高中数学椭圆常结论及其结论(完全版)

高中数学椭圆常结论及其结论(完全版)
高中数学椭圆常结论及其结论(完全版)

2椭圆常用结论

一、椭圆的第二定义:

一动点到定点的距离和它到一条定直线的距离的比是一个)1,0(内常数e ,那么这个点的轨迹叫做椭圆 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率(点与线成对出现,左对左,右对右)

对于12222=+b

y a x ,左准线c a x l 2

1:-=;右准线c a x l 22:=

对于12222=+b

x a y ,下准线c a y l 2

1:-=;上准线c a y l 22:=

椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称

焦点到准线的距离c

b c c a c c a p 2

222=-=-=(焦参数)

二、焦半径

圆锥曲线上任意一点M 与圆锥曲线焦点的连线段,叫做圆锥曲线焦半径。 椭圆的焦半径公式:

焦点在x 轴(左焦半径)01ex a r +=,(右焦半径)02ex a r -=,其中e 是离心率

焦点在y 轴 1020,MF a ey MF a ey =+=-

其中21,F F 分别是椭圆的下上焦点

焦半径公式的两种形式的区别只和焦点的左右有关,而与点在左在右无关 可以记为:左加右减,上减下加()

c a PF c a PF -≥-≥21,

推导:以焦点在x 轴为例

如上图,设椭圆上一点()00,y x P ,在y 轴左边. 根据椭圆第二定义,

e PM

PF =1,

则 02020201ex a c a x a c c a x e c c x e PM e PF +=????

??+=???? ??+=???? ?

????? ??--== x

O F 1

F 2

P

y A 2

A 1

B 1

B 2

同理可得0

2ex a PF -=

三、通径:

圆锥曲线(除圆外)中,过焦点并垂直于轴的弦,以焦点在x 轴为例, 弦AB

坐标:????

??-a b c A 2,,???

? ??a b c B 2,

弦AB 长度: a

b AB 2

2=

四、若P 是椭圆:

上的点.为焦点,若,则的面积为

. 推导:如图θsin 2

12121??=

?PF PF S F PF 根据余弦定理,得 θcos =

2

12

2

12

2

2PF PF F F PF PF ?-+

=

2

12

2121242)PF PF c PF PF PF PF ?-?-+

=

2

12

2122424PF PF c PF PF a ?-?-

=

2

12

12224PF PF PF PF b ??-

得θ

cos 122

21+=?b PF PF

θsin 212

121??=?PF PF S F PF =θθsin cos 12212?+?b =θθcos 1sin 2+?b =2

tan 2θb

12

22

2=+

b y a x 21,F F θ=∠21PF F 21F PF ?2

tan

2θb x

O F 1

F 2 P y A 2

A 1

B 1

B 2

五、弦长公式

直线与圆锥曲线相交所得的弦长

直线具有斜率k ,直线与圆锥曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,

则它的弦长

12AB x =-==注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为1212()y y x x -=-k ,运用韦达定理来进行计算.

当直线斜率不存在是,则12AB y y =-. 六、圆锥曲线的中点弦问题: (1)椭圆中点弦的斜率公式:

设00(,)M x y 为椭圆22

221x y a b +=弦AB (AB 不平行y 轴)的中点,则有:

2

2AB OM

b k k a

?=-

证明:设11(,)A x y ,22(,)B x y ,则有

1212AB

y y k x x -=-,22

112222

22

22

1

1x y a b x y a b ?+=????+=?? 两式相减得:

2222

1212

22

0x x y y a b --+=整理得:222

1222

212y y b x x a

-=--,即2

121221212()()()()y y y y b x x x x a

+-=-+-,因为00(,)M x y 是弦AB 的中点,所以

0012

001222OM

y x y y k x y x x +===+,所以22AB OM b k k a

?=-

(2)遇到中点弦问题常用“韦达定理”或“点差法”求解。

在椭圆122

22=+b y a x 中,以00(,)M x y 为中点的弦所在直线的斜率k=-0

202y a x b ;

由(1)得22

AB OM

b k k a ?=-

0022221y x a b k a b k OM AB

?

