圆柱齿轮传动的计算载荷和受力分析
圆柱斜齿轮传动的设计计算

1.1.1 圆柱斜齿轮传动的设计计算已知输入功率1 1.5kWP =(略大于小齿轮的实际功率),小齿轮的转速为:12800rpm n =,大齿轮的转速为2560rpm n =,传动比5i =。
1.选定齿轮类型、精度等级、材料及齿数(1)由于第二级为圆锥齿轮传递,为了平衡锥齿轮传动对第二轴产生的轴向力,第一级传动设计为斜齿轮传动。
(2)叉车车速不高,为一般机械,故选用8级精度。
(3)材料选择,小齿轮材料为40Cr (正火),硬度为280HBW ,大齿轮材料为45钢(调质),硬度为240HBW ,二者材料硬度相差40HBW ,在30~50HBW 范围内。
(4)选小齿轮齿数12117,51785z z u z ==⋅=⨯=则,为了延长齿轮工作寿命,1z 和2z 尽量互质,所以校正2z 值,取284z =, 4.94u =。
2.按齿面接触疲劳强度设计因为是软齿面传动,故按齿面接触疲劳强度进行设计。
公式如下:1d ≥(5-1) 式中各参数为: (1)小齿轮传递的转矩 ()66111 1.5/N mm 9.55109.55105116.12800P T n ⋅=⨯=⨯⋅= (5-2) (2)设计时,因为v 值未知,v K 不能确定,故可初选载荷系数 1.1~1.8t K =,本设计中初选 1.4t K =。
(3)选取齿宽系数 1d φ=。
(4)查得材料弹性影响系数E Z =(5)初选螺旋角12β=︒,由机械手册查得节点区域系数 2.46H Z =。
(6)由选定齿数及齿数比,得端面重合度:121111=1.88 3.2cos 1.88 3.2cos12 1.631784z z αεβ⎡⎤⎛⎫⎡⎤⎛⎫-+=-+︒=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎣⎦ (5-3) 得轴面重合度:10.318tan 0.318117tan12 1.53d z βεφβ==⨯⨯⨯︒= (5-4)由机械手册查得重合度系数0.768Z ε=。
齿轮传动的计算载荷

恰好相切;受载后,轴产生弯曲变形(图<轮齿所受的载荷分布不均>),轴上的齿轮也就随之偏斜,这就使作用在齿面的载荷沿接触线分布不均匀(图<轮齿所受的载荷分布不均>)。
图<轮齿所受的载荷分布不均>当然,轴的扭转变形,轴承、支座的变形以及制造,装配的误差也是使齿面上载荷分布不均的因素。
计算轮齿强度时,为了计及齿面上载荷沿接触线分布不均的现象,通常以系数Kβ来表示齿面上分布不均的程度对轮齿强度的影响。
为了改善载荷沿接触线分布不均的程度,可以采用增大轴、轴承及支座的刚度,对称的配置轴承,以及适当的限制轮齿的宽度等措施。
同时应尽可能避免齿轮作悬臂布置(即两个支承皆在齿轮的一边)。
对高速、重载(如航空发动机)的齿轮传动应更加重视。
除上述一般措施外,也可把一个齿轮的轮齿做成鼓形(右图)。
当轴产生弯曲变形而导致齿轮偏斜时,鼓形齿齿面上载=1.11+0.18+0.15×=1.11+0.18(1+0.6)+0.15× =1.11+0.18(1+6.7)+0.15× =1.12+0.18+0.23×=1.12+0.18(1+0.6)+0.23× =1.12+0.18(1+6.7)+0.23× =1.15+0.18+0.31×=1.15+0.18(1+0.6)+0.31× =1.15+0.18(1+6.7)+0.31×=1.05+0.26+0.10×=1.05+0.26(1+0.6) +0.10×=1.05+0.26(1+6.7) +0.10×=0.99+0.31+0.12×=0.99+0.31(1+0.6) +0.12×=0.99+0.31(1+6.7) +0.12×=1.05+0.26+0.16×=1.05+0.26(1+0.6) +0.16×=1.05+0.26(1+6.7) +0.16×=1.0+0.31+0.19×=1.0+0.31(1+0.6) +0.19×=1.0+0.31(1+6.7) +0.19×。
机械设计6—齿轮传动

d1↓ ,v ↓,KV ↓ a↓
d↓ → b ↓ , σ H ↑
但 d↑↑→ b ↑↑,易承载不均,Kβ ↑
∴ 应合理选用d ,参见表10-7 ☆设计结果中小齿轮齿宽 b1=b+(5~10)mm,大齿轮齿宽 b2=b, 且要圆整。为什么?
