三轴试验PPT
合集下载
有效应力强度指标可用三轴排水剪三轴固结不排水剪(测孔隙水压力)

第一节 土的强度理论与强度指标
一、土的抗剪强度的工程意义
土的抗剪强度是指土体抵抗剪切破坏的极限能力
在外荷载作用下,土体中将产生剪应力,当土中 某点的剪应力达到土的抗剪强度时,土就沿着 剪应力作用方向产生相对滑动,该点便发生剪 切破坏。随着外荷载的增大,地基中达到强度 被破坏的点越来越多,最后形成一个连续的滑 动面,这时建筑物的地基或土坡就会失去整体 稳定而发生土体滑动,从而造成工程事故。
图 ( )
4-1 c
加拿大特朗斯康谷仓严重倾倒
土体是否会发生剪切破坏? 土中某点由外力所产生的剪应力是多大? 土的抗剪强度是多少?
f
二、莫尔-库仑强度理论
• 土体发生剪切破坏时,将沿着其内部某一 曲面(滑动面)产生相对滑动,而该
滑动面上的切应力就等于土的抗剪强度。
• 直剪试验可直接测定预定剪切破裂面上的 抗剪强度。 1776年,法国学者库仑通过 一系列土的强度实验,于1776年总结出土 的抗剪强度定律:
【解】采用图解法
图解法
课堂小结
• 概念:抗剪强度、极限平衡状态、极限平 衡条件、内聚力、内摩擦角
• 掌握土的直剪试验和库仑定律、掌握内聚 力与内摩擦角的物理含义
• 掌握土的极限平衡关系式(莫尔-库仑破 坏理论)的实际意义,应力圆与抗剪强度 曲线之间的关系
f tan
f tan c
试验结果表明,对于砂性土,抗剪强度与 法向应力之间的关系是一条通过原点的直 线;对于粘性土,抗剪强度与法向应力之 间也基本成直线关系,该直线与横轴的夹
角为内摩擦角φ ,在纵轴上的截距为粘聚 力c ,直线方程可用库仑公式表示。
f tan
f tan c
(2)直剪试验强度取值
不同土性的土样在剪切试验时的剪应力 与剪切位 移d 关系曲线有较大差异的。土样的抗剪强度应根据其 -Dl 曲线形态分别确定:对密实砂土、坚硬粘土等,其 -Dl 曲线将出现峰值,可取峰值切应力作为抗剪强度;
三轴剪切试验

桂 林 理 工 大 学
三 轴 压 缩 试 验
SY30-20型应变控制式三轴仪 型应变控制式三轴仪
桂 林 理 工 大 学
三 轴 压 缩 试 验
TSZ-3型应变控制式三轴仪 型应变控制式三轴仪
桂 林 理 工 大 学
三 轴 压 缩 试 验
天平:称量 天平:称量200 g,感量 ,感量0.01 g;称量 ;称量1000 g,感量 , 0.1 g。 。 橡皮膜:应具有弹性,厚度应小于橡皮膜直径的1 橡皮膜:应具有弹性,厚度应小于橡皮膜直径的 /100,不得有漏气孔。 ,不得有漏气孔。 其他:橡皮膜,烘箱,秒表,干燥箱,称量盒, 其他:橡皮膜,烘箱,秒表,干燥箱,称量盒, 切土刀。钢丝锯,滤纸,游标卡尺等。 切土刀。钢丝锯,滤纸,游标卡尺等。
二、三轴压缩试验与直剪试验的对比
桂 林 理 工 大 学
三 轴 压 缩 试 验
直接剪切仪的缺点主要有: 直接剪切仪的缺点主要有: 剪切面限定在上下盒之间的平面, ① 剪切面限定在上下盒之间的平面,而不是沿土 样最薄弱的面剪切破坏; 样最薄弱的面剪切破坏; 剪切面上剪应力分布不均匀, ② 剪切面上剪应力分布不均匀,土样剪切破坏时 先从边缘开始,在边缘发生应力集中现象; 先从边缘开始,在边缘发生应力集中现象; 在剪切过程中, 土样剪切面逐渐缩小, ③ 在剪切过程中, 土样剪切面逐渐缩小,而在 计算抗剪强度时却是按土样的原截面积计算; 计算抗剪强度时却是按土样的原截面积计算; 试验时不能严格控制排水条件, ④ 试验时不能严格控制排水条件,不能量测孔隙 水压力、在进行不排水剪切时, 水压力、在进行不排水剪切时,试件仍有可能排 水,特别对于饱和粘粘性土。 特别对于饱和粘粘性土。 由于土的抗剪强度受排水条件的影响显著。 由于土的抗剪强度受排水条件的影响显著。故试 验结果不够理想。但由于它具有结构简单, 验结果不够理想。但由于它具有结构简单,操作 方使等优点, 方使等优点,故仍为 一般工程广泛采用
土的三轴试验研究及土的应力路径.