-=?-=

七、椭圆的参数方程(sin cos 为参数???

?

??==b y a x

八、共离心率的椭圆系的方程:

椭圆的离心率是,方程是大于0的参

数,0>>b a 的离心率也是 我们称此方程为共离心率的椭圆系方程. 例1、已知椭圆116

252

2=+y x 上一点P 到椭圆左焦点的距离为3,

则点P 到右准线的距离为____

例2、如果椭圆

22

1369

x y +=弦被点A (4,2)平分,那么这条弦所在的直线方程是

例3、已知直线1+-=x y 与椭圆22

221(0)x y a b a b

+=>>相交于A 、B 两点,且线段AB 的

中点在直线l :02=-y x 上,则此椭圆的离心率为_______

例4、F 是椭圆13

42

2=+y x 的右焦点,()1,1A 为椭圆内一定点,P 为椭圆上一动点。 (1)PF PA +的最小值为 (2)PF PA 2+的最小值为

分析:PF 为椭圆的一个焦半径,准线作出来考虑问题。

解:(1) 设另一焦点为F ',则F '(-1,0)连A F ', (22-'-='-+=+PA F P a F P a PA PF PA )0(122

22

b a b y a x =+)(2

2b a c a c e -==t t b

y a x (2222=+a

c

e =

当P 是F 'A 的延长线与椭圆的交点时, PF PA +取得最小值为4-5。

(2)作出右准线l ,作l PH ⊥交于H ,因42

=a ,32

=b ,12

=c , 所以2=a ,

1=c ,21=

e . ∴PH PF PH PF ==2,2

1

∴PH PA PF PA +=+2

当A 、P 、H 三点共线时,其和最小,最小值为3142

=-=-A x c a 例5、求椭圆13

22

=+y x 上的点到直线06=+-y x 的距离的最小值.

例6、椭圆

顶点A (a ,0),B (0,b ),若右焦点F 到直线AB 的

距离等于,则椭圆的离心率e=( )

A .

B .

C .

D .

例7、在椭圆

中,F 1,F 2分别是其左右焦点,若|PF 1|=2|PF 2|,则该

椭圆离心率的取值范围是( ) A . B .

C .

D .

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高中数学-选修2-1-椭圆题型大全-(1)

高中数学-选修2-1-椭圆题型大全-(1)

椭圆题 1、命题甲:动点P 到两点B A ,的距离之和);,0(2常数>=+a a PB PA 命题乙: P 的轨迹是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件 2、已知1 F 、2 F 是两个定点,且4 2 1=F F ,若动点P 满足4 2 1 =+PF PF 则动点P 的轨迹是( ) A 、椭圆 B 、圆 C 、直线 D 、线段 3、已知1 F 、 2 F 是椭圆的两个焦点, P 是椭圆上的一个动点,如果延长1 F P 到Q ,使得2 PF PQ =,那么动点Q 的轨迹是 ( ) A 、椭圆 B 、圆 C 、直线 D 、点 4、已知1 F 、2 F 是平面α内的定点,并且) 0(22 1>=c c F F ,M 是α 内的动点,且a MF MF 221 =+,判断动点M 的轨迹. 5、椭圆 19 252 2=+y x 上一点M 到焦点1 F 的距离为2,N 为1 MF 的中 点,O 是椭圆的中心,则ON 的值是 。 6、若方程13 52 2=-+-k y k x 表示椭圆,求k 的范围. 7、 轴上的椭圆”的 表示焦点在”是“方程“y ny mx n m 1022=+>>( ) A 、充分而不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分又不必要条件

