2019中考数学选择填空限时练习精选09

合集下载

2019年牡丹江市中考数学试题(附答案)

2019年牡丹江市中考数学试题(附答案)

2019年牡丹江市中考数学试题(附答案)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( ) A . B . C . D .3.已知反比例函数 y =的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( )A .B .C .D .4.已知一个正多边形的内角是140°,则这个正多边形的边数是( )A .9B .8C .7D .65.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差 6.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D . 7.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .4 8.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .9.如图,在矩形ABCD 中,AD=3,M 是CD 上的一点,将△ADM 沿直线AM 对折得到△ANM ,若AN 平分∠MAB ,则折痕AM 的长为( )A .3B .23C .32D .6 10.分式方程()()31112x x x x -=--+的解为( ) A .1x = B .2x = C .1x =- D .无解11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于E 、F ,连接PB 、PD .若AE=2,PF=8.则图中阴影部分的面积为( )A .10B .12C .16D .18二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.如图,一张三角形纸片ABC ,∠C=90°,AC=8cm ,BC=6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于 cm .16.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)17.若a ,b 互为相反数,则22a b ab +=________.18.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.19.分解因式:2x 2﹣18=_____.20.如图,反比例函数y=k x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,▱ABCD 的面积为6,则k=_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.23.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.24.(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A 型车2015年6月份销售总额为3.2万元,今年经过改造升级后A 型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A 型车数量相同,则今年6月份A 型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A 型车每辆销售价多少元?(用列方程的方法解答)(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多? A 、B 两种型号车的进货和销售价格如下表:A 型车B 型车 进货价格(元/辆)1100 1400 销售价格(元/辆) 今年的销售价格 240025.解方程:3x x ﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a ∥b ,∴∠2=∠3=110°,故选B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.3.C解析:C【解析】【分析】先根据抛物线y=ax2-2x过原点排除A,再由反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解.【详解】∵当x=0时,y=ax2-2x=0,即抛物线y=ax2-2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2-2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误;C正确.故选C.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.4.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.5.A解析:A【解析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A .【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.6.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选C .7.C解析:C【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x =,由函数图象得:当0<x <2时,12y y <,选项②错误;当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.8.A解析:A【解析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 9.B解析:B【解析】【分析】根据折叠的性质可得∠MAN=∠DAM ,再由AN 平分∠MAB ,得出∠DAM=∠MAN=∠NAB ,最后利用三角函数解答即可.【详解】由折叠性质得:△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAM=30°,∴2333== 故选:B .【点睛】本题考查了矩形 的性质及折叠的性质,解题的关键是利用折叠的性质求得∠MAN=∠DAM, 10.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN,最终得到S矩形EBNP= S矩形MPFD ,即可得S△PEB=S△PFD,从而得到阴影的面积.【详解】作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PFC=S△PCN∴S矩形EBNP= S矩形MPFD ,又∵S△PBE=12S矩形EBNP,S△PFD=12S矩形MPFD,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16,故选C.