3 稳定土三轴剪切试验研究
对掺入不同稳定剂的粉土进行了UU 和CU 试验,以研究在 变掺量、变龄期条件下土体的强度和变形特性。试样的制备 采用击实制样,掺稳定剂的粉土分别进行7,14,28 d 标准 养护[3,4]。为方便与前面试验结果的对比,同时也为合理地 选择稳定剂提供更充分的依据,分别选用了不同种类的稳定 剂: 4 %石灰、2 %水泥+2 %石灰、4 %SEU-2 型固化剂、 8 %SEU-2 型固化剂。
引言
稳定土[2]是采用一定的物理化学方法及其相应的技术措施使土 的物理力学性能得到改善以适应工程技术的需要。稳定土的方 法有多种,但目前国内外仍以无机结合料稳定为主,改善土性 质的产品主要有石灰、水泥、粉煤灰或这些材料的混合物,在 几十年的发展过程中,已形成了比较成熟的无机结合料稳定方 法,但从实践效果来看,不同的结合料,其稳定的效果有着明 显的差异。针对江苏地区粉土的特殊性,从提高粉土体系本身 的强度着手,同时考虑水稳定性、抗收缩性等性能进行研究。 使掺入到粉土中的固化材料不仅起到胶凝和填充的作用,最好 能激发粉土自身的活性,或者与土粒发生相互作用,基于这样 的研究思路,提出粉土固化材料的可能组分,研制成功SEU-2 型固化剂,并将其应用到高速公路的路基填筑中[5]。本文一方 面借鉴以往的研究成果,采用传统的无机结合料(石灰、水泥 +石灰)的方法;另一方面采用SEU-2 型固化剂的稳定方法, 从力学性能的角度出发,研究粉土作为路基填料的可行性。
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.1 掺4 %石灰的粉土三轴剪切试验结果
3.2 掺2 %水泥+2 %石灰的粉土三轴剪切试验结果
经验表明,用水泥固化稳定土体能有效增加土体的内摩擦角和凝聚力,用 一部分水泥代替石灰也能起比单纯掺石灰更好的固化稳定效果,这在稳定 粉土的直剪试验和无侧限强度试验中已有所体现,三轴剪切的结果进一步 说明了这一点。图7 和图8分别是掺2 %水泥+2 %石灰的UU 和CU 试验结 果,试样干密度1.72 g/cm3,标准养护7 d, u c =114.75 kPa,u φ =29°; cu c =91.1 kPa, cu φ =29°。CU 试验土样在围压下固结的效 果在总应力指标上未体现出来,可由有效强度指标体现c′ =77.3 kPa,φ ′ =31°。
岩体原位测试

图2 岩体p-W曲线
2.2 钻孔变形法
钻孔变形法是利用钻孔膨胀计等设备,通过水泵对一定长度的钻孔壁 施加均匀的径向载荷(图3),同时测记各级压力下的径向变形U。利用厚壁 筒理论可推导出岩体的变形模量Em(MPa)与U的关系为:
dp(1 m ) Em U
式中:d—钻孔直径(cm); p—压力(MPa); 其余符号意义同前。
式中,p为作用于刻槽壁 上的压力,Mpa;WR为测量 点A1、A2的相对位移,cm; WR=△y2-△y1, △y2、△y1 为 A1、A2 的绝对值位移,cm。
图4 相对变形计算示意图 图5狭缝法式验示意图
3 岩体强度试验
岩体的强度参数是工程岩体破坏机理分析及稳定性计算 不可缺少的参数,目前主要依据现场岩体力学试验求得。 特别是在一些大型工程的详勘阶段,大型岩体力学试验占 有很重要的地位,是主要的勘察手段。 原位岩体强度试验主要有直剪试验、单轴和三轴抗压试 验等。由于原位岩体试验考虑了岩体结构及其结构面的影 响,因此其试验成果较室内岩块试验更符合实际。
