2020年整理分数方程练习题.doc
2020年全国中考数学试题精选分类(3)——分式方程(含解析)

2020年全国中考数学试题精选分类(3)——分式方程一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=302.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=27.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣208.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣29.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣5910.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或411.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣113.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+814.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠416.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2 19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.620.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣621.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=4022.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣5623.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣324.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.025.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=026.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7二.填空题(共8小题)27.(2020•河池)方程=的解是x=.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=.29.(2020•徐州)方程=的解为.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为.31.(2020•淮安)方程+1=0的解为.32.(2020•菏泽)方程的解是.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?40.(2020•赤峰)甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?41.(2020•沈阳)某工程队准备修建一条长3000m的盲道,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加25%,结果提前2天完成这一任务,原计划每天修建盲道多少米?42.(2020•益阳)“你怎么样,中国便是怎么样;你若光明,中国便不黑暗”.2019年,一场新冠肺炎疫情牵扯着人们的心灵,各界人士齐心协力,众志成城.针对资源急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?43.(2020•丹东)为帮助贫困山区孩子学习,某学校号召学生自愿捐书,已知七、八年级同学捐书总数都是1800本,八年级捐书人数比七年级多150人,七年级人均捐书数量是八年级人均捐书数量的1.5倍.求八年级捐书人数是多少?44.(2020•永州)某药店在今年3月份,购进了一批口罩,这批口罩包括有一次性医用外科口罩和N95口罩,且两种口罩的只数相同.其中购进一次性医用外科口罩花费1600元,N95口罩花费9600元.已知购进一次性医用外科口罩的单价比N95口罩的单价少10元.(1)求该药店购进的一次性医用外科口罩和N95口罩的单价各是多少元?(2)该药店计划再次购进两种口罩共2000只,预算购进的总费用不超过1万元,问至少购进一次性医用外科口罩多少只?45.(2020•大庆)解方程:﹣1=.46.(2020•长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?47.(2020•镇江)(1)解方程:=+1;(2)解不等式组:48.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.49.(2020•云南)某地响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展“美化绿色城市”活动,绿化升级改造了总面积为360万平方米的区域.实际施工中,由于采用了新技术,实际平均每年绿化升级改造的面积是原计划平均每年绿化升级改造的面积的2倍,所以比原计划提前4年完成了上述绿化升级改造任务.实际平均每年绿化升级改造的面积是多少万平方米?50.(2020•岳阳)为做好复工复产,某工厂用A、B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg,且A型机器人搬运1200kg所用时间与B型机器人搬运1000kg所用时间相等,求这两种机器人每小时分别搬运多少原料.2020年全国中考数学试题精选分类(3)——分式方程参考答案与试题解析一.选择题(共26小题)1.(2020•阜新)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是()A.﹣=30B.﹣=30C.﹣=30D.﹣=30【答案】B【解答】解:设实际每天铺xm管道,则原计划每天铺m管道,根据题意,得﹣=30,故选:B.2.(2020•朝阳)某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买毽球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x名学生,依据题意列方程得()A.B.C.D.【答案】B【解答】解:设班级共有x名学生,依据题意列方程得,.故选:B.3.(2020•鞍山)甲、乙两人加工某种机器零件,已知每小时甲比乙少加工6个这种零件,甲加工240个这种零件所用的时间与乙加工300个这种零件所用的时间相等,设甲每小时加工x个零件,所列方程正确的是()A.B.C.D.【答案】B【解答】解:设甲每小时加工x个零件,根据题意可得:=.故选:B.4.(2020•呼伦贝尔)甲、乙两人做某种机械零件,已知甲做240个零件与乙做280个零件所用的时间相等,两人每天共做130个零件.设甲每天做x个零件,下列方程正确的是()A.=B.=C.+=130 D.﹣130=【答案】A【解答】解:设甲每天做x个零件,根据题意得:,故选:A.5.(2020•绵阳)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【答案】C【解答】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.6.(2020•海南)分式方程=1的解是()A.x=﹣1 B.x=1 C.x=5 D.x=2【答案】C【解答】解:去分母,得x﹣2=3,移项合并同类项,得x=5.检验:把x=5代入x﹣2≠0,所以原分式方程的根为:x=5.故选:C.7.(2020•广西)甲、乙两地相距600km,提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,提速后行车时间比提速前减少20min,则可列方程为()A.﹣=B.=﹣C.﹣20=D.=﹣20【答案】A【解答】解:因为提速前动车的速度为vkm/h,提速后动车的速度是提速前的1.2倍,所以提速后动车的速度为1.2vkm/h,根据题意可得:﹣=.故选:A.8.(2020•十堰)某厂计划加工180万个医用口罩,第一周按原计划的速度生产,一周后以原来速度的1.5倍生产,结果比原计划提前一周完成任务.若设原计划每周生产x万个口罩,则可列方程为()A.=+1 B.=﹣1C.=+2 D.=﹣2【答案】A【解答】解:∵原计划每周生产x万个口罩,一周后以原来速度的1.5倍生产,∴一周后每周生产1.5x万个口罩,依题意,得:=+1.故选:A.9.(2020•云南)若整数a使关于x的不等式组,有且只有45个整数解,且使关于y的方程+=1的解为非正数,则a的值为()A.﹣61或﹣58 B.﹣61或﹣59C.﹣60或﹣59 D.﹣61或﹣60或﹣59【答案】B【解答】解:解不等式组,得<x≤25,∵不等式组有且只有45个整数解,∴﹣20≤<﹣19,解得﹣61≤a<﹣58,因为关于y的方程+=1的解为:y=﹣a﹣61,y≤0,∴﹣a﹣61≤0,解得a≥﹣61,∵y+1≠0,∴y≠﹣1,∴a≠﹣60则a的值为:﹣61或﹣59.故选:B.10.(2020•鸡西)若关于x的分式方程=有正整数解,则整数m的值是()A.3 B.5 C.3或5 D.3或4【答案】D【解答】解:解分式方程,得x=,经检验,x=是分式方程的解,因为分式方程有正整数解,则整数m的值是3或4.故选:D.11.(2020•荆门)已知关于x的分式方程=+2的解满足﹣4<x<﹣1,且k为整数,则符合条件的所有k值的乘积为()A.正数B.负数C.零D.无法确定【答案】A【解答】解:=+2,(2x+3)(x+3)=k+2(x﹣2)(x+3),解得x=﹣3,∵﹣4<x<﹣1且(x﹣2)(x+3)≠0且k为整数,∴﹣4<﹣3<﹣1,解得﹣7<k<14且k≠0,∴解k=﹣6、﹣5、﹣4、﹣3、﹣2、﹣1、1、2、3、4、5、6、7、8、9、10、11、12、13,∴符合条件的所有k值的乘积为正数.故选:A.12.(2020•广元)按照如图所示的流程,若输出的M=﹣6,则输入的m为()A.3 B.1 C.0 D.﹣1【答案】C【解答】解:当m2﹣2m≥0时,,解得m=0,经检验,m=0是原方程的解,并且满足m2﹣2m≥0,当m2﹣2m<0时,m﹣3=﹣6,解得m=﹣3,不满足m2﹣2m<0,舍去.故输入的m为0.故选:C.13.(2020•宜宾)学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+8【答案】B【解答】解:设文学类图书平均每本x元,则科普类图书平均每本(x+8)元,依题意,得:=.故选:B.14.(2020•荆州)八年级学生去距学校10km的荆州博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车学生的速度为xkm/h,则可列方程为()A.﹣=20 B.﹣=20C.﹣=D.﹣=【答案】C【解答】解:设骑车学生的速度为xkm/h,则乘车学生的速度为2xkm/h,依题意,得:﹣=.