风电机组液压独立变桨距系统的设计与分析
风电机组液压系统ppt课件

上图是定桨距风力发电机组的液压系统,主要功能是用来 控制风力发电机组的启、停。它由四个控制回路组成。图 左侧Ⅰ回路是气动刹车控制回路,压力油经油泵2、滤油 器4进入系统。溢流阀6 用来限制系统最高压力。开机时 电磁阀12-2 工作,压力油经电磁阀12-1,单向阀7-2, 蓄能器8-2,单向阀7-3 和旋转接头进入气动刹车油缸。 压力开关9-2 由蓄能器的压力控制,当蓄能器压力达到设 定值时,压力开关9-2动作,电磁阀12-1 关闭。运行时, 回路压力主要由蓄能器保持,通过液压油缸上的钢丝绳拉 住叶尖扰流器,使之与叶片主体紧密结合,形成一个完整 的叶片。
飞车试验(此项试验通常只在样机开发阶段进行) 飞车试验的目的是为了设定或检验液压系统中的突开阀。 一般按如下程序进行试验: 1)将所有过转速保护的设置值均改为正常设定值的2倍, 以免这些保护首先动作。 2)将发电机并网转速调至5000r/min。 3)调整好突开阀后,起动风力发电机组。当风力发电机组 转速达到额定转速的125%时,突开阀将打开并将气动刹 车油缸中的压力油释放,从而导致空气动力刹车动作,使 风轮转速迅速降低。 4)读出最大风轮转速值和风速值。 5)试验结果正常时,将转速设置改为正常设定值。
控制液压油污染的措施 为确保液压系统工作正常、可靠和寿命长的要求,必须采 取有效措施控制液压油的污染。 1 控制液压油的工作温度 对于石油基液压油,当油温超过55℃时,其氧化加剧,使 用寿命大幅度缩短。据资料介绍,当石油基液压油温度超 过55℃时,油温每升高9℃,其使用寿命将缩减一半。可 见,必须严格控制油温才能有效地控制油液的氧化变质。 2 合理选择过滤器精度 过滤器的过滤精度一般按液压系统中对过滤精度要求最高 的液压元件来选择。
大型风电机组变桨控制系统毕业设计

摘要风能作为可再生能源中发展最快的清洁能源,其具有清洁,无污染,安全,储量丰富的特点,受到世界各国的普遍重视,是最具有大规模开发和商业发展前景的可再生能源。
当前,中国风电市场蓬勃发展,由此带动中国风机制造产业呈现欣欣向荣的发展势态。
变桨系统是风力发电机组系统中的最要组成部分,在实际风力发电中,当风速过大的时候,变桨系统运行,桨叶角度变化,可以对风力发电机起到保护作用,防止风力发电机轮毂转速过高损坏设备造成经济损失。
桨叶角度在一定范围(0-90度)内变化,以便调节输出功率不超过设计容量。
依据直驱风力发电机变桨系统的结构组成以及功能,进行了对风力机变桨实验系统的设计,选取S7-3000PLC进行控制风机进行变桨、偏航等功能,作为一种教学平台,它对同学进一步学习对风力机偏航系统的控制有很大的帮助。
关键词:变桨系统实验装置 PLC控制目录前言.................................................................................错误!未定义书签。
第一章绪论.. (1)1.1 我国能源的现状和发展风电优势 (1)1.2 发展状况 (4)第二章大型风力发电机组系统组成及功能 (8)2.1 大型风力发电机的结构 (8)2.2 大型风力发电机的工作过程及原理 (9)2.3 大型风力发电机的自动控制原理 (10)2.4 风力发电机组控制单元(WPCU) (10)2.5 远程监控系统(WPCM) (12)2.6 WPCS风电控制系统功能 (12)2.6.1 数据采集(DAS)功能 (12)2.6.2 机组启停、发电控制 (13)2.7 风电控制系统辅助设备逻辑 (13)第三章风力机偏航试验系统的设计 (16)3.1 机舱 (16)3.1.1 