3.1 直剪试验
该方法是在平巷中制备试件,并以两个千斤顶分别在 垂直和水平方向施加外力而进行试验。试验时,先施加垂 直荷载,待其变形稳定后,再逐级施加水平建立直至试件 劈坏。 通过试验可获取如下资料:①岩体剪应力(τ)-剪位移(u) 曲线及法向应力(σ) –法向变形(W)曲线。②剪切强度曲线 及岩体剪切强度参数Cm、φm值。
侧视图
俯视图
岩体三轴试验仪器设备安装示意图
中国地质大学岩体力学网络课程—试验测试
/rock/
2 pD(1 m )ω pD(1 m )ω Eme Em We W 式中:p:承压板上单位面积压力, MPa;D:承压
2.2 钻孔变形法
钻孔变形法是利用钻孔膨胀计等设备,通过水泵对一定长度的钻孔壁 施加均匀的径向载荷(图3),同时测记各级压力下的径向变形U。利用厚壁 筒理论可推导出岩体的变形模量Em(MPa)与U的关系为:
dp(1 m ) Em U
式中:d—钻孔直径(cm); p—压力(MPa); 其余符号意义同前。
式中,p为作用于刻槽壁 上的压力,Mpa;WR为测量 点A1、A2的相对位移,cm; WR=△y2-△y1, △y2、△y1 为 A1、A2 的绝对值位移,cm。
图4 相对变形计算示意图 图5狭缝法式验示意图
3 岩体强度试验
岩体的强度参数是工程岩体破坏机理分析及稳定性计算 不可缺少的参数,目前主要依据现场岩体力学试验求得。 特别是在一些大型工程的详勘阶段,大型岩体力学试验占 有很重要的地位,是主要的勘察手段。 原位岩体强度试验主要有直剪试验、单轴和三轴抗压试 验等。由于原位岩体试验考虑了岩体结构及其结构面的影 响,因此其试验成果较室内岩块试验更符合实际。
3.1 直剪试验
该方法是在平巷中制备试件,并以两个千斤顶分别在 垂直和水平方向施加外力而进行试验。试验时,先施加垂 直荷载,待其变形稳定后,再逐级施加水平建立直至试件 劈坏。 通过试验可获取如下资料:①岩体剪应力(τ)-剪位移(u) 曲线及法向应力(σ) –法向变形(W)曲线。②剪切强度曲线 及岩体剪切强度参数Cm、φm值。
侧视图
俯视图
岩体三轴试验仪器设备安装示意图
中国地质大学岩体力学网络课程—试验测试
/rock/
2 pD(1 m )ω pD(1 m )ω Eme Em We W 式中:p:承压板上单位面积压力, MPa;D:承压
土的抗剪强理论PPT课件

二、三轴试验
三轴剪切试验,又称三轴压缩试验,是室内测定土的抗剪强度的一种较为完整的试验方 法。通常采用3-4个圆柱形式样,分别在不同的周围压力下测得土的抗剪强度
1.三轴剪切试验仪器
三轴剪切试验所采用的仪器可分 为应变控制仪和应力控制仪。
1–调压筒;2–周围压力表;3–周围压力阀;4–排水阀; 5–体变管;6–排水管;7–变形量表; 8–量力环;9–排 气孔;10–轴向加压设备;11–压力室;12–量管阀; 13–零位指示器;14–孔隙压力表;15–量管;16–孔隙 压力阀;17–离合器;18–手轮;19–马达;20–变速箱
§5.2土的强度理论
土的抗剪强度
排水条件(最重要) 剪切速率 应力状态 应力历史
应该指出:
土的c、 φ实际上只是表达关系试验成果的两个数学参数,从物理意义上
来说,在不同的法向应力作用下,土的粘聚力也不可能是常数。
§5.2土的强度理论
提问:对于某一种土来说,其抗剪强度τf 也相同吗?