齿轮传动获得广泛应用的原因之一。
优点
3. 效率高; 可达99%,常用的机械传动中,效率最高。 4. 结构紧凑。 1. 制造及安装精度要求高; 2. 成本高。
缺点
二、齿轮传动的分类
1. 按两轴线位置分:平行轴、相交轴、交错轴 2. 按工作条件分: 开式传动:低速传动,润滑条件差,易磨损; 半开式传动:装有简单的防护罩,但仍不能严密防止杂物侵入;
又T1= 9.55x106P/n1 = 9.55x106P/1440≤301138, 解得Pmax= 45.4 kW
§6-6 标准斜齿圆柱齿轮传动的强度计算
一、齿面接触疲劳强度计算 失效形式、计算准则同直齿轮。 不同之处:1)∵有,接触线倾斜→↑接触强度,用考虑。 2)接触线长度随啮合位置而变化。
d — 齿宽系数 (表10-7) d = b/d1
[ H]— 齿轮许用齿面接触应力 (MPa)
[ H] = KHN. σHlim / SH
Hlim — 图10-21 ,SH =1 (一般可靠度) KHN — 接触寿命系数, 由应力循环次数N=60njLh和材
料查图10-19 2. 设计公式 d 1 3. 重要说明
5. 齿面塑性变形
常发生在低速重载软齿面齿轮传动中。 齿面在过大的摩擦力作用下处于屈服状态,产生沿摩擦力 方向的齿面材料的塑性流动,从而使齿面正常轮廓曲线被损坏。
圆柱齿轮传动强度的计算

圆柱齿轮传动的强度计算1 直齿圆柱齿轮传动的强度计算1.齿面接触疲劳强度计算为了保证在预定寿命内齿轮不发生点蚀失效,应进行齿面接触疲劳强度计算。
因此,齿轮接触疲劳强度计算准则为:齿面接触应力σH小于或等于许用接触应力σHP,即σH≤σHP赫兹公式由于直齿轮在节点附近往往是单对齿啮合区,轮齿受力较大,故点蚀首先出现在节点附近。
因此,通常计算节点的接触疲劳强度。
图a表示一对渐开线直齿圆柱齿轮在节点接触的情况。
为了简化计算,用一对轴线平行的圆柱体代替它。
两圆柱的半径ρ1、ρ2分别等于两齿廓在节点处的曲率半径,如图b所示。
由弹性力学可知,当一对轴线平行的圆柱体相接触并受压力作用时,将由线接触变为面接触,其接触面为一狭长矩形,在接触面上产生接触应力,并且最大接触应力位于接触区中线上,其数值为式中σH-接触应力(Mpa)Fn-法向力(N)L-接触线长度(mm)rS-综合曲率半径(mm);±-正号用于外接触,负号用于内接触ZE-材料弹性系数(),,其中E1、E2分别为两圆柱体材料的弹性模量(MPa);m1、m2分别为两圆柱体材料的泊松比。
上式表明接触应力应随齿廓上各接触点的综合曲率半径的变化而不同,且靠近节点的齿根处最大(图c、d)。
但为了简化计算,通常控制节点处的接触应力。
节点处的参数(1)综合曲率半径由图可知,,代入rE公式得式中:,称为齿数比。
对减速传动,u=i;对增速传动,u=1/i。
因,则有(2)计算法向力(3)接触线长度L引入重合度系数Ze,令接触线长度将上述参数代入最大接触应力公式得接触疲劳强度计算公式令,称为节点区域系数。
则得(1) 齿面接触疲劳强度的校核公式齿面接触疲劳强度的校核公式为(2) 齿面接触疲劳强度设计公式设齿宽系数,并将代入上式,则得齿面接触疲劳强度的设计公式式中:d1-小齿轮分度圆直径(mm);ZE-材料弹性系数(),按下表查取;注:泊松比m1=m2=0.3Z H-节点区域系数,考虑节点处轮廓曲率对接触应力的影响,可由下左图查取。
第8章 圆柱齿轮传动

机械设计 Machine design 机械设计 Machine design
渐开线圆柱齿轮齿面接触强度计算
齿面接触强度条件式:
H Z H Z E Z Z