电动机的用途及其选型和安装 (16)3.1.2 刹车机构的设计及其安装 (16)3.1.3 偏航机构 (17)3.1.4 主轴以及主轴轴承的选型及其安装 (18)3.1.5 轮毂 (19)3.1.6 变桨机构 (19)3.2 PLC控制系统的选型 (20)3.2.1 系统组成 (21)3.2.2 变桨机构控制流程 (22)第四章设计结论 (23)参考文献.................................................................................错误!未定义书签。
风电机组液压系统讲解

• 3)外界侵入的污染
• 油箱防尘性差,容易侵入灰尘、切屑和杂物;油箱没有设 置清理箱内污物的窗口,造成油箱内部难清理或无法清理 干净;切削液混进油箱,使油液严重乳化或掺进切屑;维 修过程中不注意清洁,将杂物带入油箱或管道内等。
• 4)管理不严
• 新液压油质量未检验;未清洗干净的桶用来装新油,使油 液变质;未建立液压油定期取样化验的制度;换新油时, 未清洗干净管路和油箱;管理不严,库存油液品种混乱; 将两种不能混合使用的油液混合使用。
• 节流阀18-1 用于抑制蓄能器预压力并在系统维修时,释 放来自蓄能器16-1的压力油。油箱上装有油位开关2,用 来监视油箱的油位,防止油箱内油溢出或泵在缺油情况下 运转。
• 油箱内的油温由装在油箱上部的热电阻(PT100)测得。 油温达到设定值时会报警。
• 1)液压系统在运转/暂停时的工作情况 • 电磁阀19-1 和19-2(紧急顺桨阀)通电后,使比例阀上的P
工作的灵敏性、稳定性、可靠性和寿命提出了愈 来愈高的要求,而油液的污染会影响系统的正常 工作和使用寿命,甚至引起设备事故。据统计, 由于油液污染引起的故障占总故障的75%以上, 固体颗粒是液压系统中最主要的污染物。可见要 保证液压系统工作灵敏、稳定、可靠,就必须控 制油液的污染。
• 液压油污染原因与危害 • 液压油污染原因 • 1)藏在液压元件和管道内的污染物 • 液压元件在装配前,零件未去毛刺和未经严格清洗,铸造
• 机械刹车机构
• 机械刹车机构由安装在低速轴或高速轴上 的刹车盘与布置在它四周的液压钳构成。 液压钳是固定的,刹车圆盘随轴一起转动。 由PLC控制刹车钳的打开和关闭。实现风力 发电组轴系的启、停。为了监视机械刹车 机构的内部状态,刹车钳内部装有指示刹 车片厚度的传感器。
风力发电机液压变桨系统与电动变桨系统对比分析

风力发电机液压变桨系统与电动变桨系统对比分析风力发电机液压变桨系统与电动变桨系统对比分析摘要:风力发电机组变桨系统通过对叶片桨距角的控制调节发电机输出的扭矩和功率,使其能够控制发电机转速使其跟踪风速变化。
文章针对目前流行的两种变桨系统进行研究,并指出液压变桨系统和电动变桨系统在使用维护中存在的优缺点。
关键词:风力发电机组叶片桨距角控制扭矩和功率控制并网型风力发电机组是将风的动能转换成机械能,再把机械能转换成电能并入电网。
由于风速随时发生变化,因此长期运行在野外的风力发电机组承受着十分复杂恶劣的交变载荷。
所以风力发电机组各个部件的疲劳强度、材料结构和控制策略是影响风力发电机组寿命的主要因素。
叶轮是扑捉风能的关键部件,叶轮是由叶片和轮毂组成。
叶片具有空气动力外形,在气流的作用下产生力矩驱动叶轮转动,通过轮毂和主轴将扭矩传递到齿轮箱增速来驱动发电机,再经过变流器把电压转换成和电网电压频率,幅值和相位完全一致后经箱变并入电网,由此完成能量的变换。
变桨控制系统通过控制对叶片的迎风角度能够获取更多的风能,并减小因阵风引起的载荷,因此取得了广泛应用。