⑴ τf 随剪切面上所受的法向应力σ而变,这就是土区别于其他许多建筑材
§5.2土的强度理论
§5.2 土的抗剪强度理论
一、库仑定律-土的强度规律 二、摩尔-库仑-强度理论 三、摩尔-库仑破坏准则-土的极限平衡条件
§5.2土的强度理论
一、库仑定律-土的强度规律 1、总应力库伦定律与抗剪强度指标
土体发生剪切破坏时,沿其内部某一滑动面发生相对滑动,而该滑动 面上的剪应力就等于土的抗剪强度。
特点: 试样是轴对称应力状态。垂直应力z一般是大主应力;径向 与切向应力总是相等r=,亦即1=z;2=3=r
方法: 首先试样施加静水压力—室压(围压) 1=2=3=const; 然后通过活塞杆施加的是应力差 Δ1= 1-3 。
三轴剪切试验,又称三轴压缩试验,是室内测定土的抗剪强度的一种较为完整的试验方 法。通常采用3-4个圆柱形式样,分别在不同的周围压力下测得土的抗剪强度
1.三轴剪切试验仪器
三轴剪切试验所采用的仪器可分 为应变控制仪和应力控制仪。
1–调压筒;2–周围压力表;3–周围压力阀;4–排水阀; 5–体变管;6–排水管;7–变形量表; 8–量力环;9–排 气孔;10–轴向加压设备;11–压力室;12–量管阀; 13–零位指示器;14–孔隙压力表;15–量管;16–孔隙 压力阀;17–离合器;18–手轮;19–马达;20–变速箱
§5.2土的强度理论
土的抗剪强度
排水条件(最重要) 剪切速率 应力状态 应力历史
应该指出:
土的c、 φ实际上只是表达关系试验成果的两个数学参数,从物理意义上
来说,在不同的法向应力作用下,土的粘聚力也不可能是常数。
§5.2土的强度理论
提问:对于某一种土来说,其抗剪强度τf 也相同吗?