故选:C.15.(2020•牡丹江)若关于x的方程=0的解为正数,则m的取值范围是()A.m<2 B.m<2且m≠0 C.m>2 D.m>2且m≠4【答案】C【解答】解:∵解方程,去分母得:mx﹣2(x+1)=0,整理得:(m﹣2)x=2,∵方程有解,∴,∵分式方程的解为正数,∴,解得:m>2,∴m的取值范围是:m>2.故选:C.16.(2020•辽阳)随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递80件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.+80=C.=﹣80 D.=【答案】D【解答】解:设原来平均每人每周投递快件x件,则现在平均每人每周投递快件(x+80)件,依题意,得:=.故选:D.17.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=【答案】B【解答】解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.18.(2020•黑龙江)已知关于x的分式方程﹣4=的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k≠﹣2【答案】B【解答】解:分式方程﹣4=,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=,由分式方程的解为正数,得到>0,且≠2,解得:k>﹣8且k≠﹣2.故选:B.19.(2020•泸州)已知关于x的分式方程+2=﹣的解为非负数,则正整数m的所有个数为()A.3 B.4 C.5 D.6【答案】B【解答】解:去分母,得:m+2(x﹣1)=3,移项、合并,得:x=,∵分式方程的解为非负数,∴5﹣m≥0且≠1,解得:m≤5且m≠3,∴正整数解有1,2,4,5共4个,故选:B.20.(2020•齐齐哈尔)若关于x的分式方程=+5的解为正数,则m的取值范围为()A.m<﹣10 B.m≤﹣10C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6【答案】D【解答】解:去分母得:3x=﹣m+5(x﹣2),解得:x=,由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,故选:D.21.(2020•自贡)某工程队承接了80万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了35%,结果提前40天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.﹣=40 B.﹣=40C.﹣=40 D.﹣=40【答案】A【解答】解:设实际工作时每天绿化的面积为x万平方米,则原计划每天绿化的面积为万平方米,依题意,得:﹣=40,即﹣=40.故选:A.22.(2020•重庆)若关于x的一元一次不等式组的解集为x≤a;且关于y的分式方程+=1有正整数解,则所有满足条件的整数a的值之积是()A.7 B.﹣14 C.28 D.﹣56【答案】A【解答】解:不等式组整理得:,由解集为x≤a,得到a≤7,分式方程去分母得:y﹣a+3y﹣4=y﹣2,即3y=a+2,解得:y=,由y为正整数解,且y≠2得到a=1,71×7=7,故选:A.23.(2020•遂宁)关于x的分式方程﹣=1有增根,则m的值()A.m=2 B.m=1 C.m=3 D.m=﹣3【答案】D【解答】解:去分母得:m+3=x﹣2,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入整式方程得:m+3=0,解得:m=﹣3,故选:D.24.(2020•重庆)若关于x的一元一次不等式组的解集为x≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为()A.﹣1 B.﹣2 C.﹣3 D.0【答案】B【解答】解:不等式组整理得:,由解集为x≥5,得到2+a<5,即a<3,分式方程去分母得:y﹣a=﹣y+2,即2y﹣2=a,解得:y=+1,由y为非负整数,且y≠2,得到a=0,﹣2,之和为﹣2,故选:B.25.(2020•上海)用换元法解方程+=2时,若设=y,则原方程可化为关于y的方程是()A.y2﹣2y+1=0 B.y2+2y+1=0 C.y2+y+2=0 D.y2+y﹣2=0【答案】A【解答】解:把=y代入原方程得:y+=2,转化为整式方程为y2﹣2y+1=0.故选:A.26.(2020•枣庄)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4 B.x=5 C.x=6 D.x=7【答案】B【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.二.填空题(共8小题)27.(2020•河池)方程=的解是x=﹣3.【答案】﹣3.【解答】解:方程的两边同乘(2x+1)(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.28.(2020•潍坊)若关于x的分式方程+1有增根,则m=3.【答案】见试题解答内容【解答】解:去分母得:3x=m+3+(x﹣2),整理得:2x=m+1,∵关于x的分式方程有增根,即x﹣2=0,∴x=2,把x=2代入到2x=m+1中得:2×2=m+1,解得:m=3;故答案为:3.29.(2020•徐州)方程=的解为x=9.【答案】见试题解答内容【解答】解:去分母得:9(x﹣1)=8x9x﹣9=8xx=9检验:把x=9代入x(x﹣1)≠0,所以x=9是原方程的解.故答案为:x=9.30.(2020•内江)若数a使关于x的分式方程+=3的解为非负数,且使关于y的不等式组的解集为y≤0,则符合条件的所有整数a的积为40.【答案】见试题解答内容【解答】解:去分母,得:x+2﹣a=3(x﹣1),解得:x=,∵分式方程的解为非负数,∴≥0,且≠1,解得a≤5且a≠3,解不等式﹣≥﹣,得:y≤0,解不等式2(y﹣a)<0,得:y<a,∵不等式组的解集为y≤0,∴a>0,∴0<a≤5,则整数a的值为1、2、4、5,∴符合条件的所有整数a的积为1×2×4×5=40,故答案为:40.31.(2020•淮安)方程+1=0的解为x=﹣2.【答案】见试题解答内容【解答】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.32.(2020•菏泽)方程的解是x=.【答案】见试题解答内容【解答】解:方程=,去分母得:(x﹣1)2=x(x+1),整理得:x2﹣2x+1=x2+x,解得:x=,经检验x=是分式方程的解.故答案为:x=.33.(2020•绥化)某工厂计划加工一批零件240个,实际每天加工零件的个数是原计划的1.5倍,结果比原计划少用2天.设原计划每天加工零件x个,可列方程﹣=2.【答案】见试题解答内容【解答】解:设原计划每天加工零件x个,则实际每天加工零件1.5x个,依题意,得:﹣=2.故答案为:﹣=2.34.(2020•嘉兴)数学家斐波那契编写的《算经》中有如下问题:一组人平分10元钱,每人分得若干;若再加上6人,平分40元钱,则第二次每人所得与第一次相同,求第一次分钱的人数.设第一次分钱的人数为x人,则可列方程=.【答案】见试题解答内容【解答】解:根据题意得,=,故答案为:=.三.解答题(共16小题)35.(2020•日照)(1)计算:+()﹣1﹣×cos30°;(2)解方程:+1=.【答案】(1)﹣2;(2)x=1.【解答】解:(1)原式=.(2)+1=,两边同乘以(x﹣2)得,x﹣3+(x﹣2)=﹣3,解得,x=1.经检验x=1是原分式方程的解.36.(2020•黔南州)某单位计划购买甲、乙两种品牌的消毒剂,乙种品牌消毒剂每瓶的价格比甲种品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲种品牌消毒剂的数量与用400元购买乙种品牌消毒剂的数量相同.(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?(2)若该单位从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙种品牌消毒剂?【答案】(1)甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)购买了20瓶乙品牌消毒剂.【解答】解:(1)设甲品牌消毒剂每瓶的价格为x元;乙品牌消毒剂每瓶的价格为(3x﹣50)元,由题意得:=,解得:x=30,经检验,x=30是原方程的解且符合实际意义,3x﹣5═40,答:甲品牌消毒剂每瓶的价格为30元;乙品牌消毒剂每瓶的价格为40元;(2)设购买甲种品牌的消毒剂y瓶,则购买乙种品牌的消毒剂(40﹣y)瓶,由题意得:30y+40(40﹣y)=1400,解得:y=20,∴40﹣y=40﹣20=20,答:购买了20瓶乙品牌消毒剂.37.(2020•锦州)某帐篷厂计划生产10000顶帐篷,由于接到新的生产订单,需提前10天完成这批任务,结果实际每天生产帐篷的数量比计划每天生产帐篷的数量增加了25%,那么计划每天生产多少顶帐篷?【答案】200顶.【解答】解:设计划每天生产x顶帐篷,则实际每天生产帐篷(1+25%)x顶,依题意得:﹣10=.解得x=200.经检验x=200是所列方程的解,且符合题意.答:计划每天生产200顶帐篷.38.(2020•葫芦岛)某中学为了创设“书香校园”,准备购买A,B两种书架,用于放置图书.在购买时发现,A种书架的单价比B种书架的单价多20元,用600元购买A种书架的个数与用480元购买B种书架的个数相同.(1)求A,B两种书架的单价各是多少元?(2)学校准备购买A,B两种书架共15个,且购买的总费用不超过1400元,求最多可以购买多少个A 种书架?【答案】(1)购买A种书架需要100元,B种书架需要80元.(2)最多可购买10个A种书架.【解答】解:(1)设B种书架的单价为x元,根据题意,得.解得x=80.经检验:x=80是原分式方程的解.∴x+20=100.答:购买A种书架需要100元,B种书架需要80元.(2)设准备购买m个A种书架,根据题意,得100m+80(15﹣m)≤1400.解得m≤10.答:最多可购买10个A种书架.39.(2020•桂林)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?【答案】(1)每副围棋18元,则每副象棋10元;(2)该校最多可再购买25副围棋.。
2020年中考数学第二轮复习 第9讲 分式方程 强基训练+真题(后含答案)

2020年中考数学第二轮复习 第九讲 分式方程【强基知识】一、分式方程的概念分母中含有 的方程叫做分式方程注意:分母中是否含有未知数是区分分式方程和整式方程的根本依据 二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即整式方程转化去分母分式方程→ 2、解分式方程的一般步骤:①、 ②、 ③、 3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为 的根是增根应舍去。