K A K V K Hβ K Hα Ft u 1 bd1 u
HP
H limZ NT Z L Z V Z R Z W Z X
机械设计 Machine design 机械设计 Machine design
齿轮的材料及热处理
一、对齿轮材料性能的要求 齿轮的齿体应有较高的抗折断能力,齿面应有较强的抗点蚀、抗磨损和较高 的抗胶合能力,即要求:齿面硬、芯部韧。 二、常用的齿轮材料 钢:许多钢材经适当的热处理或表面处理,可以成为常用的齿轮材料; 铸铁:常作为低速、轻载、不太重要的场合的齿轮材料; 非金属材料:适用于高速、轻载、且要求降低噪声的场合。 三、齿轮材料选用的基本原则
齿轮传动是机械传动中最重要的传动之一,其应用范围十分广泛,型式 多样,传递功率从很小到很大(可高达数万千瓦)。
一、齿轮传动的主要特点: 传动效率高 可达99%。在常用的机械传动中,齿轮传动的效率为最高; 结构紧凑 与带传动、链传动相比,在同样的使用条件下,齿轮传动所需 的空间一般较小;
与各类传动相比,齿轮传动工作可靠,寿命长; 传动比稳定 无论是平均值还是瞬时值。这也是齿轮传动获得广泛应用的 原因之一;
对于斜齿圆柱齿轮而言,其主要参数有:模数m、齿数z、螺旋角β以及压力角a、 齿高系数h*a、径向间隙系数c*。
机械设计 Machine design 机械设计 Machine design
齿轮传动的失效形式及设计准则
一、齿轮的主要失效形式
齿轮传动的失效主要是指轮齿的失效,其失效形式是多种多样的。常见的失效 形式有:
机械设计6—齿轮传动

措施: ) 齿根过渡圆角半径 齿根过渡圆角半径, 加工损伤→应力集中↓ 措施:1)↑齿根过渡圆角半径,↓加工损伤 ↓ 2)↑轮齿精度,↑支承刚度 ) 轮齿精度, 支承刚度→改善载荷分布 3) d 一定时,z↓,m↑ → 齿根厚度↑ ) 一定时, ↓ ↑ ↑ 4)齿根部分表面强化处理(喷丸、滚压)→改善力学性能 )齿根部分表面强化处理(喷丸、滚压)
查表10-4和图 和图10-13 查表 和图
标准直齿圆柱齿轮传动的强度计算 §6-5 标准直齿圆柱齿轮传动的强度计算
一、齿面接触疲劳强度计算 1. 校核公式
σ
H
= ZHZE
。
2 KT 1 u ± 1 ⋅ ≤ [σ 3 u φdd1
H
]
ZH — 节点区域系数 α = 20 时, ZH = 2.5 ZE — 配对齿轮材料弹性系数(表10-6) 配对齿轮材料弹性系数( ) u — 大齿数/小齿数 (减速传动时u=i ) 大齿数/ 减速传动时 外啮合 + ,内啮合 –
需对Ft 修正 计算载荷Ftc =K.Ft 实际载荷(计算载荷)Ftc > Ft K------- 载荷系数 齿向载荷分配系数 齿间载荷分配系数
P1 T1 = 9.55 × 10 ( N ⋅ mm ) n1
6
K= KA. KV . Kα . Kβ
使用系数 动载系数
1. 使用系数 A (表10-2) . 使用系数K ) 考虑原动机、工作机、联轴器等外部因素引起的动载荷。 考虑原动机、工作机、联轴器等外部因素引起的动载荷。 外部因素引起的动载荷 2. 动载系数 V (图10-8) 动载系数K ) 考虑齿轮啮合过程中因啮合误差和运转速度引起的内部附加动载荷。 考虑齿轮啮合过程中因啮合误差和运转速度引起的内部附加动载荷。 啮合误差和运转速度引起的内部附加动载荷 KV=f (精度, v) 精度, )
第八章 齿轮传动

m n
0 . 318 d z 1 tan
8-10 齿轮的结构设计 (1)齿轮轴 如果圆柱齿轮齿根圆到键槽底面的径向距离 e2.5m(mn),则可将齿轮与轴做成一体称为齿轮轴.