⑴ τf 随剪切面上所受的法向应力σ而变,这就是土区别于其他许多建筑材
§5.2土的强度理论
§5.2 土的抗剪强度理论
一、库仑定律-土的强度规律 二、摩尔-库仑-强度理论 三、摩尔-库仑破坏准则-土的极限平衡条件
§5.2土的强度理论
一、库仑定律-土的强度规律 1、总应力库伦定律与抗剪强度指标
土体发生剪切破坏时,沿其内部某一滑动面发生相对滑动,而该滑动 面上的剪应力就等于土的抗剪强度。
特点: 试样是轴对称应力状态。垂直应力z一般是大主应力;径向 与切向应力总是相等r=,亦即1=z;2=3=r
方法: 首先试样施加静水压力—室压(围压) 1=2=3=const; 然后通过活塞杆施加的是应力差 Δ1= 1-3 。
土力学-第五章-土的抗剪强度指标3 土的动强度与砂土的振动液化1 张丙印

Kc=3 Kc=2 Kc=1
破坏振 次 lgNf
土的动强度 19
§5.6 土的动强度与砂土的振动液化
液化现象
孔压u
智者乐水 仁者乐山
松砂 振动台
时间 T
饱和松砂在振动情况
下孔压急剧升高
在瞬间砂土呈液态
饱和松砂的振动液化 20
§5.6 土的动强度与砂土的振动液化
液化机理
(1)初始处于疏松状态
智者乐水 仁者乐山
(2)振动过程中处于悬浮状态 - 孔压升高(液化)
(3)振后处于密实状态
饱和松砂的振动液化 21
§5.6 土的动强度与砂土的振动液化
液化机理
智者乐水 仁者乐山
排出的剩 余孔隙水
振前松砂 的结构
振中颗粒悬浮, 有效应力为零
振后砂土 变密实
饱和松砂的振动液化 22
§5.6 土的动强度与砂土的振动液化
不固结不排水试验 1
§5.5 土的抗剪强度指标 – 三轴试验指标
智者乐水 仁者乐山
无侧限压缩试验
cu
u=0
f
o 3=0
qu=
3=0的不排水试验
f = cu = qu/2
由于土样扰动等的
影响,一般稍低于 原位不排水强度
特别说明:十字板剪切试验所得到的抗剪强度
f 相当于土的不排水强度cu
不固结不排水
智者乐水 仁者乐山
第五章: 土的抗剪强度
§5.1 概述 §5.2 土的抗剪强度理论 §5.3 土的抗剪强度的测定试验 §5.4 应力路径与破坏主应力线 §5.5 土的抗剪强度指标 §5.6 土的动强度与砂土的振动液化
§5.6 土的动强度与砂土的振动液化
固结比
Kc=1/3
土力学

最大移位:60多米 最大沉陷:约10米 滑塌面积:7800多平方米 塌方体积:7.7万立方米 完成投资:1295万元 圩堤高度:18.6米
1999年下半年 :开工 2000年1月16日:圩堤出现局部滑坡
2月11日:混凝土墙齿槽滑动 3月13日:混凝土堤身变形加大 4月 9日:堤身滑塌
事故分析:“……是各种失误叠加造成的……”
附加应力 的计算
因素:底面形状;荷载分 布;计算点位置
基底压力计算 有效应力原理 常规三轴试验
基本概念 饱和土中孔隙水压力 和有 荷载不是很大
简化计算方法:
假定基底压力按直线分布的材料力学方法
17
1998年 九江大堤决口
“豆腐渣”工程 “王╳ ╳”工程
2000年 30公里 双钟圩堤身滑坡
《九江大堤今年又见“豆腐渣”》
《解放军报》 2000年08月14日
“豆腐脑”
《羊城晚报》2000年07月31日
18
鄱阳湖段的双钟圩: 全长1220米,总投资1550万元
上增加的压力。
2
一般三维应力状态: 1 2 3 三轴应力状态: 1 2 3
忽略中主应 力的影响
理论研究和工程实践中广泛应用
3
平面应变条件——二维问题
沿长度方向有足够长度, L/B≧10;
垂直于y轴切出的任意断面的几 何形状均相同,其地基内的应力 状态也相同;
一般先测定孔压系数B 可用于测定孔压系数A
轴向加压杆
量测剪切过程中产生的超 静孔隙水压力 u
顶帽
有机玻璃罩
压力室
测定: 轴向应变 轴向应力 孔隙水压力
橡皮膜 压力水
试
样
透水石
排水管 阀门
高等土力学(李广信) 教材习题解答PPT课件

σx 83.33 71.13 66.67 71.13 83.33 100 116.67 128.87 133.33 128.87 116.67 100 83.33
σy 83.33 100 116.67 128.87 133.33 128.8 116.67 100 7
83.33 71.13 66.67 83.33 83.33
10
答案
• 蠕变比尺为1,仍为120年
精选PPT课件
11
2-6:
已知砂土试样的1=800kPa, 2 =500kPa, 3=200kPa, 计算I1、I2、I3、J2、J3、p、q和各是多少; 如果1=800kPa, 2= 3 =200kPa,上述各值 为多少?