注意:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。
如:131=---xx a x 有增根,则a= ,若 该方程无解,则a= 。
三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须 ,既要检验是否为原方程的根,又要检验是否符合题意。
注意:分式方程应用题常见类型有行程问题、工作问题、销售问题等,其中行程问题中又出现逆水、顺水航行这一类型【中考真题考点例析】 考点一:分式方程的解A .a≤-1B .a≤-1且a≠-2C .a≤1且a≠-2D .a≤1.对应练习1-1 (贵港)关于x 的分式方程011=++x m的解是负数,则m 的取值范围是( )考点二:解分式方程 例2.(2019年淄博)解分式方程22121--=--xx x 时,去分母变形正确的是A .()2211---=+-x xB .()2211--=-x xC .()x x -+=+-2211D .()2211---=-x x对应练习2-1 (2019年山东临沂)解方程:25-x =x 3. 对应练习2-2(2019年山东滨州)方程33122x x x-+=--的解是_________. 考点三:含字母系数的分式方程 例3.(2019年烟台)若关于x 的分式方程3xx -2-1=m +3x -2有增根,则m 的值为____________考点四:由实际问题抽象出分式方程 例4. ( 2019年济宁)世界文化遗产“三孔”景区已经完成5G 幕站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .5005004510x x -= B .5005004510x x -= C .500050045x x -= D .500500045x x-= 对应练习4-1 (2019年莱芜)已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( ) A . B . C . D . 对应练习4-2 (深圳)小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x 米/分,则根据题意所列方程正确的是( )A .1440144010100x x -=-B .1440144010100x x =++ C .1440144010100x x =+-D .1440144010100x x-=+考点五:分式方程的应用 例5.(2019年菏泽)(本题6分)列方程(组)解应用题.德上高速公路巨野至单县段正在加速建设,预计2019年8月竣工,届时,如果汽车行驶在高速公路上的平均速度比在普通公路上的平均速度提高80%,那么行驶81千米的高速公路比行驶同等长度的普通公路所用时间将会缩短36分钟,求汽车在高速公路的平均速度. 对应练习5-1(2019年泰安)端午节是我国的传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进A 、B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同,已知A 粽子的单价是B 种粽子单价的1.2倍. (1)求A 、B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购买A、B两种粽子共2600个,已知A、B两种粽子的进价不变,求A中粽子最多能购进多少个?对应练习5-2 (2019年威海)小明和小刚约定周末到某体育馆打羽毛球,他们两家到体育公园的距离分别是1200米,3000米。
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)

《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?16.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:=,解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:﹣=2,解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作天,根据题意得:7m+5×≤220,解得:m≥10.答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:﹣=10,经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:+=1,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:+=1,∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴,∴20≤m≤40.∵15>0,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元, 根据题意得:=2×,解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天, 依题意,得:+=, 整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m+)+2.4×≤127,解得:m≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B台灯每盏的进价为x元,则A台灯每盏的进价为(x+30)元,依题意,得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+30=80.答:A台灯每盏的进价为80元,B台灯每盏的进价为50元.(2)设购进A台灯m台,则购进B台灯(100﹣m)台,依题意,得:(120﹣80)m+(80﹣50)(100﹣m)≥3400,解得:m≥40.答:至少需购进A台灯40台.8.解:(1)设第一批饮料进货单价为x元,则第一批饮料进货单价为(x+2)元,依题意,得:=3×,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y元,依题意,得:(300+900)y﹣(1200+5400)≥5400,解得:y≥10.答:销售单价至少为10元.9.解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,依题意,得:1.2(x+10)+x≤34,解得:x≤10.答:购入的B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,依题意,得:=,解得:a=50,经检验,a=50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x元,则第二批花每束的进价是(x+0.5)元,根据题意得:×2=,解得:x=2,经检验:x=2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m元,根据题意得:×(3﹣2)+×(m﹣2.5)≥1500,解得:m≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x万元,则每个甲种配件的价格为(x﹣0.4)万元,根据题意得:=,解得:x=1.2,经检验,x=1.2是原分式方程的解,∴x﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m件,购买乙种配件n件,根据题意得:0.8m+1.2n=80,∴m=100﹣1.5n.∵甲种配件要比乙种配件至少要多22件,∴m﹣n≥22,即100﹣1.5n﹣n≥22,解得:n≤31.2,∵m,n均为非负整数,∴n的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm2,则乙队每天可绿化面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是所列分式方程的解,∴2x=100.答:甲队每天可绿化面积为50m2,乙队每天可绿化面积为100m2.(2)设应安排乙队绿化m天,则安排甲队绿化天,根据题意得:0.25×+0.4m≤8,解得:m≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x米,则甲工程队每天完成2x米,依题意,得:﹣=10,解得:x=300,经检验,x=300是原方程的解,且符合题意,∴2x=600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y天,则甲乙两工程队还需合作=(﹣y)天,依题意,得:7000(y+﹣y)+5000(﹣y)≤79000,解得:y≥1,∴﹣y≤﹣=6.答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:=,解得:m=18,经检验,m=18是原方程的解,且符合题意.∴m=值为18.(2)设购买A型污水处理设备x台,则购买B型污水处理设备(10﹣x)台,依题意得:18x+15(10﹣x)≤156,解得:x≤2,∵x是整数,∴有3种方案.当x=0时,y=10,月处理污水量为180×10=1800吨,当x=1时,y=9,月处理污水量为220+180×9=1840吨,当x=2时,y=8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≥200×120,解得:y≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x元,则大本作业本每本(x+0.3)元,依题意,得:=,解得:x=0.5,经检验,x=0.5是原方程的解,且符合题意,∴x+0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,依题意,得:+=1,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,依题意,得:﹣=50,解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×=,解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,依题意,得:﹣=4,解得:x=40,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作天,依题意,得:3m+2.4×≤66,解得:m≥10.答:至少安排甲队工作10天.。
八下数学每日一练:解分式方程练习题及答案_2020年综合题版