8、已知方程 11 252 2=-+-m y m x 表示焦点在y 轴上的椭圆,则实数 m 的范围是 . 9、已知方程2 22 =+ky x 表示焦点在y 轴上的椭圆,则实数k 的范围是 . 10、方程2 31y x -= 所表示的曲线是 . 11、如果方程2 22 =+ky x 表示焦点在y 轴上的椭圆,求实数k 的取值范围。 12、已知椭圆0 6322 =-+m y mx 的一个焦点为)2,0(,求m 的值。 13、已知方程2 22 =+ky x 表示焦点在X 轴上的椭圆,则实数k 的范围是 . 14、根据下列条件求椭圆的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点P 到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点) 2,3(),1,6( 21 --P P ,求椭圆方程. 15、以)0,2(1 -F 和)0,2(2 F 为焦点的椭圆经过点)2,0(A 点,则该椭 圆的方程为 。 16、如果椭圆:k y x =+22 4上两点间的最大距离为8,则k 的 值为 。 17、已知中心在原点的椭圆C 的两个焦点和椭圆 36 94:222=+y x C 的两个焦点一个正方形的四个顶点,且椭圆C

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程 (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 (1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0 此方程可用于解决两圆的位置关系: 配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4 其圆心坐标:(-D/2,-E/2) 半径为r=√[(D^2+E^2-4F)]/2 此方程满足为圆的方程的条件是: D^2+E^2-4F>0 若不满足,则不可表示为圆的方程 (2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系: ⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。 ⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。 ⑶当(x1-a)^2+(y1-b) ^20,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4 => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F) <二>椭圆的标准方程 椭圆的标准方程分两种情况: 当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

高中数学:椭圆知识点归纳总结及经典例题

椭 圆 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c). 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx 2 +ny 2 =1(m>0,n>0)不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M(x, y),点P(x 0 , y 0 ), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得x 2 +(2y)2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.范围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b)、B 2(0, b)是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a,0)、A 2(a,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a, 0)、A 2(a, 0)、B 1(0, -b)、B 2(0, b).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a. 短轴的长等于2b.a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2 . a A 1y O F 1F 2 x B 2 B 1 A 2c b y O F 1F 2x M c c x F 2 F 1 O y M c c y x P O P ' M

高中数学椭圆大题之向量综合

高中数学椭圆大题之向量综合 题型一:单一共线型 例1、已知B A 、是椭圆1222=+y x 上的两点,并且点)0,2(-N 满足NB NA λ=,当?? ? ???∈31,51λ时,求直线AB 斜率的取值范围. 例2、已知定点)0,2(M ,若过M 的直线l (斜率不为零)与椭圆13 22 =+y x 交于不同的两点F E 、(E 在点F M 、之间),记OMF OME S S ??= λ,求λ的取值范围.

练1、椭圆12322 22=+c y c x 的两个焦点分别为)0,(1c F -和)0,(2c F ,过点)0,3(c E 的直线与椭圆交于B A 、两点, 且B F A F 21//,B F A F 212=,求直线AB 的斜率. 练2、设)0,(1c F -,)0,(2c F 分别为椭圆13 22 =+y x 的左右焦点,B A 、在椭圆上,若F F 215=,求点A 的坐标.

题型二、点在曲线上 例1、已知椭圆2 2 2 33b y x =+,斜率为1且过右焦点F 的直线交椭圆于A 、B 两点,M 为椭圆上任一点,且 OB OA OM μλ+=,证明22μλ+为定值. 练1、椭圆C:12 32 2=+y x ,过右焦点F 的直线l 与C 交于A,B 两点,C 上是否存在点P ,使得当l 绕F 转到某一位置时,有 +=成立?若存在,求 出所有P 的坐标与l 的方程;若不存在,说明理由.

练2、设动点P 满足OM 2+=,其中M,N 是椭圆C:12 42 2=+y x 上的点,直线OM 与ON 的斜率之积为2 1 - ,求P 的轨迹.