精选PPT课件
12
解题与答案
1: I1=1500; I2=660000; I3=80000000; J2=90000; J3=0;p=500; q=519.6;
高等土力学教材 习题解答
精选PPT课件
0
1-1
• 拟在一种砂土上进行各种应力路径的三轴试验,
施加的各向等压应力都是c=100kPa,首先完成 了常规三轴压缩试验(CTC),当13208.9kPa 时,试样破坏。根据莫尔-库仑强度理论,试预 测在CTE、TC、TE、RTC和RTE试验中试样破坏 时与各为多少?
q=600; =-30
精选PPT课件
13
2-14
• 下面是承德中密砂在三种围压下的三轴试
验结果。用这些数据计Duncan双曲线E, 和E, B模型的参数。(见附表)
• Rf: 平均值; • K,n的确定; • Kb,m的确定。
精选PPT课件
14
答案
• K: 410 • Kur: 600 • n: 0.88 • : 35.6 • Rf: 0.81 • Kb: 290 • m: 0.75
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受压,以区别真三轴受压试验。
如果采用空心圆筒试件,在筒外或筒内施加侧压, 还可进行二轴受压(C/C)或拉/压(T/C)试验
真三轴试验装置
简 介
Synopsis
试验装置的构造见图。 60年代, Krupp通用 建筑公司 机架焊接整体结构, 三轴刚性连接
试验中:试件挤在一角,变形增大时试件受到不对称应力增大。因为 轴是互相固定死的,变形得不到互相补偿。这种机械设备限制在试件 中产生强制应力,实测破坏荷载并不能真实代表试件的破坏荷载。
三轴分离试验装置
简 介
Synopsis
三轴分离试验装置:由三个独立的互不相连的机架组成,在水平 方向的两个机架,一个用缆绳悬挂起来,另一个放置在滚动轴承 上。垂直机架用平衡重物悬挂起来,能适应试件在水平方向和垂 直方向上受应力而产生的变形。
一框架 弹性悬 挂在另 一框架 上,钢 刷传力, 可减小 不对称 应力。
现代钢筋混凝土理论
三轴试验设备和方法
常规三轴试验机
简 介
Synopsis
一般利用已有的大型材料试验机,配备一个带活塞的高压 油缸和独立的油泵、油路系统。
常规三轴试验机
简 介
Synopsis
试验时将试件置于油缸内的活塞之下,试件的横 向由油泵施加液压,纵向由试验机通过活塞加压。试 件在加载前外包橡胶薄膜,防止高压油进入试件裂缝, 胀裂试件,降低其强度。 试验采用圆柱体或棱柱体试件,当试件三轴受压 (C/C/C)时,必有两方向应力相等,称为常规三轴
11
Li
图片
Picture
11
Li
图片
Picture
11
Li
图片
Pic构中一点的三向主应力值,随荷载的变化可 有不同的应力途径。已有的大部分三轴试验是等比例 ( σ 1:σ 2:σ 3 =const)单调加载、直到试件破坏。 应力比例由电 -液控制系统实现,一般设备都具备这 一功能。有些设备还可进行多种应力(变)途径的试 验,例如三向应力变比例加载、恒侧压加载、反复加 卸载、应变或应变速度控制加载等。需要指出,应用 三轴试验装置也可以进行混凝土的单轴受压和受拉试 验,得到相应的强度值和应力-应变曲线。但是这些试 验结果与用标准试验方法得到的不完全一致,有些甚 至相差较大。这是因为两者的试验加载设备、试件的 形状和尺寸、量测精度、承压面的摩擦约束等条件都 不相同。在分析混凝土的多轴性能时,一般取可比性 强的前者作为对比标准。
5、 试件的尺寸,即加载的空间很小(一般为 50~100mm),而承载力很大(1000~3000kN),要求 有较大而刚性的加载油缸和活塞)和承力(横梁和拉 杆)机构,造成构造上的困难; 6、试件受力后的变形过程中,要求三个方向施加 的力始终保持居中,不产生偏心作用;
Thank You!