(2)实心式齿轮
当da 200mm,且e>2.5m(mn),则可做成实心 式
(3) 腹板式齿轮
当da 500mm时,为了减少 质量和节约材料,通常采用 腹板式结构
B
机械性能 屈服极限σ s ( M Pa) 硬 度 HB、 HRC 调质 调质、表 面淬火
580 640
290 350
H B 162~217 H B 217~255 H R C 40~50( 齿 面)
低中速、中载的 非重要齿轮 低中速、中载的 重要齿轮 高速、中载而冲 击较小的齿轮 低中速、中载的 重要齿轮 高速、中载、无 剧烈冲击的齿轮 低中速、中载的 重要齿轮 高速、中载、无 剧烈冲击的齿轮
一、使用系数KA 使用系数KA是考虑由于齿轮啮合外部因素 引起附加动载荷影响的系数。
影响KA的主要因素:原动机和工作机的工作特 性。
二、动载系数K
动载系数K是考虑由于齿轮制造精度、 运转速度等轮齿内部因素引起的附加动载荷 影响系数。
影响K的主要因素:基节和齿形误差产生的 传动误差、节线速度和轮齿啮合刚度等。
2 ( u 1) cos b d 1 u sin t
接触线长度L
KF t Z u 1
2
L
br cos b
F
M W
F n cos F h F bS 6
2 F
Ft bm
6( (
hF m
) cos F ) cos
机械设计-齿轮传动讲解

重合度e↑ →传动平稳
z1↑
m↓
齿高h,抗弯曲疲劳强度降低
因此,在保证弯曲疲劳强度的前提下,齿数选得多一些好!
一般情况下,闭式齿轮传动(速度高,平稳性差): z1=20~40
将
Ft
=
2T1 d1
及Φd=b/d1
代入
则齿面接触疲劳强度的校核式:σH =
2K T1 dd13
u±1 u
ZH
ZE
[σH ]
齿面接触疲劳强度的设计式: d1
3
2 KT1
d
u ±1 ( Z H Z E )2
u [s H ]
对于标准直齿轮,ZH=2.5
齿面接触疲劳强度的校核式:
s H
= 2.5
= KFtYFaYsa bm
[s F]
Ysa表
引入齿宽系数后 强度条件公式:
d
=
b,并将Ft=2T1/d1, d1
d1=m
z1代入,可得弯曲
s = 2KT 1 YFaYsa
F φdm3 z12
[s F]
得
m
3
2KT1
dZ12
×Y[FsaYFs]a
公式中各参数对弯曲强度有什么影响呢?
标准直齿圆柱齿轮强度计算
从上面推出的接触疲劳强度条件公式中可以得出以下结论:
1、分度圆直径越大,接触疲劳强度就越高,也就是说接触
疲劳强度取决于分度圆直径,不单和模数m有关还和齿
数z有关。 2、齿宽系数越大,也就是齿宽越宽,接触疲劳强度就 越高。
3、许用接触应力越大,接触疲劳强度就 越高,
问题:σH1和σH2是否是作用力和反作用力的关系 σH1=σH2 是作用力和反作用力的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 轮齿的受力分析
1. 直齿圆柱齿轮受力分析
图为直齿圆柱齿轮受力情况,转矩T1由主动齿轮传给从动齿轮。若忽略齿面间的摩擦力,
轮齿间法向力Fn的方向始终沿啮合线。法向力Fn在节点处可分解为两个相互垂直的分力:
切于分度圆的圆周力Ft 和沿半径方向的径向力Fr 。
式中: T1-主动齿轮传递的名义转矩(N·mm),, Pl为主动齿轮
传递的功率(Kw),n1为主动齿轮的转速(r/min);
d1-主动齿轮分度圆直径(mm);
α-分度圆压力角(o)。
对于角度变位齿轮传动应以节圆直径d`和啮合角α`分别代替式(9.44)中的d1 和α。
作用于主、从动轮上的各对力大小相等、方向相反。从动轮所受的圆周力是驱动力,其方向
与从动轮转向相同;主动轮所受的圆周力是阻力,其方向与从动轮转向相反。径向力分别指
向各轮中心(外啮合)。
2. 斜齿轮受力分析