【点睛】本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos ∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC ∴cos ∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =2OC BC ==.. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB (答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A (公共角),则添加:∠ADE=∠ACB 或∠AED=∠ABC ,利用两角法可判定△ADE ∽△ACB ; 添加:AD AE AC AB=,利用两边及其夹角法可判定△ADE ∽△ACB. 15.cm 【解析】试题解析:如图折痕为GH 由勾股定理得:AB==10cm 由折叠得:AG=BG=AB=×10=5cmGH ⊥AB ∴∠AGH=90°∵∠A=∠A ∠AGH=∠C=90°∴△ACB∽△AGH∴∴∴G解析:cm.【解析】试题解析:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴,∴,∴GH=cm.考点:翻折变换16.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3解析:2m.【解析】【分析】延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【详解】延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m .【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.17.0【解析】【分析】先提公因式得ab (a+b )而a+b=0任何数乘以0结果都为0【详解】解:∵=ab(a+b )而a+b=0∴原式=0故答案为0【点睛】本题考查了因式分解和有理数的乘法运算注意掌握任何数解析:0【解析】【分析】先提公因式得ab (a+b ),而a+b=0,任何数乘以0结果都为0.【详解】解:∵22a b ab = ab (a+b ),而a+b=0,∴原式=0.故答案为0,【点睛】本题考查了因式分解和有理数的乘法运算,注意掌握任何数乘以零结果都为零.18.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a 的不等式求出a 的取值范围还要注意二次项系数不为0【详解】∵关于x 的一元二次方程(a +1)x2-2x +3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b 2-4ac≥0,建立关于a 的不等式,求出a 的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.19.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x+3)(x﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.-3【解析】分析:由平行四边形面积转化为矩形BDOA面积在得到矩形PDOE面积应用反比例函数比例系数k的意义即可详解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴解析:-3【解析】分析:由平行四边形面积转化为矩形BDOA面积,在得到矩形PDOE面积,应用反比例函数比例系数k的意义即可.详解:过点P做PE⊥y轴于点E,∵四边形ABCD 为平行四边形∴AB=CD又∵BD ⊥x 轴∴ABDO 为矩形∴AB=DO∴S 矩形ABDO =S ▱ABCD =6∵P 为对角线交点,PE ⊥y 轴∴四边形PDOE 为矩形面积为3即DO•EO=3∴设P 点坐标为(x ,y )k=xy=﹣3故答案为:﹣3点睛:本题考查了反比例函数比例系数k 的几何意义以及平行四边形的性质.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分).【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;(2)、观察条形统计图得:1.502 1.554 1.605 1.656 1.70324563x⨯+⨯+⨯+⨯+⨯=++++=1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(3)、能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数23.(1)证明见解析;(2)2.【解析】分析:(1)根据一组对边相等的平行四边形是菱形进行判定即可.(2)根据菱形的性质和勾股定理求出2OA==.根据直角三角形斜边的中线等于斜边的一半即可求解.详解:(1)证明:∵AB∥CD,∴CAB ACD∠=∠∵AC平分BAD∠∴CAB CAD∠=∠,∴CAD ACD∠=∠∴AD CD=又∵AD AB=∴AB CD=又∵AB∥CD,∴四边形ABCD是平行四边形又∵AB AD=∴ABCD是菱形(2)解:∵四边形ABCD 是菱形,对角线AC 、BD 交于点O .∴AC BD ⊥.12OA OC AC ==,12OB OD BD ==, ∴112OB BD ==. 在Rt AOB 中,90AOB ∠=︒. ∴222OA AB OB =-=.∵CE AB ⊥,∴90AEC ∠=︒.在Rt AEC 中,90AEC ∠=︒.O 为AC 中点.∴122OE AC OA ===. 点睛:本题考查了平行四边形的性质和判定,菱形的判定与性质,直角三角形的性质,勾股定理等,熟练掌握菱形的判定方法以及直角三角形斜边的中线等于斜边的一半是解题的关键.24.(1)2000;(2)A 型车17辆,B 型车33辆【解析】试题分析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,列出方程即可解决问题.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,先求出m 的范围,构建一次函数,利用函数性质解决问题.试题解析:(1)设去年A 型车每辆x 元,那么今年每辆(x+400)元,根据题意得, 解之得x=1600, 经检验,x=1600是方程的解. 答:今年A 型车每辆2000元.(2)设今年7月份进A 型车m 辆,则B 型车(50﹣m )辆,获得的总利润为y 元,根据题意得50﹣m≤2m解之得m≥, ∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m )=﹣100m+50000, ∴y 随m 的增大而减小, ∴当m=17时,可以获得最大利润.答:进货方案是A 型车17辆,B 型车33辆.考点:(1)一次函数的应用;(2)分式方程25.分式方程的解为x=﹣34. 【解析】【分析】方程两边都乘以x (x+3)得出方程x ﹣1+2x=2,求出方程的解,再代入x (x+3)进行检验即可.【详解】两边都乘以x (x+3),得:x 2﹣(x+3)=x (x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。

