 B 0.28132 B4 )(1 B)(1 B4 )xt t
模型检验
残差白噪声检验
参数显著性检验
延迟 阶数
2统 计量
P值
待估 t 统
参数 计量
P值
6
2.09 0.7191 1
12 10.99 0.3584 4
5.48 <0.0001 -3.41 <0.0001
2 2
Var(2xt ) Var(at 2at1 at2 )
6 2
ARIMA模型
• ARIMA模型结构 • ARIMA模型性质 • ARIMA模型建模 • ARIMA模型预测 • 疏系数模型 • 季节模型
ARIMA模型结构
• 使用场合
– 差分平稳序列拟合
• 模型结构
( B) d
E( t )
Tt 0 1 xtm l xtlm
• 简单/复杂季节模型 • X-11 • etc
• AR • MA • ARMA • WN • etc
3.考虑残差
获 得 观 察 值 序
Y
Y
平稳性 检验
白噪声 检验
分 析
结
N
束 N
列
差分 运算
拟合
ARMA 模型
时间序列分析

时间序列分析xx年xx月xx日CATALOGUE目录•时间序列分析简介•时间序列数据的预处理•时间序列模型的构建•时间序列模型的评估与优化•时间序列分析的应用场景与实例•时间序列分析的未来发展与挑战01时间序列分析简介时间序列分析是一种统计学方法,用于研究具有时间顺序的数据,以揭示其内在的规律性和预测未来的趋势。
时间序列数据通常表现为历史数据序列,可以用于预测未来,从而帮助决策者做出更好的决策。
定义与概念1时间序列分析的用途与重要性23通过分析时间序列数据,可以预测未来的趋势和变化,从而提前做好准备和规划。
预测未来趋势时间序列分析可以识别出异常情况或突发事件,从而及时采取措施应对。
识别异常情况通过预测未来需求,时间序列分析可以帮助决策者优化资源配置,提高效率和降低成本。
优化资源配置数据收集和处理收集和处理时间序列数据,包括数据清洗、缺失值填充等预处理工作。
通过图表等方式将数据呈现出来,以便更好地观察和分析数据。
根据数据的特点和需求选择合适的模型,并建立模型以拟合数据。
对模型进行评估和优化,以提高模型的预测能力和准确性。
利用训练好的模型对未来进行预测,并给出预测结果和建议。
时间序列分析的基本步骤数据可视化模型评估与优化预测未来趋势模型选择与建立02时间序列数据的预处理03数据格式转换根据分析需求,将数据转换为合适的格式,如将日期转换为时间戳或将多个变量合并为一个数据集。
数据清洗与整理01缺失值处理对于缺失的数据,需要选择合适的处理方法,如插值、删除或忽略。
02异常值处理异常值可能会对分析结果产生不良影响,应进行识别和处理,如平滑处理或直接删除。
季节性调整通过去除时间序列数据中的季节性因素,以揭示趋势和循环成分。
趋势分析对时间序列数据的长期变化进行分析,以识别增长或下降的趋势。
季节性调整与趋势分析数据转换为改善数据的质量和稳定性,可对数据进行转换,如对数转换或平方根转换。
平滑处理为减少数据中的随机波动和噪声,可采用平滑技术,如移动平均法或低通滤波器。
金融时间序列分析-ARIMA模型建模实验报告

(1)判断原序列平稳性观察时序图,该序列在不同的阶段有不同的均值,表现出一定的周期性,初步判断不平稳。
继续观察自相关图,由图可以清晰看到,序列自相关函数下降趋势缓慢,没有快速衰减至0,判断其不平稳。
该序列三种模型的分别为0.9104、0.6981、0.4589,均大于0.05,不能拒绝有单位根的原假设,因此是非平稳序列。
需要进行处理后再进行建模。
(2)差分序列平稳性检验对原序列进行一次差分,再对其进行平稳性检验。
观察其时序图,该序列的时序图都表现出围绕其水平均值不断波动的过程,没有明显的趋势或周期性,粗略估计是平稳时间序列。
再观察其自相关函数图。
自相关系数快速衰减到0,在虚线范围内波动,没有明显的波动、发散,判断为平稳序列。
模型3与模型2的伴随概率为0,拒绝有单位根的原假设,说明序列是平稳的。
但模型3的时间趋势项的伴随概率为0.1789,常数项的伴随概率0.3504,在显著性水平0.05情况下不显著,故不选用。
而模型2的常数项的伴随概率为0.6608,也不显著,不选用。
因此模型1是最合适的模型,不含有常数项和时间趋势项。
(3)模型的参数估计及模型的诊断检验观察自相关图最后两列可以看到,Q检验的伴随概率均小于0.05,拒绝没有自相关性的原假设,因此该序列不是白噪声序列,没有把信息都提取出来。
接下来将尝试使用AR(1)、AR(2)、AR(3)、MA(1)、ARMA(1,1)、ARMA(2,1)模型进行拟合。
(1)AR(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,拒绝没有自相关性的原假设,不是白噪声序列,不选用。
(2)AR(2):。
该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列,可以选用。
(3)AR(3):该模型各项不显著,不选用。
(4)MA(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列,可以选用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平稳时间序列
2260
2240
2220
2200
SCO RE
2180
2160 1
11
21
31
41
51
61
71
81
91
6
16
26
36
46
ห้องสมุดไป่ตู้
56
66
76
86
96
序號
精品课件
非平稳时间序列
42 40
38 36
34
32
30
28
26
1
27
53
79
105
131 157 183 209
235
14
40
66
92
通过对该数学模型的分析研究,能够更本质 地认识时间序列的结构与特征,达到最小方差意义 下的最优预测.