变桨系统能够控制发电机转速使其跟踪风速变化,时刻跟踪风能利用系数Cp,通过对变桨系统的控制可以对输出扭矩和功率进行控制,保持最佳功率曲线。
变桨距控制系统通过控制连接在轮毂轴承机构转动叶片来控制叶片桨距角,由此来减小翼型的升力来控制叶轮的转速达到控制输出扭矩和功率的目的。
变桨距系统可根据风速连续调节叶片的桨距角,以便达到在额定风速以上能够保持输出功率恒定的的目的。
一般在额定风速以下,叶片的启动桨距角是87度左右,当风力发电机在启动的过程中桨距角逐渐向0度方向转动,此时气流在轮毂上产生的提升力逐渐增加,叶轮越转越快,当达到额定转速时风机并网运行,所以控制叶片的桨距角是变桨控制系统的关键。
1 液压变桨系统的原理与结构液压变桨距的控制原理就是控制系统通过检测信号驱动液压系统,使液压系统变桨缸直接运行,从而通过一个运动装置将直线运动变为圆周运动,来推动带有轴承的叶片转动,实现调节桨距角的目的。
风电机组的独立变桨距优化控制系统综述

0 引 言
随着装 机容量 的飞速发 展 ,风 电机组逐 渐大 型化 。变 桨距成 为市 场 上大 中型风 力机桨 叶控制 的主流运 转形 式 变桨距 控制 分统一 变桨 距 和独立 变桨距 。前 者是通过 执行机 构对风 力机 的三个桨 叶实施 同步 调节控制 ,后者是每个 桨叶都有一 套独立 的变 桨距驱动 系统 。
减缓 电网 电压 波 动的 独立 变桨距控 制 策略 。最后 对 独 立 变桨距控 制 方 法和发 展前 景提 出 了展 望 。
【 关键词 】 独立变桨距控制;桨距 角;不平衡载荷 ;功率波动
2 - 2 独 立 变桨控 制 基本 原理 风 电机 组 变速 变桨 控制 目的是 :在 风速 低 于额 定风 速 时 ,通 过 变 速控 制实 现 最大 能量 捕 获 :高于 额 定风速 时 ,通 过变 桨控 制 使 发 电机 输 出功 率为 额 定值 。 图2 为 独 立 变桨 控 制 工作 原 理框 图 。其 中集 中 变桨 控 制 环 实现 变速 变 桨控 制 功能 ,输 出三 个 桨叶 期望 桨距 角 的相 同部 分 :独 立变 桨控 制 环 ,可 减小 风轮 不均 衡 载荷 ,减 少转 子 的倾 斜和 偏航 力 矩 , 分 别输 出三 个桨 叶不 同 的桨距 角 期望补 偿 值 。
3 . 1 减 少风 力涡 轮机 载 荷的 独立 变桨 控制 策 略 风 力 涡轮 机 系统 载 荷 由 基波 和 高 次 谐波 组 成 ,采 用 P R控 制方 法…,提 出 了比例积 分谐 振 独立 变桨控 制 ( P I — R I P C)策 略 1 。 P I . R I P C 方 案 、控制 器 配置 及控 制 回路框 图 如图3 — 5 所示。
1
5
l O
变桨系统分析

变桨系统分析变速变桨距风力发电机组目前已成为大型风力发电机组研发和应用的主流机型。
与定桨距风力发电机组相比,变桨距风力发电机组具有在额定功率点以上输出功率平稳、相同功率机组额定风速低、不受气流密度变化等环境因素影响和良好的启动和制动性能等优点。
变桨距风力机是指整个叶片绕叶片中心轴旋转,使叶片功角在一定范围内变化,以便调节输出功率不超过设计容许的值。
在机组出现故障时,需要紧急停机,一般应先使叶片顺桨,这样机组结构中受力小,可以保证机组运行的安全可靠性1.1变桨系统概述变桨控制系统实现风力发电机组的变桨控制,在额定功率以上通过控制叶片桨距角使输出功率保持在额定状态。
变桨控制柜主电路采用交流--直流--交流回路,由逆变器为变桨电机供电,变桨电机采用交流异步电机,变桨速率由变桨电机转速调节。
变桨控制系统包括三个主要部件,驱动装置-电机,齿轮箱和变桨轴承。
从额定功率起,通过控制系统将叶片以精细的变桨角度向顺桨方向转动,实现风机的功率控制。