2019年中考数学《探索三角形全等的条件》专题练习含答案

2019年中考数学《探索三角形全等的条件》专题练习含答案

探索三角形全等的条件(A卷)一、选择题:1、下列说法中正确的个数为 ( )(1)所有的等边三角形都全等 (2)两个三角形全等,它们的最大边是对应边(3)两个三角形全等,它们的对应角相等 (4)对应角相等的三角形是全等三角形A.1B.2C.3D.42、下列说法中,错误的是 ( )A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等3、在△ABC和△A′B′C′,如果满足条件( ),可得△ABC≌△A′B′C′。

A.AB=A′B′,AC=A′C′,∠B=∠B′B.AB=A′B′,BC=B′C′,∠A=∠A′C.AC=A′C′,BC=B′C′,∠C=∠C′D.AC=A′C′,BC=B′C′,∠B=∠B′4.如图1所示,已知AB=CD,AD=CB,AC、BD相交于O,则图中全等三角形有 ( )A.2对B.3对C.4对D.5对O (1)D CB A(2)EDCBA321(3)FEDCBA5、不能使两个直角三角形全等的条件是()A.一条直角边及其对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等D.两个锐角对应相等6、如图2所示,在△ABC中,∠C=90°,DE⊥AB于D,BC=BD,结果AC=3cm,那么AE+DE=()A.2cmB.3cmC.4cmD.5cm7、如图3所示,已知EA⊥AB,BC∥EA,EA=AB=2BC,D为AB的中点,则下面式子不能成立的是()A.DE=DCB.DE⊥ACC.∠CAB=30°D.∠EAF=∠ADF8、具备下列条件的两个三角形,可以证明它们全等的是()A.一边和这边上的高对应相等B.两边和第三边上的中线对应相等C.两边和其中一边的对角对应相等D.直角三角形的叙边对应相等9.△ABC中,AC=5,中线AD=7,,则AB边的取值范围是()A.1<AB<29B.4<AB<24C.5<AB<19D.9<AB<1910.下列三角形中,能全等的是( )(1)一腰和顶角对应相等的两个等腰三角形; (2)一腰和一个角分别相等的两个等腰三角形;(3)有两边分别相等的两个直角三角形; (4)两条直角边对应相等的两个直角三角形。

中考数学专题练习常用角的单位及换算(含解析)

中考数学专题练习常用角的单位及换算(含解析)

2019中考数学专题练习-常用角的单位及换算(含解析)一、单选题1.把10.26°用度分秒表示为()A.10°15′36"B.10°20′6"C.10°14′6"D.10°26".2.下列关系式正确的是()A.35.5°=35°5′B.35.5°=35°50′C.35.5°<35°5′D.35.5°>35°5′3.将21.54°用度、分、秒表示为()A.21°54′B.21°50′24″C.21°32′40″D.21°32′2 4″4.下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44°D.41.25°=41°15′5.0.25°等于()分.A.60B.15C.90D.3606.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′7.∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对8.已知∠1=37°36′,∠2=37.36°,则∠1与∠2的大小关系为()A.∠1<∠2B.∠1=∠2C.∠1>∠2D.无法比较9.下列计算错误的是()A.0.25°=900″B.1.5°=90′C.1000″=()°D.125.45°=1254.5′10.已知∠1=18°18′,∠2=18.18°,∠3=18.3°,下列结论正确的是()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠2=∠311.已知:∠A=25°12′,∠B=25.12°,∠C=25.2°,下列结论正确的是()A.∠A=∠BB.∠B=∠CC.∠A=∠CD.三个角互不相等12.下列算式正确的是()∠33.33°=33°3′3″∠33.33°=33°19′48″∠50°40′33″=50.43°∠50°40′33″=50.675°A.∠和∠B.∠和∠C.∠和∠D.∠和∠二、填空题13.34.37°=34°________′________″.14.0.5°=________′=________″;1800″=________°=________′.15.计算:180°﹣20°40′=________.16.8.31°=________°________′________″.17.计算,________18.计算:33.21°=________°________′________″.19.角度换算:26°48′=________°.三、计算题20.计算:(1)46゜39′+57゜41;(2)90゜﹣77゜29′32″;(3)31゜17′×5;(4)176゜52′÷3(精确到分)21.计算下列各题:(1)153°19′42″+26°40′28″;(2)90°3″﹣57°21′44″;(3)33°15′16″×5;(4)175°16′30″﹣47°30′÷6+4°12′50″×3.22.计算:(1)13°29’+78°37‘ (2)62°5’-21°39‘ (3)22°16′×5(4)42°15′÷5四、解答题23.把65°28′45″化成度.24.3.5°与3°5′的区别是什么?25.计算:(1)22°18′×5;(2)90°﹣57°23′27″.五、综合题26.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.27.综合题。