图示为斜齿圆柱齿轮受力情况。一般计算,可忽略摩擦力,并将作用于齿面上的分布力用作
用于齿宽中点的法向力Fn 代替。法向力Fn 可分解为三个相互垂直的分力,即圆周力Ft 、
径向力Fr 及轴向力Fa 。它们之间的关系为
式中: αn-法向压力角(°);
αt-端面压力角;(°)
β-分度圆螺旋角(°);
作用于主、从动轮上的各对力大小相等、方向相反。圆周力Ft 和径向力Fr 方向的判断与
直齿轮相同。轴向力Fa 的方向应沿轴线,指向该齿轮的受力齿面。通常用左右手法则判断:
对于主动轮,左旋时用左手(右旋时用右手),四指顺着齿轮转动方向握住主动轮轴线,则
拇指伸直的方向即为轴向力Fa1 的方向。
2 计算载荷和载荷系数
名义载荷 上述所求得的各力是用齿轮传递的名义转矩求得的载荷。
计算载荷 由于原动机及工作机的性能、齿轮制造及安装误差、齿轮及其支撑件变形等因
素的影响,实际作用于齿轮上的载荷要比名义载荷大。因此,在计算齿轮传动的强度时,用
载荷系数K对名义载荷进行修正,名义载荷与载荷系数的乘积称为计算载荷。
法向计算载荷Fnc 为:
式中: K -载荷系数
KA-使用系数
Kv-动载荷系数
Kα-齿间载荷分配系数
Kβ-齿向载荷分配系数
载荷系数K
1. 使用系数KA
使用系数KA 是考虑齿轮啮合时外部因素引起的附加动载荷的影响系数。它取决于工作机
和原动机的工作特性、轴与联轴器系统的质量和刚度以及运行状态。对于一般设计,KA 值
可按表9.10选取。
表9.10 使用系数KA
注:表中所列KA 值仅适用于减速传动;对于增速传动,建议取表中数值的1.1倍。当外部
机械与齿轮装置之间为挠性连接时,KA 可适当减小。
2. 动载荷系数Kv
动载荷系数Kv 是考虑齿轮副自身啮合误差引起的内部附加动载荷的影响系数。产生附加动
载荷的主要因素有:
1)齿轮制造产生的基节误差和齿形误差;
2)在啮合传动中,同时参加啮合轮齿的对数及位置在循环变化,轮齿啮合刚度也随之变化;
3)轮齿受载变形;
4)齿轮支承件的弹性变形等。
上述因素导致啮合节点位置变化,故从动轮转速变化,产生附加动载荷。
动载荷系数Kv 值应通过实测或计算得到。一般设计可参考下图选取。
适当提高制造精度,降低齿轮圆周速度,增加轮齿及支承件的刚度,对齿轮进行修形(即对
齿顶的一小部分齿廓曲线进行适量修削)等,都能减小内部附加动载荷。
3. 齿间载荷分配系数Kα
齿间载荷分配系数Kα 是考虑同时啮合的各对轮齿间载荷分配不均匀影响的系数。影响齿间
载荷分配不均匀的主要因素有:受载后轮齿变形;齿轮的制造误差,特别是基节误差;齿轮
的跑合效果及齿廓修形等。对于一般工业传动用的直齿轮和β≤30°的斜齿轮Kα值可按表
9.11选取。
表中:KHα为齿面接触疲劳强度计算用的齿间载荷分配系数; KFα为齿根弯曲疲劳强度计
算用的齿间载荷分配系数。
表9.11 齿间载荷分配系数KHα,KFα
注:①适用于钢制及铸铁齿轮;
②对修形6级精度硬齿面斜齿轮,取 KHα=KFα =1.0;
③齿轮副精度等级不同时,按精度等级较低者取值。
4. 齿向载荷分布系数Kβ
齿向载荷分布系数Kβ是考虑沿齿宽方向载荷分布不均匀对齿轮强度影响的系数。影响沿齿
宽方向载荷分布不均匀的因素很多,主要有:齿轮的制造和安装误差;轮齿、轴系部件和箱
体的变形;齿宽及齿面硬度等。
齿面接触疲劳强度计算用的齿向载荷分布系数KHβ 值可根据齿轮在轴上布置形式、齿轮的
精度等级、齿宽b及齿宽系数φd (=b/d)从表查取;
齿根弯曲疲劳强度计算用的齿向载荷分布系数KFβ 值可根据KHβ 值、齿宽与齿高比(b/h)
按下图查取。
提高轮齿、轴系部件和箱体的刚度,合理布置齿轮位置(尽可能不用悬臂布置),合理选择
齿宽,提高制造和安装精度,对轮齿作鼓形修形等,都有利于改善载荷分布不均匀现象。(end)