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

新课标人教A版高中数学全部知识点归纳总结

高三第一轮复习资料(注意保密) 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 必修5:解三角形、数列、不等式。 以上是每一个高中学生所必须学习的。 上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。 此外,基础内容还增加了向量、算法、概率、统计等内容。 选修课程有4个系列: 系列1:由2个模块组成。 选修1—1:常用逻辑用语、圆锥曲线与方程、 导数及其应用。 选修1—2:统计案例、推理与证明、数系的扩 充与复数、框图 系列2:由3个模块组成。 选修2—1:常用逻辑用语、圆锥曲线与方程、 空间向量与立体几何。 选修2—2:导数及其应用,推理与证明、数系 的扩充与复数 选修2—3:计数原理、随机变量及其分布列, 统计案例。 系列3:由6个专题组成。 选修3—1:数学史选讲。 选修3—2:信息安全与密码。 选修3—3:球面上的几何。 选修3—4:对称与群。 选修3—5:欧拉公式与闭曲面分类。选修3—6:三等分角与数域扩充。 系列4:由10个专题组成。 选修4—1:几何证明选讲。 选修4—2:矩阵与变换。 选修4—3:数列与差分。 选修4—4:坐标系与参数方程。 选修4—5:不等式选讲。 选修4—6:初等数论初步。 选修4—7:优选法与试验设计初步。 选修4—8:统筹法与图论初步。 选修4—9:风险与决策。 选修4—10:开关电路与布尔代数。 2.重难点及考点: 重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数 难点:函数、圆锥曲线 高考相关考点: ⑴集合与简易逻辑:集合的概念与运算、简易逻 辑、充要条件 ⑵函数:映射与函数、函数解析式与定义域、 值域与最值、反函数、三大性质、函 数图象、指数与指数函数、对数与对 数函数、函数的应用 ⑶数列:数列的有关概念、等差数列、等比数 列、数列求和、数列的应用 ⑷三角函数:有关概念、同角关系与诱导公式、 和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位 置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用

高中数学圆和椭圆练习题(综合)

一、选择题(本题共12道小题,每小题5分,共60分) 1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是( ) A .a <-2或 a > 3 2 B .- 3 2 >长轴两个端点分别为A 、B ,椭圆上点P 和A 、B 的连 线的斜率之积为1 2 - ,则椭圆C 的离心率为 (A ) 1 2 (B )22 (C )32 (D )33 10.已知椭圆C :+=1,M ,N 是坐标平面内的两点,且M 与C 的焦点不重 合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=( ) A .4 B .8 C .12 D .16

高中数学椭圆、双曲线、抛物线

椭圆 第一定义:平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。第二定义:平面内与一个定点F的距离与到一条定直线间距离之比为常数e()的点轨迹叫做椭圆。 不在定直线上,该常数为小于1的正数) 一.图像 标准方程 图形 顶点(四个) 焦点 中心(0,0) 长轴长2a 短轴长2b 焦距2c a、b、c的关 系 范围 对称性 离心率 焦点弦 焦半径曲线上任意一点与 焦点的连线段的长 通径通过焦点且与长轴垂直的弦 焦点三角形

的面积 二.椭圆的参数方程 三.点与椭圆 点P在椭圆内 点P在椭圆上 点P在椭圆外 四.直线与椭圆 1.位置关系 方程联立 △ △ △ 2.所交弦长 五.附加 1.周长 2.求椭圆方程 方法:待定系数法、定义法

双曲线 双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一。图像 标准方程 图形 顶点(四个) 中心(0,0) 实轴长:2a 虚轴长:2b 焦距2c a、b、c的关 系 范围 对称性 离心率 渐近线方程 焦点弦 焦半径 通径通过焦点且与长轴垂直的弦

焦准距 焦点三角形 的面积 二性质补充 1.等轴双曲线 性质e= 渐近线方程 渐近线成角 三.点与双曲线 点P在双曲线开口内 点P在双曲线上 点P在双曲线开口外 四.附加 1.双曲线系方程 2.求双曲线方程 方法:待定系数法、定义法

高中数学---椭圆知识点小结

高二数学椭圆知识点 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭 圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨 迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中2 22b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中2 22b a c -=; 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是以x 轴、y 轴 为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对 称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆 122 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