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年数学中考备考冲刺:中考模拟卷填空压轴题精选含精析

2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.13.(2019安徽省六安市模拟)如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC、BD相交于点O,过点P分别作AC、BD的垂线,分别交AC、BD于点E、F,交AD、BC于点M、N.下列结论:①△APE≌△AME;②PM+PN=AC;③△POF∽△BNF;④当△PMN ∽△AMP时,点P是AB的中点,其中一定正确的结论有.(填上所有正确的序号).14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB∥x轴,BC∥y轴,点C在x轴上,则△ABC的面积为.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy中,已知A(2,0),B(0,6),M(0,2).点Q在直线AB上,把△BMQ沿着直线MQ翻折,点B落在点P处,联结PQ.如果直线PQ与直线AB所构成的夹角为60°,那么点P的坐标是.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.25.(2019重庆市长寿区模拟)在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H=.处,过点H作HN⊥HG交AB于N点,交AE于M点,则S△MNF26.(2019北京市海淀区模拟)一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.27.(2019福建省龙岩市模拟)如图,已知在Rt△ABC中,AB=AC=3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为.28.(2019深圳市光明新区模拟)用棋子按下列方式摆图形,依照此规律,第n个图形有枚棋子.29.(2019江苏省徐州市模拟)我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.30.(2019山东省济南市模拟)如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.2019年中考备考:中考模拟卷填空压轴题精选1.(2019山东省东港区模拟)如图,正三角形和矩形具有一条公共边,矩形内有一个正方形,其四个顶点都在矩形的边上,正三角形和正方形的面积分别是2和2,则图中阴影部分的面积是.【分析】由正方形的面积公式和正三角形的面积公式求得图中大矩形的宽和长,然后求大矩形的面积,从而求得图中阴影部分的面积.【解答】解:设正三角形的边长为a,则a2×=2,解得a=2.则图中阴影部分的面积=2×﹣2=2.故答案是:2.【点评】考查了二次根式的应用.解题的关键是根据图中正三角形和正方形的面积求得大矩形的长和宽.2.(2019山东省日照市模拟)一个正方体的平面展开图如图所示,该正方体相对应的两个面上的代数式的积分别为A,B,C,若a,b,c都为有理数,且A=B=C,则a=.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.根据二次根式恒等时,有理数部分与有理数部分和无理数部分与无理数部分对应相等的关系,列出恒等式即可解答【解答】解:(a+)(a+)==(b+)(c+)=(bc+2)+(b+c)根据题意得=(bc+2)+(b+c)∵a,b,c都为有理数,∴bc=a2,b+c=2a∴b(2a﹣b)=a2,∵b2﹣2ab+a2=0,∴(a﹣b)2=0,∴a=b=c又∵(a+)2=(a+﹣1)(b,∴(a+)含有因式(),而a又是有理数,故a=2,当a=b=c=2时,A=B=C,【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.得到等式找出abc之间的数量关系.3.(2019湖北省保定市模拟)如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC,线段OC的长随t的变化而变化,当OC最大时,t=;(2)当△ABC的边与坐标轴平行时,t=.【分析】(1)根据勾股定理可得CD,AD,BD的长度,当O,D,C共线时,OC的长度最大,即△AOB是等腰直角三角形时,OC的长度最大,可求t.(2)分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可【解答】解:(1)∵BC=AC=5,AB=8,CD⊥AB∴BD=4=AD,∴由勾股定理得:CD=3∵AD=BD,∠AOB=90°∴OD=AB=4∵在△OCD中,OC<OD+DC∴当O,D,C三点共线时,OC值最大,即OD⊥AB,∵AD=BD,DO⊥AB∴BO=AO,且AB=8∴AO=BO=4,且点A的速度为每秒1个单位长度∴t==4(2)若BC∥x轴∴∠CBA=∠BAO且∠CDB=∠AOB∴△BOC∽△AOB∴,即∴t=若AC∥y轴,∴∠CAB=∠ABO且∠CDA=∠AOB∴△ACD∽△AOB∴即∴t=∴当t=或时,△ABC的边与坐标轴平行【点评】本题考查的是勾股定理,等腰三角形的性质,相似三角形的性质和判定,关键是利用分类思想解决问题.4.