如果一个驱动器发生故障,另两个驱动器可以安全地使风机停机。
变桨控制系统是通过改变叶片迎角,实现功率变化来进行调节的。
通过在叶片和轮毂之间安装的变桨驱动电机带动回转轴承转动从而改变叶片迎角,由此控制叶片的升力,以达到控制作用在风轮叶片上的扭矩和功率的目的。
在90度迎角时是叶片的工作位置。
在风力发电机组正常运行时,叶片向小迎角方向变化而达到限制功率。
一般变桨角度范围为0~86度。
采用变桨矩调节,风机的启动性好、刹车机构简单,叶片顺桨后风轮转速可以逐渐下降、额定点以前的功率输出饱满、额定点以的输出功率平滑、风轮叶根承受的动、静载荷小。
变桨系统作为基本制动系统,可以在额定功率范围内对风机速度进行控制。
变桨控制系统有四个主要任务:●通过调整叶片角把风机的电力速度控制在规定风速之上的一个恒定速度。
●当安全链被打开时,使用转子作为空气动力制动装置把叶片转回到羽状位置(安全运行)。
●调整叶片角以规定的最低风速从风中获得适当的电力。
变桨系统设计范文

变桨系统设计范文变桨系统是风力发电机组中的重要组成部分,主要用于调整风机叶片的角度,以便在不同的风速下最大限度地捕捉风能并转化为机械能。
本文将基于风力发电机组的工作原理、变桨系统的组成部分、工作原理和常见的设计参数等方面,对变桨系统进行详细阐述。
一、工作原理:风力发电机组由风机、变桨系统、发电机和控制系统等组成。
当风速增加时,风机的旋转速度也会增加,这会引起超速现象,对风机和发电机造成损害。
为了防止超速,就需要通过变桨系统来调整风机叶片的角度,以控制风机的旋转速度。
变桨系统的工作原理是利用控制器对风机叶片的角度进行调整。
当风速低于额定风速时,控制器会将风机叶片调整为最佳角度,以利用最小风速来产生最大的风能;当风速超过额定风速时,控制器会自动将风机叶片调整为零角度,以保护风机和发电机。
二、组成部分:变桨系统主要由叶片、叶片安装结构、执行机构、传感器和控制器等组成。
1.叶片:叶片是最重要的组成部分,常见的叶片材料有玻璃钢、碳纤维等,具有轻量化、高强度和耐腐蚀等特点。
2.叶片安装结构:用于将叶片连接到轴上,并提供角度调整的功能。
常见的叶片安装结构包括铰链机构和驱动机构。
3.执行机构:用于提供叶片角度调整的能力。
常见的执行机构有液压系统和电动机系统。
液压系统由液压泵、液压缸、液压油管等组成,通过控制液压油的流量和压力来实现叶片角度的调整;电动机系统由电动机、减速器、转动机构等组成,通过电动机的旋转来实现叶片角度的调整。
4.传感器:用于监测风速、叶片角度和负荷等参数。
常见的传感器有风速传感器、角度传感器和负荷传感器。
5.控制器:根据传感器的反馈信号,对叶片角度进行控制和调整。
常见的控制器有微机控制器和可编程逻辑控制器。
三、设计参数:设计一个合理的变桨系统需要考虑以下参数:1.风速范围:考虑所处地区的风能资源,确定变桨系统能够适应的风速范围。
通常将设计风速和额定风速作为参数进行设计。
2.负荷和效率:考虑发电机的额定负荷和发电效率,确定叶片角度的调整范围和步长。
风力发电机组变桨控制系统设计

风力发电机组变桨控制系统设计摘要:随着“低碳”这个名词走进人们的生活,大家对可再生能源的关注度日益增大。
随着煤、石油的大量开采,能源问题引起了世界各个国家的警惕,可再生洁净能源尤其风能开始受到人们的重视,风力发电得到了飞速发展,风力发电机在结构和控制都在逐渐完善,变桨距风力发电机组占着主导地位并将慢慢取代定桨距风力发电机组"。
本文主要研究了风电机组变桨距机构。
关键词:风力发电;变桨控制;定量控制1、绪论1.1研究背景,目的及意义1.1.1研究背景大规模利用风能等可再生能源已成为世界各国应对气候环境变化的重要议题。