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Auto-精r品e课gr件essive Moving Average)模型
❖ 随机性时间序列模型是以时间序列的平稳性为基础建立的
精品课件
随机性时间序列模型的特点
❖ 利用时间序列中的自相关关系进行分析和建摸
❖ 时间序列的自相关关系是指时间序列在不同时期观测值之 间的相关关系
❖ 许多因素产生的影响不是瞬间的,而是持续几个时期或更 长时间,因此时间序列在不同时期的值往往存在较强的相 关关系
精品课件
1 时间序列分析模型【ARMA模型 】简介
一、概 述
ARMA模型是一类常用的随机时间序列模型, 是一种精度较高的时间序列短期预测方法,其基本
思想是:某些时间序列是依赖于时间 t 的一族
随机变量,构成该时间序列的单个序列值虽然具有 不确定性,但整个序列的变化却有一定的规律性, 可以用相应的数学模型近似描述.
ρk
Cov(Yt ,Ytk ) Var(Yt )
γ γ
k 0
ρ0
γ γ
0 0
;
ρ1
γ γ
1 0
;
精品课件
ρ
2
γ1 γ0
样本自相关函数
ρk
T
1 K
T K
__
(Yt Y )( Yt k
t 1
1 T
(Yt
__
Y )2
__
Y)
如果样本较大, 1 近似 1 ,上式可简化为:
T K
T
T K
—
—
( Yt Y )( Yt k Y )
ρ k t 1 T
—2
( Yt
Y
)
精品课件
t 1
样本自相关函数的性质
❖ 可以用来判断时间序列的平稳性
平稳性时间序列的样本自相关函数值随滞后期的延长很快趋 近于零
❖ 可以较好描述季节性变动或其他周期性波动的规律
如果季节变化的周期是 12 期,观测值 Yt 与 Yt+12,Yt+24 ,Yt+36之间存在较强自相关关系
1 时间序列分析模型【ARMA模型 】简介
1、自回归【 AR 】模型
自回归序列 X t :
如果时间序列 X t 是它的前期值和随机项的线性函 数,即可表示为
X t 1 X t 1 2 X t 2 p X t p u t 【1】
【1】式称为 p 阶自回归模型,记为AR(p
)
注1:实参数 1,2, ,p
因此,当 K=12,24,36,48,……时,样本自相关函数值在 绝对值上大于它周围的值
精品课件
偏自相关函数值
❖ 滞后期为 K 的偏自相关函数值是指去掉 Y t+1,Y t+2,Y t+3, …… Y t+k-2,Y t+k-1 的影响之后,反映观测值Yt和Y t+k之间相关 关系的数值
精品课件
118 144 170 196 222 248
序號
精品课件
STO CK
平稳性时间序列
❖ 由平稳随机过程产生的时间序列的性质: 概率分布函数不随时间的平移而变化,即: P(Y1,Y2,… …,Yt)=P(Y1+m,Y2+m,… …,Yt+m) 期望值、方差和自协方差是不依赖于时间的常数,即: E(Yt)=E(Yt+m) Var(Yt)= Var(Y t+m) Cov(Yt,Y t+k)= Cov(Y t+m,Y t+m+k)
时间序列分析模型
1 时间序列分析模型简介 一、时间序列分析模型概述 1、自回归模型 2、移动平均模型 3、自回归移动平均模型 二、随机时间序列的特性分析 三、模型的识别与建立 四、模型的预测
2 长江水质污染的发展趋势预测 【CUMCM 2005A】 一、问题分析 二、模型假设 三、模型建立
四、模型预测 五、结果分析 六、模型评价与改进 精品课件
随机性时间序列模型的特点
❖ 建摸过程是一个反复实验的过程 ❖ 借助自相关函数值和偏自相关函数值确定模型的类型 ❖ 借助诊断性检验判断模型的实用性
精品课件
时间序列最佳模型的确定
出发点:模型总类 选择暂时试用的模型
估计模型中的参数
诊断检验:模型是否适用
运用模型分析和预测
精品课件
模型分类
❖ 总类模型 ❖ 移动平均模型 MA(q) (Moving Average) ❖ 自回归模型 AR(p) (Autoregression) ❖ 混合自回归移动平均模型 ARMA (p,q) ❖ 差分自回归-移动平均模型 ARIMA (p,d,q)
❖ 用自相关函数和偏自相关函数衡量时间序列中的自相关关 系
精品课件
时间序列的自相关关系
❖ 自相关函数 随机过程的自相关函数 样本的自相关函数
❖ 偏自相关函数 随机过程的偏自相关函数 样本的偏自相关函数
精品课件
自相关函数
❖ 对于平稳随机过程,滞后期为 K 的自相关函数定义为 滞后期为 K 的自协方差与方差之比
时间序列的分类
时间序列
平稳序列
非平稳序列
有趋势序列
精品课件
复合型序列
随机性时间序列模型的特点
❖ 把时间序列数据作为由随机过程产生的样本来分析 ❖ 多数影响时间序列的因素具有随机性质,因此时间序列的
变动具有随机性质 ❖ 随机过程分为平稳随机过程和非平稳随机过程
由平稳随机过程产生的时间序列叫做平稳性时间序列 由非平稳随机过程产生的时间序列叫做非平稳性时间序列
精品课件
❖ 平稳序列(stationary series)
基本上不存在趋势的序列,各观察值基本上在某个固 定的水平上波动
或虽有波动,但并不存在某种规律,而其波动可以看 成是随机的
❖ 非平稳序列 (non-stationary series)
有趋势的序列:线性的,非线性的
有趋势、季节性和周期性的复合型序列
称为自回归系数,
是且待服估从参均u t数值2 为.随0机、项方差为
是相互独立的白噪声序列, 的正态分布.随机项与滞
后变量不相关。
注2:一般假定 X t
则令
均值精为品课0件,否 Xt Xt