(2019浙江省台州市模拟)如图,直角三角形ABC中,∠C=90°,BC=6,AC=8,点D是AB的中点,以D为顶点的角绕D旋转分别交AC于点M、N,若∠MDN=∠A,则当DM=DN时,MN 的长为.【解答】解:连接CD,∵在直角三角形ABC中,∠C=90°,∴AB===10,∵点D是AB的中点,∴CD=AD=AB=5,∴∠A=∠ACD,∵DM=DN,∴∠DMN=∠DNM,∵∠DMN=∠A+∠ADM,∠DNM=∠ACD+∠CDN,∴∠ADM=∠CDN,∴△ADM≌△CDN(SAS),∴AM=CN,∵∠CDM=∠MDN+∠CDN,∠A=∠MDN,∴∠CMD=∠CDM,∴AM=CD=5,∴AM=CN=AC﹣CM=3,∴MN=2.故答案为:2.5.(2019山东省莱芜市模拟)如图,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放,使斜边与半圆相切.若半径OA=4,则图中阴影部分的面积为.(结果保留π)【解答】解:如图所示:∵斜边与半圆相切,点B是切点,∴∠EBO=90°.又∵∠E=30°,∴∠EBC=60°.∴∠BOD=120°,∵OA=OB=4,∴OC=OB=2,BC=2.∴S阴影=S扇形BOD+S△BOC=+×2×2=+2.故答案为:+2.6.(2019四川省成都市模拟)如图,⊙O的半径是2,弦AB=2,点C为是优弧AB上一个动点,BD⊥BC交直线AC于点D,则是△ABD的面积的最大值为.【解答】解:如图,以AB为边向上作等边三角形△ABF,连接OA,OB,OF,DF,OF交AB于H.∵F A=FB,OA=OB,∴OF⊥AB,AH=BH=,∴sin∠BOH=,∴∠BOH=∠AOH=60°,∴∠AOB=120°∴∠C=∠AOB=60°,∵DB⊥BC,∴∠DBC=90°,∴∠CDB=30°,∵∠AFB=60°,∴∠ADB=∠AFB,∴点D的运动轨迹是以F为圆心,F A为半径的圆,∴当D在OF的延长线上时,△ABD的面积最大,最大面积=×(2+3)=6+3,故答案为6+3.7.(2019浙江省温州市模拟)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD 的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE=∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.8.(2019浙江省射阳县模拟)如图,已知矩形ABCD中,AB=6,AD=10,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(x),当P,E,B三点在同一直线上时对应t的值为.【分析】设PD=t.则PA=10﹣t.首先证明BP=BC=10,在Rt△ABP中利用勾股定理即可解决问题.【解答】解:如图,设PD=t.则PA=6﹣t.∵P、B、E共线,∴∠BPC=∠DPC,∵AD∥BC,∴∠DPC=∠PCB,∴∠BPC=∠PCB,∴BP=BC=10,在Rt△ABP中,∵AB2+AP2=PB2,∴62+(10﹣t)2=102,∴t=2或18(舍去),∴PD=2,∴t=2s时,B、E、P共线.故答案为:2.【点评】本题考查了矩形的性质、勾股定理等知识,解题的关键是学会利用特殊位置解决问题.9.(2019福建省三明市模拟)如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为.【分析】如图,连接AC、BD交于点O,连接OM.首先说明点E从点A运动到点D时,点F的运动路径长为,求出圆心角,半径即可解决问题.【解答】解:如图,连接AC、BD交于点O,连接OM,∵BF⊥CE∴∠BFC=90°,∴点F的运动轨迹在以边长BC为直径的⊙M上,当点E从点A运动到点D时,点F的运动路径长为,∵四边形ABCD是菱形∴AB=BC=5,∠ABD=∠DBC=∠ABC=30°∵BM=MO∴∠MBO=∠BOM=30°,∴∠OMC=60°∴的长==π故答案为:π【点评】本题考查菱形的性质、弧长公式、轨迹等知识,解题的关键是正确寻找点F的运动轨迹,属于中考常考题型.10.(2019浙江省九校联考模拟)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)【解答】解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①的结论正确;∵抛物线过点(﹣1,0)和(m,0),且1<m<2,∴0<﹣<,∴+=>0,∴a+b>0,所以②的结论正确;∵点A(﹣3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(﹣1,0),(m,0),∴a﹣b+c=0,am2+bm+c=0,∴am2﹣a+bm+b=0,a(m+1)(m﹣1)+b(m+1)=0,∴a(m﹣1)+b=0,所以④的结论正确;∵<c,而c≤﹣1,∴<﹣1,∴b2﹣4ac>4a,所以⑤的结论错误.故答案为③⑤.11.(2019浙江省外国语学校模拟)如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:【点评】本题考查圆的切线性质,主要涉及相似三角形的判定与性质,勾股定理,切线的性质等知识,题目综合程度较高,很好地考查学生综合运用知识的能力.12.(2019浙江省金华市模拟)如图,⊙O的半径为10,点A、E、B在圆周上,∠AOB=45°,点C、D分别在OB、OA上,菱形OCED的面积为.