从十六世纪人类利用风能抽水碾磨到二十世纪利用风能发电,从单桨叶风力发电机组到多桨叶风力发电机组,从垂直轴风力机到1957年第一台200kW水平轴并网风力发电机组的诞生,人类开发利用风能的技术取得了长足的进步。
目前,风力发电技术相对成熟,具备了大规模商业开发的条件,因此受到各国的普遍重视,已经逐步发展成为成熟的产业l。
截止到2010年底,世界各国风力发电机组装机总容量已超过196,630MW,是2000年的12倍。
十年来,全球风力发电的年平均增长率一直保持在29%左右,2010年仅新增装机容量就达37,580MW。
在风能资源开发技术方面,使国内风力发电机组的设计、制造和技术管理运营达到国际水平。
为此,国家积极出台多项可再生能源法,为发展风力发电等新能源提供了政策上的保障。
当前,发展风电的趋势已势不可挡,风电产业正在迎接一个新的发展时期。
目前风力发电技术的主要发展方向是,研究如何提高风力发电机组单机的装机容量、机组的发电效率和系统的可靠运行等几方面。
随着机组单机容量的不断增大,对风力发电系统变桨、变速调节技术,因其在不同风况时能够获得更高的风能转换效率,可以更好的稳定系统能量输出,且摆脱并网要求对机组的转速限制,因而逐渐占据了风力发电的主导地位。
1.1.2研究目的和意义为了在发展中既能提高经济效益,又能降低单位千瓦成本,风力发电机组单机容量正向着大型化的方向改进。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ ] 周加 龙 , 明扬 . 4 赵 直驱式容积控制电液伺服系统设 计研究
[ ]科技 创新 导报 ,0 8 (O :2— 3 J. 20 , 1 )8 8 .
[ ] 郑洪波 , 友松. 1 孙 直驱式容 积控制电液伺服系统及其发 展 现状 [ ] 机床与液压 ,0 1 ( ) 13—16 J. 2 1 , 3 :1 1. [ ] 姜继海 , 2 涂婉 丽 , 曹健 .直驱式容积控 制 电液伺 服系统 动
系统有 电 动变桨 和液 压 变 桨 之 分 。相 对 于 电 动 变 桨 ,
1 液压 独 立变 桨距 控制 系统
对 桨距 角 的主 动控制 可 以克服 被动失 速调 节 的固
有 缺点 。桨 距角 最重 要 的应用是 功率 调节 , 除此 之外 ,
液 压变 桨 系统具 有 强大 的驱 动力 、 紧凑 的结 构布 局 、 高 的动态 响应 、 件使 用 寿命 长 等 优 点 。 而液 压 变 桨 系 元 统 按桨 距 角 的控 制 方 式不 同 , 可分 为液 压 统 一 变 桨 又 距 系统 和 液压独 立 变桨距 系 统 。液压 统一 变桨 距控 制
WE i-a g , N o g1 n L U Y n I e i WA G D n .a g , I ig L jn i
(. 1 兰州理 工大学 能源与 动力 工程 学院 , 甘肃 兰州 7 0 5 2 兰州电机股份有限公司 , 30 0; . 甘肃 兰州 705) 30 0
摘
21 0 2年 第 3期
液压 与 气动
6 1
魏列江 ,王栋 梁 刘 。
英
De i n a d An l ss o h d a lc I d v d a ic — o tol d sg n a y i ft e Hy r u i n ii u lP t h c n r l e S se f r W i d Tu b n s y t m o n r i e
时 , 叶片 的桨距 角 同时 改变 相 同的角 度 ; 各 液压 独立 变
当风轮开始旋转时 , 采用较大 的正桨距角可 以产生一