高中数学椭圆练习题(文科)

椭圆练习题(文科) 1.椭圆22 11625 x y +=的焦点坐标为_______________________ 2.已知a =4, b =1,焦点在x 轴上的椭圆方程是_______________________ 3.已知焦点坐标为(0, -4), (0, 4),且a =6的椭圆方程是_______________________ 4.若椭圆22 110036 x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是_____ 5.已知F 1, F 2是定点,| F 1 F 2|=8, 动点M 满足|M F 1|+|M F 2|=8,则点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 6.过点(3, -2)且与椭圆4x 2+9y 2 =36有相同焦点的椭圆的方程是 (A )2211510x y += (B )221510x y += (C )22 11015 x y += (D )2212510x y += 7.点P 为椭圆22 154 x y +=上一点,以点P 以及焦点F 1, F 2为顶点的三角形的面积为1,则点P 的坐标是(A )(± , 1) (B ), ±1) (C )(D )(, ±1) 8=10为不含根式的形式是 (A )2212516x y += (B )221259x y += (C )2211625x y += (D )22 1925 x y += 9.椭圆22 125 x y m m +=-+的焦点坐标是 (A )(±7, 0) (B )(0, ±7) (C )(±7,0) (D )(0, ±7) 10.过椭圆4x 2+2y 2 =1的一个焦点F 1的弦AB 与另一个焦点F 2围成的三角形△ABF 2的周长是 . 11.已知椭圆方程为22 1499 x y +=中,F 1, F 2分别为它的两个焦点,则下列说法正确的有_____ ①焦点在x 轴上,其坐标为(±7, 0);② 若椭圆上有一点P 到F 1的距离为10,则P 到F 2的距离为4;③焦点在y 轴上,其坐标为(0, ±210);④ a =49, b =9, c =40, 12.如果椭圆的焦距、短轴长、长轴长成等差数列,则其离心率为 (A )53 (B )312 (C )43 (D )910 13.设椭圆的标准方程为22 135x y k k +=--,若其焦点在x 轴上,则k 的取值范围是_____ 14.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高二数学椭圆的知识点整理

第1讲 课题:椭圆 课 型:复习巩固 上课时间:2013年10月3日 教学目标: (1)了解圆锥曲线的来历; (2)理解椭圆的定义; (3)理解椭圆的两种标准方程; (4)掌握椭圆离心率的计算方法; (5)掌握有关椭圆的参数取值范围的问题; 教学重点:椭圆方程、离心率; 教学难点:与椭圆有关的参数取值问题; 知识清单 一、椭圆的定义: (1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 说明:两个定点叫做椭圆的焦点; 两焦点间的距离叫做椭圆的焦距()c 2. (2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之 比为常数e ,当10<>=+F F a a PF PF ; (){} .02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程: 焦点在x 轴: ()0122 22>>=+b a b y a x ; 焦点在y 轴: ()0122 22>>=+b a b x a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足 .222c b a += 四、二元二次方程表示椭圆的充要条件 方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件:

上式化为12 2=+C By C Ax ,122=+B C y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当 B C A C >时,椭圆的焦点在x 轴上;当B C A C <时,椭圆的焦点在y 轴上. 五、椭圆的几何性质(以()0122 22>>=+b a b y a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式 1,122 22≤≤b y a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3.顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5.离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=, 即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆. 6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为a b 2 2.

高中数学—16—椭圆双曲线(A)-教师版

教师日期 学生 课程编号课型 课题椭圆与双曲线 教学目标 1.理解椭圆的定义,会推导椭圆的标准方程;掌握两种类型的椭圆的标准方程(焦点位于x轴或y 轴) 2.掌握椭圆的几何性质和应用 3.掌握双曲线的定义和焦距顶点、渐近线的概念;掌握双曲线的标准方程 4掌握椭圆的几何性质和应用 5.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧; 6.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想 教学重点 1.椭圆和双曲线的几何性质和应用; 2.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧; 3.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想 教学安排 版块时长 1 知识梳理15 2 例题解析50 3 巩固训练35 4 师生总结10 5 课后练习10 椭圆与双曲线