【分析】作辅助线,构建直角三角形,设OF=x,则DF=x,OD=x,证明△DFC∽△OGD,则,得DC=,根据勾股定理列方程可得,计算x2=50﹣25,根据两条对角线乘积的一半可得菱形的面积.【解答】解:连接OE,CD交于点G,过D作DF⊥OB于F,∵∠AOB=45°,∴△ODF是等腰直角三角形,设OF=x,则DF=x,OD=x,∵四边形OCED是菱形,∴OE⊥CD,OG=EG=OE=5,∵OC=OD,∴∠ODG=∠DCF,∵∠DFC=∠OGD=90°,∴△DFC∽△OGD,∴,∴,DC =,在Rt △OCG 中,,解得x 2=50+25(舍)或50﹣25,∴菱形OCED 的面积=CD •OE =•10==50﹣50,故答案为:50﹣50.【点评】本题考查了菱形的性质、半径的性质、相似三角形的判定和性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.13.(2019安徽省六安市模拟)如图,在正方形ABCD 中,点P 是AB 上一动点(不与A ,B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N .下列结论:①△APE ≌△AME ;②PM +PN =AC ;③△POF ∽△BNF ;④当△PMN ∽△AMP 时,点P 是AB 的中点,其中一定正确的结论有 .(填上所有正确的序号).【分析】依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM 和△BPN 以及△APE 、△BPF 都是等腰直角三角形,四边形PEOF 是矩形,从而作出判断. 【解答】解:∵四边形ABCD 是正方形, ∴∠BAC =∠DAC =45°. 在△APE 和△AME 中,,∴△APE ≌△AME (ASA ),故①正确; ∴PE =EM =PM ,同理,FP=FN=NP.∵正方形ABCD中,AC⊥BD,又∵PE⊥AC,PF⊥BD,∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE∴四边形PEOF是矩形.∴PF=OE,∴PE+PF=OA,又∵PE=EM=PM,FP=FN=NP,OA=AC,∴PM+PN=AC,故②正确;∵△BNF是等腰直角三角形,而△POF不一定是,∴△POF与△BNF不一定相似,故③错误;∵△AMP是等腰直角三角形,当△PMN∽△AMP时,△PMN是等腰直角三角形.∴PM=PN,又∵△AMP和△BPN都是等腰直角三角形,∴AP=BP,即P是AB的中点.故④正确.故答案为:①②④.14.(2019山东省滨州市模拟)如图,在平面直角坐标系xOy中,四边形OABC是正方形,点C(0,4),D是OA中点,将△CDO以C为旋转中心逆时针旋转90°后,再将得到的三角形平移,使点C与点O重合,写出此时点D的对应点的坐标:.【分析】根据题意和旋转变换的性质、平移的性质画出图形,根据坐标与图形的变化中的旋转和平移性质解答.【解答】解:∵△CDO绕点C逆时针旋转90°,得到△CBD′,则BD′=OD=2,∴点D坐标为(4,6);当将点C与点O重合时,点C向下平移4个单位,得到△OAD′′,∴点D向下平移4个单位.故点D′′坐标为(4,2),故答案为:(4,2).15.(2019山东省临沂市模拟)如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为.【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF==4,∴EF=4﹣4,∴PD+PE的长度最小值为4﹣4,故答案为:4﹣4.16.(2019山东省枣庄市模拟)如图,在边长为1的菱形ABCD中,∠ABC=120°.连接对角线AC,以AC为边作第二个菱形ACEF,使∠ACE=120°,连接AE,再以AE为边作第三个菱形AEGH,使∠AEC=120°,…,按此规律所作的第2018个菱形的边长是.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得AE=AC=()2,AG=AE=3=()3,按此规律所作的第n个菱形的边长为()n﹣1,所以所作的第2018个菱形的边长是()2017,故答案为()2017.【点评】此题主要考查菱形的性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是掌握探究规律的方法,属于中考常考题型.17.(2019江苏省扬州市模拟)如图,点A在双曲线y=(x>0)上,点B在双曲线y=(x>0)上,且AB ∥x 轴,BC ∥y 轴,点C 在x 轴上,则△ABC 的面积为 .【分析】作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图,根据反比例函数比例系数k 的几何意义得S 矩形AEOD =1,S 矩形BFOD =4,于是得到S 矩形AEFB =3,然后根据矩形的性质和三角形面积公式易得S △ABC =S △FAB =1.5.【解答】解:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,延长BA 交y 轴于点D ,如图, ∵AB ∥x 轴,∴S 矩形AEOD =1,S 矩形BFOD =4, ∴S 矩形AEFB =4﹣1=3, ∴S △FAB =1.5, ∴S △ABC =S △FAB =1.5. 故答案为1.5.【点评】本题考查了反比例函数系数k 的几何意义,矩形的面积,熟练掌握反比例函数系数k 的几何意义是解题的关键.18.(2019上海市静安区模拟)如图,在平面直角坐标系xOy 中,已知A (2,0),B (0,6),M(0,2).