八下数学每日一练:解分式方程练习题及答案_2020年综合题版答案答案答案答案答案2020年八下数学:方程与不等式_分式方程_解分式方程练习题~~第1题~~(2019邛崃.八下期中) 在2016年“双十一”期间,某快递公司计划租用甲、乙两种车辆快递货物,从货物量来计算:若租用两种车辆合运,10天可以完成任务;若单独租用乙种车辆,完成任务的天数是单独租用甲种车辆完成任务天数的2倍.(1) 求甲、乙两种车辆单独完成任务分别需要多少天?(2) 已知租用甲、乙两种车辆合运需租金65000元,甲种车辆每天的租金比乙种车辆每天的租金多1500元,试问:租甲和乙两种车辆、单独租甲种车辆、单独租乙种车辆这三种租车方案中,哪一种租金最少?请说明理由.考点: 解分式方程;分式方程的实际应用;~~第2题~~(2017无锡.八下期中) 解方程:(1) ;(2)考点: 解分式方程;~~第3题~~(2018深圳.八下期中) 一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:(1) 乙队单独做需要多少天能完成任务?(2) 现将该工程分成两部分,甲队做其中一部分工程用了x 天,乙队做另一部分工程用了y 天,若x 、y 都是整数,且甲队做的时间不到15天,乙队做的时间不到70天,那么两队实际各做了多少天?考点: 一元一次不等式组的特殊解;解分式方程;分式方程的实际应用;~~第4题~~(2017灌云.八下期末) 解方程:(1);(2).考点: 解分式方程;~~第5题~~(2017兴化.八下期末) 解方程:(1);(2).考点: 因式分解法解一元二次方程;解分式方程;2020年八下数学:方程与不等式_分式方程_解分式方程练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
2020年九年级数学中考二轮复习《分式方程实际应用》练习(含答案)

二轮复习同步练习:《分式方程实际应用》1.随着《流浪地球》的热播,其同名科幻小说的销量也急剧上升为了应对这种变化,某网店分别用20000元和30000元先后两次购买该小说,第二次的数量比第一次多500套且两次进价相同.(1)该科幻小说第一次购进多少套?(2)市场调查发现该产品每天的销量y(套)与售价x(元)之间是一次函数关系,当销售单价是25元时,每天的销量是250套,销售单价每上涨一元,每天的销售量就减少10套,网店要求每套书的利润不低于10元且不高于18元,求网店销售该科幻小说每天的销量y(套)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.2.草莓是种老少皆宜的食品,深受市民欢迎.今年3月份,甲,乙两超市分别用3000元以相同的进价购进质量相同的草莓.甲超市销售方案是:将草莓按大小分类包装销售,其中大草莓400千克,以进价的2倍价格销售,剩下的小草莓以高于进价的10%销售.乙超市销售方案是:不将草莓按大小分类,直接包装销售,价格按甲超市大、小两种草莓售价的平均数定价.若两超市将草莓全部售完,其中甲超市获利2100元(其他成本不计).(1)草莓进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.3.为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工30天后,B工程公司参与合作,两工程公司又共同施工60天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?4.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?5.2019年4月12日,安庆“筑梦号”自动驾驶公开试乘体验正式启动,让安庆成为全国率先开通自动驾驶的城市,智能、绿色出行的时代即将到来.普通燃油车从A地到B地,所需油费108元,而自动驾驶的纯电动车所需电费27元,已知每行驶1千米,普通燃油汽年所需的油费比自动的纯电动汽年所需的电费多0.54元,求自动驾驶的纯电动汽车每行驶1千米所需的电费.6.为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如表:成本单价(单位:元)投放数量(单位:辆)总价(单位:元)A型x50 50xB型x+10 50成本合计(单位:元)7500(1)根据表格填空:本次试点投放的A、B型“小黄车”共有辆;用含有x的式子表示出B型自行车的成本总价为;(2)试求A、B两种款型自行车的单价各是多少元?(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.7.某文教用品商店计划从厂家购买同一品牌的钢笔和笔记本,已知购买一支钢笔比购买一个笔记本多用15元,若用300元购买钢笔和用240元购买笔记本,则购买钢笔的数量是购买笔记本数量的一半.(1)求购买该品牌一支钢笔、一个笔记本各需要多少元?(2)经商谈,厂家给予该文教用品商店购买一支钢笔赠送一个该品牌笔记本的优惠,如果该文教用品商店需要笔记本的数量是钢笔数量的3倍还多6个,且该商店购买钢笔和笔记本的总费用不超过2760元,那么该文教用品商店最多可购买多少支该品牌的钢笔?8.改革开放40年来,我国交通运输发生了翻天覆地的变化,从上海到北京的距离是1463千米,现在乘高铁从上海到北京比上世纪八十年代的乘特快列车快了10小时,高铁的平均速度是特快列车的3.5倍,则特快列车和高铁的速度各是多少?9.为落实“美丽城市”的工作部署,市政府计划对城区道路进行改造.现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两队每天能改造道路的长度分别是多少米?10.某建筑公司甲、乙两个工程队通过公开招标获得某改造工程项目.已知甲队单独完成这项工程的时间是乙队单独完成这项工程时间的倍,由于乙队还有其他任务,先由甲队单独做55天后,再由甲、乙两队合做20天,完成了该项改造工程任务.(Ⅰ)请根据题意求甲、乙两队单独完成改造工程任务各需多少天;(Ⅱ)这项改造工程共投资200万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?11.张老师和王老师准备整理化学实验室的一批实验器材.张老师单独整理需要40分钟完成;若张老师和王老师共同整理20分钟后,王老师需再单独整理20分钟才能完成.(1)求王老师单独整理需要多少分钟完成;(2)若张老师因工作需要,他的整理时间不超过20分钟,则王老师至少整理多少分钟才能完成?12.甲乙两名工人各承包了一段500米的道路施工工程,已知甲每天可完成的工程比乙多5米.两人同时开始施工,当乙还有100米没有完成时,甲已经完成全部工程.(1)求甲、乙每天各可完成多少米道路施工工程?(2)后来两人又承包了新的道路施工工程,施工速度均不变,乙承包了500米,甲比乙多承包了100米,乙想:这次我们一定能同时完工了!请通过计算说明乙的想法正确吗?若正确,求出两人的施工时间;若不正确,则应该如何调整其中一人的施工速度才能使两人同时完工,请通过计算给出调整方案.13.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用45天时间完成整个工程.当一号施工队工作10天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前21天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?14.节能环保的油电混合动力汽车,既可用油做动力行驶,也可用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.(1)求汽车行驶中每千米用电费用是多少元?(2)甲、乙两地的距离是多少千米?15.一条笔直的公路依次经过A,B,C三地,且A,B两地相距1000m,B,C两地相距2000m.甲、乙两人骑车分别从A,B两地同时出发前往C地.(1)若甲每分钟比乙多骑100m,且甲、乙同时到达C地,求甲的速度;(2)若出发5min,甲还未骑到B地,且此时甲、乙两人相距不到650m,请判断谁先到达C地,并说明理由.16.某服装店老板在武汉发现一款羽绒服,预测能畅销市场,就用a万元购进了x件.这款羽绒服面市后,果然十分畅销,很快售完.于是老板又在上海购进了同款羽绒服,所购数量比在武汉所购的数量多20%,单价贵20元,总进货款比前一次多23%.(1)请用含a和x的代数式分别表示在武汉以及上海购进的羽绒服的单价(单位:元/件);(2)若服装店老板两次进货共花费17.84万元,在销售这款羽绒服时每件定价都是1200元,第二次销售后期由于天气转暖,服装还剩没有卖出,老板决定打8折销售,最后全部售完.两次销售,服装店老板共盈利多少元?17.甘蔗富含大量铁、钙、锌等人体必需的微量元素,素有“补血果”的美称,是冬季热销的水果之一,为此,某水果商家12月份第一次用600元购进云南甘蔗若干千克,销售完后,他第二次又用600元购进该甘蔗,但这次每千克的进价比第一次的进价提高了20%,所购进甘蔗的数量比第一次少了25千克.(1)求该商家第一次购买云南甘蔗的进价是每千克多少元?(2)假没商家两次购进的云南甘蔗按同一价格销售,要使销售后获利不低于1000元,则每千克的售价至少为多少元?18.沅陵一中有360张旧课桌需维修,经过甲、乙两个维修小组的竞标得知,甲组工作效率是乙组的1.5倍,且甲组单独维修完这批旧课桌比乙组单独维修完这批旧课桌少用5天;已知甲组每天需要付工资800元,乙组每天需要付工资400元;(1)求甲、乙两个小组每天各维修多少张旧棵桌?(2)学校维修这批旧课桌预算资金不超过7200元,时间不超过12天,请你帮学校算一算有几种维修方案(天数不足1天的按1天算);每种方案需要多少钱?19.近几年,国家大力提倡从纯燃油汽车向新能源汽车转型.某汽车制造企业推出了一款新型油电混合动力汽车(在行驶过程中,既可以使用汽油驱动汽年,也可以使用电力驱动汽车,汽油驱动和电力驱动不同时工作).经试验,该型汽车从甲地驶向乙地,只用汽油进行驱动,费用为56元,只用电力进行驱动,费用为20元.已知每行驶1千米,只用汽油驱动的费用比只用电力驱动的费用多0.36元.(1)求每行驶1千米,只用汽油驱动的费用;(2)要使从甲地到乙地所需要的燃油费用和电力费用不超过38元,则至少要用电力驱动行驶多少千米?20.近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路的发展树立了新的标杆,随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自已的喜好依然选择乘坐普通列车,已知从咸宁地到某地的普通列车行驶路程是520千米,是高铁行驶路程的1.3倍,请完成以下问题:(1)高铁行驶的路程为千米.(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.参考答案1.解:(1)设该科幻小说第一次购进m套,则,∴m=1000,经检验,当m=1000时,m(m+500)≠0,则m=1000是原方程的解,答:该科幻小说第一次购进1000套;(2)每本进价为:(元),∵网店要求每套书的利润不低于10元且不高于18元,∴30≤x≤38,根据题意得,y=250﹣10(x﹣25)=﹣10x+500(30≤x≤38).2.解:(1)设草莓进价为每千克x元,则甲、乙两超市分别购进草莓千克,依题意,得:400x+10%x•(﹣400)=2100,解得:x=5,经检验x=5是原方程的解,且符合题意.答:草莓进价为每千克5元.(2)由(1)知:每个超市购进草莓的总量为3000÷5=600(千克),甲超市大草莓的售价为5×2=10(元),小草莓的售价为5×(1+10%)=5.5(元),∴乙超市获得的利润为(﹣5)×600=1650(元).∵2100>1650,∴∴甲超市销售方式更合算.3.解:(1)设B工程公司单独完成需要x天,根据题意得:.解得:x=120.