1.已知点A (2,3)、B (1,5)则直线AB 的倾角为( ) A.arctan2 B.arctan(-2) C.2π+arctan2 D. 2π+arctan 2 1 【难度】★ 【答案】D 2.下列四个命题中的真命题是( ) A.经过定点000(,)P x y 的直线都可以用方程00()y y k x x -=-. B.经过任意两个不同的点111222(,),(,)P x y P x y 的直线方程都可以用方程 121121()()()()y y x x x x y y --=--表示. C.不经过原点的直线方程都可以用方程1x y a b +=表示. D.经过定点(0,)A b 的直线都可以用方程y kx b =+表示. 【难度】★ 【答案】B 3.在ABC ?中,a 、b 、c 为三内角所对的边长,且C 、B 、A sin lg sin lg sin lg 成等差数列,则直线 a A y A x =+sin sin 2和c C y B x =+sin sin 2的位置关系是 . 【难度】★★ 【答案】两直线重合 4.设),(y x P 为圆1)1(22=-+y x 上任意一点,要使不等式m y x ++≥0恒成立,则m 取值范围是( ) A .m ≥0 B .m ≥12- C .m ≥12+ D .m ≥21- 【难度】★★ 【答案】B 5.过圆52 2 =+y x 内点??? ? ??23,25P 有n 条弦,这n 条弦的长度成等差数列{}n a ,如果过P 点的圆 的最短的弦长为1a ,最长的弦长为n a ,且公差)3 1 ,61(∈d ,那么n 的取值集合为 . 【难度】★★ 【答案】{}7,6,5 热身练习

高中数学椭圆的经典知识总结

高中数学椭圆的经典知识总结 椭圆知识点总结 1. 椭圆的定义:1,2 (1)椭圆:焦点在x 轴上时12222=+b y a x (222a b c =+)?{ cos sin x a y b ??==(参数方程,其中?为参数),焦点在y 轴上时22 22b x a y +=1(0a b >>)。方程22Ax By C +=表示椭圆的充要条件是什么? (ABC ≠0,且A ,B ,C 同号,A ≠B )。 2. 椭圆的几何性质: (1)椭圆(以122 22=+b y a x (0a b >>)为例):①范围:,a x a b y b -≤≤-≤≤;②焦点:两个 焦点(,0)c ±;③对称性:两条对称轴0,0x y ==,一个对称中心(0,0),四个顶点(,0),(0,)a b ±±,其中长轴长为2a ,短轴长为2b ;④准线:两条准线2a x c =±; ⑤离心率:c e a =,椭圆?01e <<, e 越小,椭圆越圆;e 越大,椭圆越扁。⑥通径2 2b a 2.点与椭圆的位置关系:(1)点00(,)P x y 在椭圆外?2200 221x y a b +>; (2)点00(,)P x y 在椭圆上?220 220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< 3.直线与圆锥曲线的位置关系: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; (3)相离: 0?

高中数学椭圆练习题

椭圆标准方程典型例题 例1 已知椭圆0632 2=-+m y mx 的一个焦点为(0,2)求m 的值. 例2 已知椭圆的中心在原点,且经过点()03, P ,b a 3=,求椭圆的标准方程. 例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹. 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和3 52,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 例5 已知椭圆方程()0122 22>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内 切,求动圆圆心P 的轨迹方程 例7 已知椭圆1222=+y x ,(1)求过点?? ? ??2121,P 且被P 平分的弦所在直线的方程;

(2)求斜率为2的平行弦的中点轨迹方程; (3)过()12, A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=?OQ OP k k , 求线段PQ 中点M 的轨迹方程. 例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 102,求直线的方程. 例9 以椭圆13 122 2=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程. 已知方程1352 2-=-+-k y k x 表示椭圆,求k 的取值范 例10 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.

相关文档
最新文档