Thank You!
程 序
Program
2、施加拉力 对试件施加拉力,须有高强粘结胶把试件和加载板牢固地粘结 在一起。此外,试件在浇注和振捣过程中形成含有气孔和水泥砂 浆较多的表层(厚约 2~ 4 mm),抗拉强度偏低,故用作受拉试
验的试件先要制作尺寸较大的混凝土试块,后用切割机锯除表层 ≥ 5 mm后制成。
3、应力和应变的量测 混凝土多轴试验时,试件表面有加载板阻挡,周围的空间很 小,成为应变量测的难点。试验中一般采用两类方法: ①直接量测法,在试件表面上预留浅槽(深 2~ 3 mm)内粘贴电 阻应变片,并用水泥砂浆填满抹平;或者在打磨过的试件棱边上 粘贴电阻片(影响试件性能,应变片可能被破坏); ②间接量测法,使用电阻式或电感式变形传感器量测试件同方 向两块加载板的相对位移,扣除事先标定的减摩垫层的相应变形 后,计算试件应变。 前者较准确,但量程有限,适用于二轴试验和三轴拉/压试 验;后者的构造较复杂,但量程大,适用于三轴受压试验。
擦作用,各承压端面的约束相互强化,可使混凝土的试验强 度成倍地增长,试验结果不真实,毫无实际价值。
混凝土多轴试验中,行之有效的减摩措施有4类: ①在试件和加压板之间设置减摩垫层; ②刷形加载板; ③柔性加载板; ④金属箔液压 垫。 后三类措施取得较好的试验数据,但其附件的构造复杂, 加工困难,造价高,且减摩效果也不尽理想。至今应用最多 的还是各种材料和构造的减摩垫层,例如两片聚四氟乙烯 (厚2 mm)间加二硫化钼油膏,三层铝箔(厚0.2 mm)中 间加二硫化钼油膏,分小块的不锈钢垫板等。
共同特点是:在3个相互垂直的方向都设有独立的活塞、液压缸、供油 管路和控制系统。 但主要机械构造差异很大,有的在3个方向分设丝杠和横梁等组成的 加载架,有的则利用试验机施加纵向应力,横向(水平)的两对活塞 和油缸置于一刚性承载框内,以减小设备占用空间,方便试验。
程 序
Program
在复杂结构中,混凝土的三向主应力不等,且可能是有拉 有压。显然,试验装置应能在3个方向施加任意的拉、压应 力和不同的应力比例(σ1:σ2:σ3)。70年代后研制的试 验装置大部分属此类。 真三轴试验装置的最大加载能力为压力: 3000 kN / 2000 kN / 2000 kN 拉力为: 200kN / 200kN 混凝土试件一般为边长50~150 mm的立方体。进行二轴 应力状态试验时.也可采用板式试件,最大尺寸为200 mm× 200 mm× 50 mm。 真三轴试验装置需要自行设计和研制,且无统一的试验标 准可依循,还有些复杂的试验技术问题需解决,造价和试验 费用都比较高。但是为了获得混凝土的真三轴性能,却又缺 之不可。
E-mail:hzx156@
程 序
Program
在设计混凝土的三轴试验方法和试验装置时,有些试验技术 问题需要研究解决,否则影响试验结果的可靠性和准确性, 决定三轴试验的成败。主要的技术难点和其解决措施有: 1、消减试件表面的摩擦 混凝土立方体试件的标准抗压试验中,只施加单向压力, 由于钢压板对试件端面的横向摩擦约束,提高了混凝土的试 验强度。在多轴受压试验时,如不采取措施消除或减小此摩