经检验x=120是分式方程的解,且符合题意,答:工程公司单独完成需要120天.(2)解:根据题意得:.整理得:.∵m<46,n<92,∴.解得42<m<46,∵m为正整数,∴m=43,44,45.又∵为正整数,∴m=45,n=90.答:两个A、B工程公司各施工建设了45天和90天.4.解:设一个甲种足球需要x元,∴一个乙种足球需要(x+18)元,由题意可知:=2.5×,解得:x=65,∴x+18=83,答:购买一个甲种足球、一个乙种足球各需65和83元5.解:设纯电动汽车每行驶1千米所需的电费为x元,则普通燃油车所需的油费为(x+0.54)元,由题意得=,解得:x=0.18经检验x=0.18为原方程的解.答:自动驾驶的纯电动汽车每行驶1千米所需的电费为0.18元.6.解:(1)∵50+50=100(辆),∴本次试点投放的A、B型“小黄车”共有100辆;B型自行车的成本总价为:50(x+10)元,故答案为:100;50(x+10);(2)设A型车的成本单价为x元,B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得:x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;(3)根据题意可得:×100+×100=,解得:n=2,∴甲街区每100人投放A型“小黄车”2辆.7.解:(1)设购买该品牌钢笔每支需x元,则购买每个笔记本需(x﹣15)元,依题意,得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x﹣15=10.答:购买该品牌钢笔每支需25元,笔记本每本10元.(2)设该文教用品商店可购买m支该品牌的钢笔,依题意,得:25m+10(3m+6﹣m)≤2760,解得:m≤60,∵m为整数,∴m的最大值为60.答:该文教用品商店最多可购买60支该品牌的钢笔.8.解:设特快列车的平均速度为x千米/小时,则高铁的平均速度为3.5x千米/小时,依题意,得:﹣=10,解得:x=104.5,经检验,x=104.5是原方程的解,且符合题意,∴3.5x=365.75.答:特快列车的平均速度为104.5千米/小时,高铁的平均速度为365.75千米/小时.9.解:设乙队每天能改造道路的长度为x米,∴甲队每天能改造道路的长度为x,根据题意可知:=﹣3,解得:x=40,经检验,x=40是方程的解,∴=60,答:甲、乙两队每天能改造道路的长度分别是60、40米.10.解:(Ⅰ)设甲、乙两队单独完成改造工程任务各需5x天,4x天依题意得:55×+20×(+)=1.整理得:20x=80.解得:x=4.经检验:x=4是原方程的解.∴5x=20,4x=16.答:甲队单独完成改造工程任务需20天,乙队单独完成改造工程任务需16天;(Ⅱ)甲队可获工程款=×200=150(万).乙队可获工程款=×200=50(万).答:甲队可获工程款150万,乙队可获工程款50万.11.解:(1)设王老师单独整理x分钟完工,根据题意得:+=1,解得x=80,经检验x=80是原分式方程的解.答:王老师单独整理80分钟完工.(2)设王老师整理y分钟完工,根据题意,得+≥1,解得:y≥80,答:王老师至少整理80分钟完工.12.解:(1)设乙每天施工x米,则甲每天施工(x+5)米,根据题意可得:解得:x=20,检验:当x=20时,x(x+5)≠0,∴x=20是原方程的解,则x+5=25(米)答:甲、乙每天各可完成25米,20米道路施工;(2)∵甲完成600米,需要天,乙完成500米,需要天,∴甲乙不能同时完工;方案一:将甲施工速度减少a千米/天,根据题意可得:解得:a=1,经检验:a=1是原方程的解,方案二:将乙施工速度增加b千米/天,根据题意可得:解得:b=,经检验:b=是原方程的解,综上所述:将甲施工速度减少1千米/天,将乙施工速度增加千米/天,13.解:(1)设二号施工队单独施工需要x天,依题可得:×10+(+)×(45﹣10﹣21)=1,解得:x=30,经检验,x=30是原分式方程的解,答:由二号施工队单独施工,完成整个工期需要60天.(2)由题可得1÷(+)=18(天),∴若由一、二号施工队同时进场施工,完成整个工程需要18天.14.解:(1)设汽车行驶中每千米用电费用是x元,则每千米用油费用为(x+0.5)元,根据题意可得:=,解得:x=0.3,经检验得:x=0.3是原方程的解,答:汽车行驶中每千米用电费用是0.3元;(2)甲、乙两地的距离是:30÷0.3=100(千米).15.解:(1)设甲的速度为x m/min,则乙的速度为(x﹣100)m/min,由题意得=.解得x=300.经检验,x=300是原方程的解.答:甲的速度为300 m/min.(2)解法一:设甲的速度为x m/min,乙的速度为ym/min,因为出发5 min,甲还未骑到B地,可得5x<1000,解得x<200.因为出发5 min,甲、乙两人相距不到650 m,可得5y+1000﹣5x<650.化简得x﹣y>70.设甲、乙从出发到到达C地所用的时间分别为t甲,t乙,则t甲﹣t乙=﹣=1000().因为x﹣y>70,所以y<x﹣70.所以3y﹣2x<3(x﹣70)﹣2x.即3y﹣2x<x﹣210.又因为x<200,所以3y﹣2x<0.因为由实际意义可知xy>0,所以t甲﹣t乙<0.即t甲<t乙.所以甲先到达C地.解法二:设甲的速度为x m/min,乙的速度为ym/min,因为出发5 min,甲还未骑到B地,可得5x<1000,解得x<200.因为出发5 min,甲、乙两人相距不到650 m,可得5y+1000﹣5x<650.化简得x﹣y>70.由题可知,出发后,甲经过min追上乙,则此时s甲=.因为x﹣y>70,且x<200,所以s甲<<3000,也即甲追上乙时,两人还未到达C地.因为x>y,所以甲先到达C地;16.解:(1)由题意可知:武汉购进羽绒服单件价格为元,上海购进羽绒服数量为x+0.2x=1.2x件,进货款为a+0.23a=1.23a,∴上海购进羽绒服单件价格为=元;(2)由题意可知:a+1.23a=17.84,∴a=8,根据题意可知:+20=,∴x=100,∴第一次购进了100件,第二购进了120件,第一次购进羽绒服的单件为:=800元第二购进羽绒服的单件为:=820元,∴第一销售完所获得的利润为:(1200﹣800)×100=40000元,第二销售完所获得的利润为:(1200﹣820)××120+(1200×0.8﹣820)××120=39840元,答:两次销售,服装店老板共盈利79840元.17.解:(1)设该商家第一次购买云南甘蔗的进价是每千克x元,根据题意可知:=﹣25,x=4,经检验,x=4是原方程的解,答:该商家第一次购买云南甘蔗的进价是每千克4元;(2)设每千克的售价为y元,第一销售了=150千克,第二次销售了125千克,根据题意可知:150(y﹣4)+125(y﹣4.8)≥1000,解得:y≥8,答:每千克的售价至少为8元.18.解:(1)设乙小组每天维修x张旧课桌,∴甲小组每天维修1.5x张旧课桌,根据题意可知:=﹣5,解得:x=24,经检验,x=24是原分式方程的解,答:甲每天维修张36旧课桌,乙每天维修24张旧课桌;(2)由甲单独负责,此时完成工作需要=10天,需要费用为10×800=8000元,由乙单独负责,此时完成工作需要=15天,需要费用为15×400=6000元,故由甲或乙单独负责该项目都不符合题意,需要考虑甲乙合作完成,设甲负责m张旧课桌,则乙负责(360﹣m)张旧课桌,∴,解得:m=216,此时学校需要付费为:800×+400×=7200元答:由甲负责216张旧课桌,乙负责144张旧课桌,需要费用为7200元;19.解:(1)设用纯电行驶1千米的费用为x元,则用纯油行驶1千米的费用为(x+0.36)元,根据题意得:=,解得:x=0.2,经检验:x=0.2是原分式方程的解,x+0.36=0.56,答:每行驶1千米,只用汽油驱动的费用为0.56元;(2)设从A地到B地用电行驶y千米,根据题意得:0.2y+0.56×(﹣y)≤38,解得:y≥50,答:至少要用电力驱动行驶50千米.20.解:(1)高铁行驶的路程为:520÷1.3=400(千米);故答案为:400;(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时,则题意得:=﹣3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.。
【最新推荐】分数加减法的解方程练习题(500道)简单的-word范文模板 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 分数加减法的解方程练习题(500道)简单的篇一:同分母分数加减法习题同分母分数加、减法练习姓名:____________得分:____________一、填空:( 13分)1、817+617表示8个()加上6个(),和是()。
2、计算49+59时,因为它们的分母(),所以可以()不变,()直接相加。
3、分母是8的最简真分数有()个,它们的和是()。
4、11213的分数单位是(),再加上()个这样的单位就是最小的质数。
5、在○里填上“>”、“<”或“=”。
34 ○ 45 1.8 ○ 951-(51518-8 )○1-8+8二、判断:(6分)1、分数单位相同的分数才能直接相加减。
()2、分数加减混合运算的顺序,和整数加减法混合运算的运算顺序相同。
()3、整数加法的交换律、结合律对分数加法不适用。
()4、1-25+35=1-1=0()5、一根电线用去14,还剩下34米。
()6、圆是轴对称图形。
()三、计算。
(30分)59 +89=18+78= 1924-1324= 1936+336=37 +47= 11181238-8= 2 +15= 13-13=89 +411+19= 1-113116-6=4+4+4=1733131 -+= 1+= 1-=2-= 888943四、解方程。
( 6分)(别忘了写“解”)2715x?? x?? 9966五、解决下列问题( 45分)511、与的和再减去它们的差,结果是多少? 992、比311米长米的是多少米? 2020413、一根铁丝长米,比另一根短米,两根铁丝共多少米。
554、一块饼平均切成8块,妈妈吃了3块,小明吃了2块,还剩下这块饼的几分之几?35、一批化肥,第一天运走它的,第二天运走和第一天同样多,还剩这批化肥的多少没有运? 86、小芳做数学作业用了117、王彬看一本书,第一天看了全书的,第二天看了全书的。
七上数学每日一练:解含分数系数的一元一次方程练习题及答案_2020年综合题版
(2)
=x﹣1.
考点: 解含分数系数的一元一次方程;
4. (2018天门.七上期末) 解下列方程解方程 (1) 4x+3=12-(x-6); (2)
考点: 解含括号的一元一次方程;解含分数系数的一元一次方程;
5. (2018松滋.七上期末) 解方程: (1) 5(x-2)-2=2(2+x)+x (2)
七上数学每日一练:解含分数系数的一元一次方程练习题及答案_2020年综合
题版
2020年 七 上 数 学 : 方 程 与 不 等 式 _一 元 一 次 方 程 _解 含 分 数 系 数 的 一 元 一 次 方 程 练 习 题
1. (2019张家港.七上期末) (1) 若关于 的方程 (2) 若关于 的方程
的解为2,则 =;
和
的解的和为4,求 的值.