个 较大 的启 动力 矩 。通过 安装 在 叶片和轮 毂之 间 的变 桨 驱动 机构 带动 回转 轴 承 转 动从 而改 变 叶 片迎 角 , 由 此 来控 制 叶片 的升力 , 以达 到 控 制 作用 在 风 轮 叶 片上 的扭矩 和功 率 的 目的。9 。 角时是 叶片 的工 作位 置 。 0迎
关 键词 : 液压独 立 变桨 ; 冗余设 计 ; 油缸 负载 力
中图分 类号 : H17 文献标 识码 : 文章编 号 :0 04 5 ( 0 2 0 -0 1 3 T 3 B 10 -8 8 2 1 ) 30 6 - 0
引 言
的主 导方 式 。
稳 定 究 的热 点 和难 点 。 目前 , 力 机 的变 桨 距 风
在 风力 发 电机组 正 常运 行 时 , 片 向小 迎 角 方 向变 化 叶
桨距 控 制 时 , 叶片 桨距 角 的改变 量可 以各 不相 同 , 各 这
样任何故障的出现只会反 映在其 中一个叶片上 , 而不 影 响其他 叶片 的变桨 功 能 。液压独 立 变桨距 控 制 因其
能 够在稳 定 输 出 功 率 的 同 时提 高 风 电 系 统 的整 体 性 能, 尤其 是在 大 型风力 发 电机 组 中 , 为风轮 扫 掠面积 因 大, 各个 叶 片处风 速相 差较 大 , 以采用 不 同的桨 距角 所
更符合风力机的控制要求 , 使其逐渐成为变桨距控制
设计 的电液执 行器 满 足 精 度 要 求 , 同时 证 明 了 理论 分 析 的正确 性 。
参考文献 :
态性能研究 [ ] 液压与气动 ,0 5 ( )2 J. 20 ,8 :9—3 . 1
[ ] 郭建 宇. 阀电液伺 服 系统 的建模 与仿 真研 究 [ . 3 无 D] 大
() 1
式 中, P为空 气 密 度 (.2 gm ) C 125k/ ;。为 功 率 系 数 ;
A为扫 风 面积 ; U为 风 速 。 于变 桨 距 风力 发 电机 组 , 对 风 能利 用 系数与 叶尖 速 比 A和 桨距 角 口的关 系可用 式
() 2 表示 :
流峰一峰值的大小来决定工作 阀与备用 阀的切换 , 而 通过( 多次 ) 有 限时 间 内施 加 双 向交 变 电磁 力 的方 在 法使系统具有一定 的故障在线排除能力 。伺服阀 1 J 和伺服阀 2 互为备用 , 由调速器伺服环 回路进行实时 检 测和 故 障判 断 , 根据切 换逻 辑控 制切换 电磁 阀 , 实现 伺 服 阀 1和伺 服 阀 2之 间的切换 J 。其 控制 框 图如 图
来起 到 限制 功率 作用 。一 般变桨 距油 缸按伺 服 阀输 出
的方 向和流 量将 叶片 桨距 角控制 在 一 。 5 一+ 8 。之间 8
收稿 日期 :0 11 —0 2 1—01 作者简介 : 魏列 江 ( 9 2 ) 男 , 17 一 , 甘肃兰 州人 , 副教 授 , 博士 , 主要从事流体测控方面 的研究工作 。
[ ] 吕杰. 5 直驱式 电液伺服 系统 的设计 与特性研究 [ . D] 哈尔
滨: 哈尔滨工业大学 ,08 20.
6 2
变化。风力机输出功率 P 由下式给出… : ,
P = u 1 c 3
液压与 气动
21 0 2年第 3期
它通 过 在放大 电路 中直接 比较 两个 电液 转换 器颤振 电
要 : 压独 立 变桨距 系统作 为 大型风 力发 电机 组控 制 系统 的关键部 分 , 液 对机 组 的安 全 、 定 、 稳 高效运
行 具 有十 分 重要 的作 用。该 文 简述 了风 力机 液压独 立 变 桨距 系统 的 原理 及 特 点 , 用 了带 实 时故 障排 除 的 采 液压 冗余 型 电液伺服 变桨距 执行机 构 ; 算分 析 了桨叶 的驱 动 力矩及 液压 缸 的 负载 力 。 计