点Q 在直线AB 上,把△BMQ 沿着直线MQ 翻折,点B 落在点P 处,联结PQ .如果直线PQ 与直线AB 所构成的夹角为60°,那么点P 的坐标是 .【分析】先求出OA=2,OB=6,OM=2,BM=OB﹣OM=4,tan∠BAO=,得出∠BAO=60°,AB=2OA=4,分∠PQB=120°或∠PQB=60°两种情况,(1)当∠PQB=120°时,又分两种情况:①延长PQ交OB于点N,则∠BQN=60°,QN⊥BM,由折叠得出BM=MP=4,求出BN=NM=BM=2,由勾股定理得出NP==2,ON=OM+NM=4,即可得出P点的坐标;②QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,即可得出P点的坐标;(2)当∠PQB=60°时,Q点与A点重合,AB=AP=4,OP=AP﹣OA=2,即可得出P点的坐标;综上情况即可P点的坐标.【解答】解:∵A(2,0),B(0,6),M(0,2),∴OA=2,OB=6,OM=2,BM=OB﹣OM=4,∴tan∠BAO===,∴∠BAO=60°,∵∠AOB=90°,∴∠ABO=30°,∴AB=2OA=4,∵直线PQ与直线AB所构成的夹角为60°,∴∠PQB=120°或∠PQB=60°,(1)当∠PQB=120°时,分两种情况:①如图1所示:延长PQ交OB于点N,则∠BQN=60°,∴∠QNB=90°,即QN⊥BM,由折叠得:BM=MP=4,∠BQM=∠PQM,∵∠PQB=120°,∴∠BQM=∠PQM=120°,∴∠BQN=∠MQN=60°,∵QN⊥BM,∴BN=NM=BM=2,在Rt△PNM中,NP===2,ON=OM+NM=4,∴P点的坐标为:(2,4);②如图2所示:QM⊥OB,BM=MP,OP=PM﹣OM=BM﹣OM=4﹣2=2,∴P点的坐标为:(0,﹣2);(2)当∠PQB=60°时,如图3所示:Q点与A点重合,由折叠得:AB=AP=4,OP=AP﹣OA=4﹣2=2,∴P点的坐标为:(﹣2,0);综上所述:P点的坐标为:(2,4)或(0,﹣2)或(﹣2,0).【点评】本题考查了翻折变换的性质、直角三角形的性质、勾股定理、三角函数、坐标等知识,熟练掌握翻折变换的性质、直角三角形的性质,并进行分类讨论是关键.19.(2019广西省河池模拟)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【分析】连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.【解答】解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为:.【点评】此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.20.(2019四川省绵阳市模拟)已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个【分析】从抛物线与x轴最多一个交点及b>a>0,可以推断抛物线最小值最小为0,对称轴在y轴左侧,并得到b2﹣4ac≤0,从而得到①②为正确;由x=﹣1及x=﹣2时y都大于或等于零可以得到③④正确.【解答】解:∵b>a>0∴﹣<0,所以①正确;∵抛物线与x轴最多有一个交点,∴b2﹣4ac≤0,∴关于x的方程ax2+bx+c+2=0中,△=b2﹣4a(c+2)=b2﹣4ac﹣8a<0,所以②正确;∵a>0及抛物线与x轴最多有一个交点,∴x取任何值时,y≥0∴当x=﹣1时,a﹣b+c≥0;所以③正确;当x=﹣2时,4a﹣2b+c≥0a+b+c≥3b﹣3aa+b+c≥3(b﹣a)≥3所以④正确.故选:D.【点评】本题考查了二次函数的解析式与图象的关系,解答此题的关键是要明确a的符号决定了抛物线开口方向;a、b的符号决定对称轴的位置;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.21.(2019山东省聊城市模拟)如图,抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0②3a+b=0③b2=4a(c﹣n)④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,其中正确的是(填序号)【分析】根据已知条件得到当x=﹣1时,y>0,即a﹣b+c>0,故①正确;根据抛物线的对称轴为直线x=1,即﹣=1,得到3a+b≠0,故②错误;根据已知条件得到方程ax2+bx+c=n有两个相等的实数根,得到b2=4a(c﹣n),故③正确;根据抛物线的开口向下,得到y=n,于是得到直最大线y=n﹣1与抛物线由两个交点,即可得到一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确.【解答】解:∵抛物线顶点坐标为(1,n),∴抛物线的对称轴为直线x=1,∵与x轴的一个交点在点(3,0)和(4,0)之间,∴当x=﹣1时,y>0,即a﹣b+c>0,故①正确;∵抛物线的对称轴为直线x=1,即﹣=1,∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2﹣4a(c﹣n)=0,∴b2=4a(c﹣n),故③正确;∵抛物线的开口向下,=n,∴y最大∴直线y=n﹣1与抛物线由两个交点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,故④正确;故答案为:①③④.