考点: 一元一次方程的解;解含分数系数的一元一次方程;
2. (2018海曙.七上期末) 解下列方程: (1) (2)
考点: 利用合并同类项、移项解一元一次方程解含分数系数的一元一次方程;
3. (2018咸安.七上期末) 解方程: (1) ﹣2x- =x+ ;
考点: 解含括号的一元一次方程;解含分数系数的一元一次方程;
答案解析 答案解析 答案解析 答案解析 答案解析
2020年 七 上 数 学 : 方 程 与 不 等 式 _一 元 一 次 方 程 _解 含 分 数 系 数 的 一 元 一 次 方 程 练 习 题 答 案
1.答案:
2.答案:
3.答案: 4.答案: 5.答案:
2020年解方程40道题
作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.13一、解方程。
7.5x+x=10.2 (1.5+x)×2=9 15x-5x+16=80 15.6÷4-3.5x=1.1 5x-4×12=22.5 14x÷3=6.3×410x+45×8=8 10 x-0.35x=0.91 0.3÷0.15+25x=12 6×(3-2x)=1.2×5 1.12x+(x-3)+x=153 (x-9)÷(98-x-9)=4二、列出方程,并求出方程的解。
①8x与3x的差等于27.7与4.8的②0.3除6的商减去x的4倍,差,求x。
得12.4,求x。
3、0.3乘以14的积比x的3倍少0.6。
4、x的5倍比3个7.2小3.4。
5、一个数的3倍加上它本身6、20 20 20 20 x x正好是9.6,求这个数。
3607、x的7倍比52多25。
8、x的9倍减去x的5倍,等于24.4。
三、解决问题1、两个数的和是144,较小数除较大数,商是3,求这两个数各是多少?2、王阿姨买空11个暖瓶,付了200元,找回35元,每个暖瓶多少元?3、一个长方形的周长是35米,长是12.5米,它的宽是多少米?4、商店运来490千克水果,卖了7筐,还剩下147千克,每一筐水果是多少千克?5、同学们植树,五六年级一共植了560棵,六年级植的棵数是五年级的1.5 倍,两个年级各植多少棵?6、①两袋面粉共88千克,甲袋的重量是乙袋的3倍,两袋各多少千克?②两袋面粉,甲比乙重34千克,甲袋是乙袋的3倍,两袋各多少?7、少先队员在果园,上午摘了18筐苹果,比下午少摘了100千克,下午摘了22筐,平均每筐苹果重多少千克?8、今年10月份李明家用电131度,王强家用电120度,王强家少缴电费5.5 元。
平均每度电多少元?9、①王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长是宽的3倍,这个养鸡场的长和宽各是多少米?②王大爷准备用400米长的栅栏围一个长方形养鸡场,如果长比宽多80米,这个养鸡场的长和宽各是多少米?作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.1310、上海“东方明珠”电视塔高468米,比一座普通住宅楼的31倍多3米,这幢普通住宅楼高多少米?作者:旧在几作品编号:2254487796631145587263GF24000022时间:2020.12.13。
2020-2021初中数学方程与不等式之分式方程技巧及练习题含答案(1)
2020-2021初中数学方程与不等式之分式方程技巧及练习题含答案(1)一、选择题1.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1>B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠【答案】D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.2.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x 【答案】B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】 解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.3.方程24222x x x x =-+-- 的解为( ) A .2B .2或4C .4D .无解 【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x ﹣2)2+4,分解因式得:(x ﹣2)[2﹣(x ﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C .【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.4.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4B .-2C .-3D .2 【答案】A【解析】【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可.【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数, 不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<, 由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a ≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4,则和为4,故选:A .【点睛】 此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.5.若关于x 的分式方程2x x -﹣12m x--=3的解为正整数,且关于y 的不等式组2()522126m y y y ⎧-≤⎪⎪⎨+⎪+>⎪⎩至多有六个整数解,则符合条件的所有整数m 的取值之和为( ) A .1B .0C .5D .6 【答案】A【解析】【分析】先求出一元一次不等式组的解集,根据“不等式组的解至多有六个整数解”确定m 的取值范围,再解分式方程,依据“解为正整数”进一步确定m 的值,最后求和即可.【详解】解:化简不等式组为25632y m y y -≤⎧⎨+>+⎩, 解得:﹣2<y ≤52m +, ∵不等式组至多有六个整数解, ∴52m +≤4, ∴m ≤3, 将分式方程的两边同时乘以x ﹣2,得x +m ﹣1=3(x ﹣2),解得:x =52m +, ∵分式方程的解为正整数,∴m +5是2的倍数,∵m ≤3,∴m =﹣3或m =﹣1或m =1或m =3,∵x ≠2,∴52m +≠2, ∴m ≠﹣1, ∴m =﹣3或m =1或m =3,∴符合条件的所有整数m 的取值之和为1,故选:A .【点睛】本题考查分式方程的解法、解一元一次不等式组;熟练掌握分式方程的解法、一元一次不等式组的解法,是解题关键,分式方程切勿遗漏增根的情况是本题易错点.6.从4-,2-,1-,0,1,2,4,6这八个数中,随机抽一个数,记为a .若数a 使关于x 的一元二次方程()22240x a x a --+=有实数解.且关于y 的分式方程1311y a y y+-=--有整数解,则符合条件的a 的值的和是( ) A .6-B .4-C .2-D .2【答案】C【解析】【分析】由一元二次方程()22240x a x a --+=有实数解,确定a 的取值范围,由分式方程1311y a y y+-=--有整数解,确定a 的值即可判断. 【详解】方程()22240x a x a --+=有实数解, ∴△=4(a −4)2−4a 2⩾0,解得a ⩽2∴满足条件的a 的值为−4,−2,−1,0,1,2 方程1311y a y y+-=-- 解得y=2a +2 ∵y 有整数解∴a=−4,0,2,4,6综上所述,满足条件的a 的值为−4,0,2,符合条件的a 的值的和是−2故选:C【点睛】本题考查了一元二次方程根据方程根的情况确定方程中字母系数的取值范围;以及分式方程解的定义:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫分式方程的解.7.方程22111x x x x -=-+的解是( ) A .x =12 B .x =15 C .x =14 D .x =14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x 2+2x =2x 2﹣3x+1,解得:x =15, 经检验x =15是分式方程的解, 故选B .【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.8.把分式方程11122x x x --=--,的两边同时乘以x-2,约去分母,得( ) A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-2 【答案】D【解析】【分析】本题需要注意的有两个方面:①、第二个分式的分母为2-x ,首先要化成x -2;②、等式右边的常数项不要漏乘.【详解】解: 11122x x x--=-- 11+122x x x -=-- 两边同时乘以x-2,约去分母,得1+(1-x)=x-2故选:D【点睛】本题考查解分式方程.9.下列说法中正确的是( )A .顺次连接一个四边形四边中点得到的四边形是平行四边形B .9的平方根为3C .抛物线21(1)32y x =-++的顶点坐标为(1,3) D .关于x 的分式方程121m x -=-的解为非负数,则m 的取值范围是m≥-1 【答案】A【解析】【分析】 根据各个选项中的说法,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】A 、顺次连接一个四边形四边中点得到的四边形是平行四边形,该选项正确;B 、9的平方根是±3,该选项错误;C 、抛物线21(1)32y x =-++的顶点坐标为(-1,3) ,该选项错误; D 、由方程121m x -=-去分母得:12m x +=, ∵关于x 的分式方程的解为非负数, ∴102m +≥且112m x +=≠, 解得:1m ≥-且1m ≠,该选项错误;故选:A .【点睛】本题考查了二次函数的性质、平方根、平行四边形的判定、中点四边形、解分式方程,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.解分式方程要注意分母不能为0这个条件.10.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4B .2C .0D .4 【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根,∴分式方程的增根是x=4.关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4故选D .【点睛】 本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.11.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( )A .3212x x +=- B .32212x x x ++=- C .3+2212x x +=-D .3112()12x x x ++=- 【答案】A【解析】【分析】设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x 个月,则乙队单独完成全部工程需要(x -2)个月,根据题意,得:5212x x +=-; A 、3212x x +=-,与上述方程不符,所以本选项符合题意; B 、32212x x x ++=-可变形为5212x x +=-,所以本选项不符合题意; C 、3+2212x x +=-可变形为5212x x +=-,所以本选项不符合题意; D 、3112()12x x x ++=-的左边化简得5212x x +=-,所以本选项不符合题意. 故选:A .本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.“绿水青山就是金山银山”某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,设原计划工作时每天绿化面积为x 万平方米,则下面所到方程中正确的是( )A .()006060-30x 125x =+B .()6060-30125%x x=+ C .()60125%60-30x x⨯+= D .()60125%60-30x x ⨯+= 【答案】A【解析】【分析】 根据实际工作时每天的工作效率比原来计划提高了25%,结果提前30天完成了这任务,可列出方程.【详解】 解:设原计划工作时每天绿化面积为x 万平方米,则根据题意可得:()00606030125x x-=+, 故答案为:A .【点睛】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出题目中的等量关系,列出方程.13.若数k 使关于x 的不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩只有4个整数解,且使关于y 的分式方程1k y -+1=1y k y ++的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .﹣3D .﹣6【答案】A【解析】【分析】解不等式组求得其解集,根据不等式组只有4个整数解得出k 的取值范围,解分式方程得出y=-2k+1,由方程的解为整数且分式有意义得出k 的取值范围,综合两者所求最终确定k 的范围,据此可得答案.【详解】解:解不等式组301132x k x x +≤⎧⎪-⎨-≤⎪⎩得:﹣3≤x ≤﹣3k , ∵不等式组只有4个整数解,∴0≤﹣3k <1, 解得:﹣3<k ≤0, 解分式方程1k y -+1=1y k y ++得:y =﹣2k +1, ∵分式方程的解为正数,∴﹣2k +1>0且﹣2k +1≠1,解得:k <12且k ≠0, 综上,k 的取值范围为﹣3<k <0,则符合条件的所有整数k 的积为﹣2×(﹣1)=2,故选A .【点睛】本题考查了解一元一次不等式组、分式方程的解,有难度,注意分式方程中的解要满足分母不为0的情况.14.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32 C .m >﹣94D .m >﹣94且m≠﹣34 【答案】B【解析】【分析】【详解】 解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+, 已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32,所以m 的取值范围是:m <92且m≠32. 故答案选B .15.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( ) A .3m ≤B .3m <C .3m >-D .3m ≥- 【答案】A【解析】【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可【详解】 213x m x -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x m x -=-的解是非正数,30x -≠, 30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤,故选:A .【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值16.若分式方程2+1kx x 2--=12x -有增根,则k 的值为( ) A .﹣2B .﹣1C .1D .2 【答案】C【解析】【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k 即可.【详解】解:分式方程去分母得:2(x ﹣2)+1﹣kx =﹣1,由题意将x =2代入得:1﹣2k =﹣1,解得:k =1.故选:C .【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键.17.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得, 5x=52x+16所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.18.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806 x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.19.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .25301018060(%)x x -=+ B .253010180(%)x x -=+ C .30251018060(%)x x -=+ D .302510180(%)x x -=+ 【答案】A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x 千米/小时,()253010180%60x x -=+ 故选A .20.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可以列出方程为( )A .480360140x x =-B .480480140x x =-C .480360140x x +=D .360480140x x-= 【答案】A【解析】【分析】设甲每天做x 个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可.【详解】解:设甲每天做x 个零件,根据题意得:480360140x x=-, 故选:A .【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.。
2020年中考数学复习《分式方程应用题》 中考常见题型练习题(附解析)
《分式方程应用题》中考常见题型练习1.随着生活水平的提高,人们对饮水品质的需求越来越高某公司根据市场需求代理A,B 两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用4万元购进A 型净水器与用3.4万元购进B型净水器的数量相等(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共50台进行试销,购买资金不超过9.85万元,其中A型净水器为x台试销时A型净水器每台售价2499元,B型净水器每台售价2099元.公司决定从销售A型净水器的利润中按每台捐献a元(80<a<100)作为公司帮扶贫困村饮水改造资金,设该公司售完50台净水器并捐献扶贫资金后获得的利润为W (元),求W的最大值.2.市政府计划对城区道路进行改造,现安排甲、乙两个工程队共同完成.已知甲队的工作效率是乙队工作效率的1.5倍,甲队改造240米的道路比乙队改造同样长的道路少用2天.(1)甲、乙两个工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天的改造费用为7万元,乙队工作一天的改造费用为5万元,如需改造的道路全长为1800米,改造总费用不超过220万元,至少安排甲队工作多少天?3.某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.(1)这两次各购进这种衬衫多少件?(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于2100元,则第二批衬衫每件至少要售多少元?4.在开任公路改建工程中,某工程段将由甲,乙两个工程队共同施工完成,据调查得知,甲,乙两队单独完成这项工程所需天数之比为2:3,若先由甲,乙两队合作30天,剩下的工程再由乙队做15天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)此项工程由两队合作施工,甲队共做了m天,乙队共做了n天完成.已知甲队每天的施工费为15万元,乙队每天的施工费用为8万元,若工程预算的总费用不超过840万元,甲队工作的天数与乙队工作的天数之和不超过80天,请问甲、乙两队各工作多少天,完成此项工程总费用最少?最少费用是多少?5.某书店在图书批发中心选购A、B两种科普书,A种科普书每本进价比B种科普书每本进价多25元,若用2000元购进A种科普书的数量是用750元购进B种科普书数量的2倍.(1)求A、B两种科普书每本进价各是多少元;(2)该书店计划A种科普书每本售价为130元,B种科普书每本售价为95元,购进A 种科普书的数量比购进B种科普书的数量的还少4本,若A、B两种科普书全部售出,使总获利超过1240元,则至少购进B种科普书多少本?6.哈市某段地铁工程由甲、乙两工程队合作30天可完成,若单独施工,甲工程队比乙工程队多用45天.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲工程队施工每天需付施工费1.5万元,乙工程队施工每天需付施工费2.4万元,甲工程队最多要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元?7.某超市准备购进A,B两种品牌台灯,其中A每盏进价比B每盏进价贵30元,A每盏售价120元,B每盏售价80元.已知用1040元购进A的数量与用650元购进B的数量相同.(1)求台灯A、B每盏的进价是多少元;(2)超市打算购进A,B台灯共100盏,要求售出A,B的总利润不少于3400元,问至少需购进A台灯多少台?8.某超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于5400元,那么销售单价至少为多少元?9.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?10.2018年“清明节”前夕,宜宾某花店用1000元购进若干菊花,很快售完,接着又用2500元购进第二批花,已知第二批所购花的数量是第一批所购花数的2倍,且每朵花的进价比第一批的进价多0.5元.(1)第一批花每束的进价是多少元.(2)若第一批菊花按3元的售价销售,要使总利润不低于1500元(不考虑其他因素),第二批每朵菊花的售价至少是多少元?11.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.12.安排甲、乙两队绿化面积为1800m2的区域.已知甲队每天可绿化面积为乙队的一半,且在独立绿化面积为400m2的区域时比乙队多用4天.(1)求甲、乙两队每天可绿化面积;(2)若每天需付甲队0.25万元,乙队0.4万元,要使总费用不超过8万元,至少应安排乙队绿化多少天?13.有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.(1)求甲、乙两工程队每天各完成多少米?(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?14.为了保护环境,某开发区综合治理指挥部决定购买A ,B 两种型号的污水处理设备共10台.已知用90万元购买A 型号的污水处理设备的台数与用75万元购买B 型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备价格(万元/台)月处理污水量(吨/台)(1)求m 的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过156万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.15.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?A 型m 220B 型m ﹣318016.小张去文具店购买作业本,作业本有大、小两种规格,大本作业本的单价比小本作业本贵0.3元,已知用8元购买大本作业本的数量与用5元购买小本作业本的数量相同.(1)求大本作业本与小本作业本每本各多少元?(2)因作业需要,小张要再购买一些作业本,购买小本作业本的数量是大本作业本数量的2倍,总费用不超过15元.则大本作业本最多能购买多少本?17.有一项工程,乙队单独完成所需的时间是甲队单独完成所需时间的2倍,若两队合作4天后,剩下的工作甲单独做还需要6天完成.(1)求甲、乙两队单独完成这项工程各需多少天;(2)若甲队每天的报酬是1万元,乙队每天的报酬是0.3万元,要使完成这项工程时的总报酬不超过9.6万元,甲队最多可以工作多少天?18.时代天街某商场经营的某品牌书包,6月份的销售额为20000元,7月份因为厂家提高了出厂价,商场把该品牌书包售价上涨20%,结果销量减少50个,使得销售额减少了2000元.(1)求6月份该品牌书包的销售单价;(2)若6月份销售该品牌书包获利8000元,8月份商场为迎接中小学开学做促销活动,该书包在6月售价的基础上一律打八折销售,若成本上涨5%,则销量至少为多少个,才能保证8月份的利润比6月份的利润至少增长6.25%?19.荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?20.为落实“美丽城区”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造480米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用3万元,乙队工作一天需付费用2.4万元,如需改造的道路全长1200米,改造总费用不超过66万元,至少安排甲队工作多少天?参考答案1.解:(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1700,经检验,x=1700是原方程的解,且符合题意,∴x+300=2000.答:每台A型净水器的进价为2000元,每台B型净水器的进价为1700元.(2)∵购进x台A型净水器,∴购进(50﹣x)台B型净水器,依题意,得:W=(2499﹣2000﹣a)x+(2099﹣1700)(50﹣x)=(100﹣a)x+19950.∵购买资金不超过9.85万元,∴2000x+1700(50﹣x)≤98500,解得:x≤45.∵80<a<100,∴100﹣a>0,∴W随x值的增大而增大,∴当x=45时,W取得最大值,最大值为(24450﹣45a)元.2.解:(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为1.5x米,根据题意得:解得:x=40,经检验,x=40是所列分式方程的解,且符合题意,∴1.5x=60.答:甲工程队每天能改造道路的长度为60米,乙工程队每天能改造道路的长度为40米.(2)设安排甲队工作m天,则安排乙队工作根据题意得:7m+5×解得:m≥10.≤220,天,﹣=2,=,答:至少安排甲队工作10天.3.解:(1)设第二次购进衬衫x件,则第一次购进衬衫2x件,依题意,得:经检验,x=15,经检验,x=15是所列分式方程的解,且符合题意,∴2x=30.答:第一次购进衬衫30件,第二次购进衬衫15件.(2)由(1)可知,第一次购进衬衫的单价为150元/件,第二次购进衬衫的单价为140元/件,设第二批衬衫的售价为y元/件,依题意,得:(200﹣150)×30+(y﹣140)×15≥2100,解得:y≥180.答:第二批衬衫每件至少要售180元.4.解:(1)设甲工程队单独完成这项工程需要2x天,则乙工程队单独完成这项工程需要3x天,依题意,得:解得:x=30,经检验,x=30是原方程的解,且符合题意,∴2x=60,3x=90.答:甲工程队单独完成这项工程需要60天,乙工程队单独完成这项工程需要90天.(2)由题意,得:∴n=90﹣m.设施工总费用为w万元,则w=15m+8n=15m+8×(90﹣m)=3m+720.∵两队施工的天数之和不超过80天,工程预算的总费用不超过840万元,∴∴20≤m≤40.∵15>0,,+=1,+=1,﹣=10,∴w 值随m 值的增大而增大,∴当m =20时,完成此项工程总费用最少,此时n =90﹣m =60,w =780万元.答:甲、乙两队各工作20,60天,完成此项工程总费用最少,最少费用是780万元.5.解:(1)设B 种科普书每本的进价为x 元,则A 种科普书每本的进价为(x +25)元,根据题意得:解得:x =75,经检验,x =75是所列分式方程的解,∴x +25=100.答:A 种科普书每本的进价为100元,B 种科普书每本的进价为75元.(2)设购进B 种科普书m 本,则购进A 种科普书(m ﹣4)本,根据题意得:(130﹣100)(m ﹣4)+(95﹣75)m >1240,解得:m >45,∵m 为正整数,且m ﹣4为正整数,∴m 为3的倍数,∴m 的最小值为48.答:至少购进B 种科普书48本.6.解:(1)设乙工程队单独完成此项工程需要x 天,则甲工程队单独完成此项工程需要(x +45)天,依题意,得:+=,=2×,整理,得:x 2﹣15x ﹣1350=0,解得:x 1=45,x 2=﹣30,经检验,x 1=45,x 2=﹣30是原方程的解,x 1=45符合题意,x 2=﹣30不符合题意,舍去,∴x =45,x +45=90.答:甲工程队单独完成此项工程需要90天,乙工程队单独完成此项工程需要45天.(2)设甲工程队单独施工m 天后,则甲、乙两工程队需合作施工天才能完成任务,依题意,得:1.5×(m +)+2.4×≤127,解得:m ≤50.答:甲工程队最多要单独施工50天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过127万元.7.解:(1)设B 台灯每盏的进价为x 元,则A 台灯每盏的进价为(x +30)元,依题意,得:解得:x =50,经检验,x =50是原方程的解,且符合题意,∴x +30=80.答:A 台灯每盏的进价为80元,B 台灯每盏的进价为50元.(2)设购进A 台灯m 台,则购进B 台灯(100﹣m )台,依题意,得:(120﹣80)m +(80﹣50)(100﹣m )≥3400,解得:m ≥40.答:至少需购进A 台灯40台.8.解:(1)设第一批饮料进货单价为x 元,则第一批饮料进货单价为(x +2)元,依题意,得:解得:x =4,经检验,x =4是原方程的解,且符合题意.答:第一批饮料进货单价为4元.(2)第一批饮料进货数量为1200÷4=300(瓶),第二批饮料进货数量为5400÷(4+2)=900(瓶).设销售单价为y 元,依题意,得:(300+900)y ﹣(1200+5400)≥5400,解得:y ≥10.=3×,=,答:销售单价至少为10元.9.解:(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x +10)元,依题意,得:1.2(x +10)+x ≤34,解得:x ≤10.答:购入的B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a +30)元,依题意,得:解得:a =50,经检验,a =50是原方程的解,且符合题意.答:这种产品的批发价为50元.10.解:(1)设第一批花每束的进价是x 元,则第二批花每束的进价是(x +0.5)元,根据题意得:解得:x =2,经检验:x =2是原方程的解,且符合题意.答:第一批花每束的进价是2元.(2)由(1)可知第二批菊花的进价为2.5元.设第二批菊花的售价为m 元,根据题意得:解得:m ≥3.5.答:第二批花的售价至少为3.5元.11.解:(1)设每个乙种配件的价格为x 万元,则每个甲种配件的价格为(x ﹣0.4)万元,根据题意得:解得:x =1.2,经检验,x =1.2是原分式方程的解,∴x ﹣0.4=1.2﹣0.4=0.8.答:每个甲种配件的价格为0.8万元、每个乙种配件的价格为1.2万元.(2)设购买甲种配件m 件,购买乙种配件n 件,根据题意得:0.8m +1.2n =80,=,×(3﹣2)+×(m ﹣2.5)≥1500,×2=,=,∴m =100﹣1.5n .∵甲种配件要比乙种配件至少要多22件,∴m ﹣n ≥22,即100﹣1.5n ﹣n ≥22,解得:n ≤31.2,∵m ,n 均为非负整数,∴n 的最大值为30.答:乙种配件最多可购买30件.12.解:(1)设甲队每天可绿化面积为xm 2,则乙队每天可绿化面积为2xm 2,根据题意得:解得:x =50,经检验,x =50是所列分式方程的解,∴2x =100.答:甲队每天可绿化面积为50m 2,乙队每天可绿化面积为100m 2.(2)设应安排乙队绿化m 天,则安排甲队绿化根据题意得:0.25×解得:m ≥10.答:至少应安排乙队绿化10天.13.解:(1)设乙工程队每天完成x 米,则甲工程队每天完成2x 米,依题意,得:解得:x =300,经检验,x =300是原方程的解,且符合题意,∴2x =600.答:甲工程队每天完成600米,乙工程队每天完成300米.(2)设甲队先单独工作y 天,则甲乙两工程队还需合作依题意,得:7000(y +解得:y ≥1,∴﹣y ≤﹣=6.﹣y )+5000(﹣y )≤79000,=(﹣y )天,﹣=10,+0.4m ≤8,天,﹣=4,答:两工程队最多可以合作施工6天.14.解:(1)依题意,得:解得:m =18,经检验,m =18是原方程的解,且符合题意.∴m =值为18.(2)设购买A 型污水处理设备x 台,则购买B 型污水处理设备(10﹣x )台,依题意得:18x +15(10﹣x )≤156,解得:x ≤2,∵x 是整数,∴有3种方案.当x =0时,y =10,月处理污水量为180×10=1800吨,当x =1时,y =9,月处理污水量为220+180×9=1840吨,当x =2时,y =8,月处理污水量为220×2+180×8=1880吨,答:有3种购买方案,每月最多处理污水量的吨数为1880吨.15.解:(1)设甲队每天修路x 米,则乙队每天修路(x ﹣50)米,依题意,得:解得:x =200,经检验,x =200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y 天才能完工,依题意,得:45000﹣(200﹣50)y ≥200×120,解得:y ≤140.答:乙队至少需要140天才能完工.16.解:(1)设小本作业本每本x 元,则大本作业本每本(x +0.3)元,依题意,得:解得:x =0.5,经检验,x =0.5是原方程的解,且符合题意,∴x +0.3=0.8.答:大本作业本每本0.8元,小本作业本每本0.5元.=,=,=,(2)设大本作业本购买m本,则小本作业本购买2m本,依题意,得:0.8m+0.5×2m≤15,解得:m≤.∵m为正整数,∴m的最大值为8.答:大本作业本最多能购买8本.17.解:(1)设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要2x天,+=1,依题意,得:解得:x=12,经检验,x=12是原方程的解,且符合题意,∴2x=24.答:甲队单独完成这项工程需要12天,乙队单独完成这项工程需要24天.(2)设甲队工作m天,则乙队工作天,依题意,得:m+0.3×≤9.6,整理,得:0.4m≤2.4,解得:m≤6.答:甲队最多可以工作6天.18.解:(1)设6月份该品牌书包的销售单价为x元,则7月份该品牌书包的销售单价为(1+20%)x元,﹣=50,依题意,得:解得:x=100,经检验,x=100是原方程的解,且符合题意.答:6月份该品牌书包的销售单价为100元.(2)6月份该品牌书包的销售数量为20000÷100=200(个),6月份该品牌书包的进价为(20000﹣8000)÷200=60(元).设8月份该品牌书包的销售数量为y个,依题意,得:[100×0.8﹣(1+5%)×60]y≥8000×(1+6.25%),解得:y≥500.答:销量至少为500个时,才能保证8月份的利润比6月份的利润至少增长6.25%.19.解:(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x﹣5)元,依题意,得:2×解得:x=25,经检验,x=25是原分式方程的解,且符合题意.答:第一批荔枝每件的进价为25元.(2)第二批购进荔枝的件数为800÷(25﹣5)=40(件).设剩余的荔枝每件售价为y元,依题意,得:[30﹣(25﹣5)]×40×50%+[y﹣(25﹣5)]×40×50%≥300,解得:y≥25.答:剩余的荔枝每件售价至少为25元.20.解:(1)设乙工程队每天能改造道路x米,则甲工程队每天能改造道路x米,=,依题意,得:解得:x=40,﹣=4,经检验,x=40是分式方程的解,且符合题意,∴x=60.答:甲工程队每天能改造道路60米,乙工程队每天能改造道路40米.(2)设安排甲队工作m天,则安排乙队工作依题意,得:3m+2.4×解得:m≥10.答:至少安排甲队工作10天.≤66,天,。