【点评】本题考查的是二次函数图象与系数的关系,图象开口方向判断出a,由对称轴得出b,抛物线与y轴的交点判断c,抛物线与x轴交点的个数确定b2﹣4ac.22.(2019天津市模拟)如图,△ABC是等边三角形,AB=,点D是边BC上一点,点H是线段AD上一点,连接BH、CH.当∠BHD=60°,∠AHC=90°时,DH=.【分析】作AE⊥BH于E,BF⊥AH于F,如图,利用等边三角形的性质得AB=AC,∠BAC=60°,再证明∠ABH=∠CAH,则可根据“AAS”证明△ABE≌△CAH,所以BE=AH,AE=CH,在Rt△AHE中利用含30度的直角三角形三边的关系得到HE=AH,AE=AH,则CH=AH,于是在Rt△AHC中利用勾股定理可计算出AH=2,从而得到BE=2,HE=1,AE=CH=,BH=1,接下来在Rt△BFH中计算出HF=,BF=,然后证明△CHD∽△BFD,利用相似比得到=2,从而利用比例性质可得到DH的长.【解答】解:作AE⊥BH于E,BF⊥AH于F,如图,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BHD=∠ABH+∠BAH=60°,∠BAH+∠CAH=60°,∴∠ABH=∠CAH,在△ABE和△CAH中,∴△ABE≌△CAH,∴BE=AH,AE=CH,在Rt△AHE中,∠AHE=∠BHD=60°,∴sin∠AHE=,HE=AH,∴AE=AH•sin60°=AH,∴CH=AH,在Rt△AHC中,AH2+(AH)2=AC2=()2,解得AH=2,∴BE=2,HE=1,AE=CH=,∴BH=BE﹣HE=2﹣1=1,在Rt△BFH中,HF=BH=,BF=,∵BF∥CH,∴△CHD∽△BFD,∴===2,∴DH=HF=×=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了全等三角形的判定与性质和等边三角形的性质.23.(2019福建省晋江市模拟)如图,点P为线段AB(不含端点A、B)上的动点,分别以AP、PB为斜边在AB的同侧作Rt△AEP与Rt△PFB,∠AEP=∠EPF=∠PFB=90°,若AE+PF=8,EP+FB =6,则线段EF的取值范围是.【分析】设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,通过角的关系得到PE∥BF,由平行得到△PEA∽△BFP;由相似得到x与y的关系,在Rt△FEP中,FE2=FP2+EP2,得到FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,结合x的取值范围,确定EF的范围.【解答】解:设AE=x,PE=y,则PF=8﹣x,BF=6﹣y,∵∠AEP=∠EPF=∠PFB=90°,∴PE∥BF,∴△PEA∽△BFP,∴=,∴4y=3x,在Rt△FEP中,FE2=FP2+EP2,∴FE2=y2+(8﹣x)2,∴FE2=(x)2+x2﹣16x+64=x2﹣16x+64=(x﹣)2+,∵0<x<8,∴当x=时,FE有最小值,当x=0时,EF有最大值8,∴≤EF<8.故答案为≤EF<8.【点评】本题考查二次函数最值,三角形相似,勾股定理,平行线的判定,是综合性很强的一道题;能够通过平行得到三角形相似,能够通过相似得到边的关系,利用勾股定理得到二次函数的解析式,再由二次函数的值的范围求解,因此熟练掌握相似、平行、二次函数最值的求法是解题的关键.24.(2019山东省章丘市模拟)在平面直角坐标系中,直线y=x+c过y轴上的动点C,直线:y=x、y=x+c的图象分别与函数y=(x>0)交于点A、点B,横、纵坐标都是整数的点叫做整点.记图象y=(x>0)在点B和点C之间的部分与线段OA、BC、OC围成的区域(不含边界)为S.若区域S内恰有4个整点,则c的取值范围是.【分析】分两种情况:直线BC在OA的下方和上方,画图计算边界时点c的值,可得c的取值.【解答】解:如图所示1,直线BC在OA的下方时当c=﹣1时,区域S内的整点有(1,0),(2,0),(3,0),有3个;当直线BC:y=+c过(1,﹣1)时,c=﹣,且经过(5,0)∴区域S内恰有4个整点,c的取值范围是﹣≤c<﹣1.如图2,直线BC在OA的上方时,∵点(2,2)在函数y=(x>0)的图象上,当直线BC:y=过(1,2)时,c=,。

2019年中考数学练习专项练习:反比例函数的综合应用

2019年中考数学练习专项练习:反比例函数的综合应用

2019年中考数学练习专项练习:反比例函数的综合应用【一】选择题1.函数是反比例函数,那么a的值是〔〕A. 1或﹣1B. ﹣2C. 2D. 2或﹣22.反比例函数y=的图象位于〔〕3.在反比例函数y= 的图象的每一条曲线上,y都随x的增大而减小,那么k的取值范围是( ).A. k>1B. k>0C. k≥1D. k<14.函数y=的图象大致是()A. B.C. D.5.反比例函数y= 的图象如下图,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③假设A〔﹣1,h〕,B〔2,k〕在图象上,那么h<k;④假设P〔x,y〕在图象上,那么P′〔﹣x,﹣y〕也在图象上.其中正确的选项是〔〕A. ①②B. ②③C. ③④D. ①④6.如图,点A是反比例函数y=〔x<0〕的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.平行四边形ABCD的面积为6,那么k的值为〔〕A. 6B. -6C. 3D. -37.在平面直角坐标系中,直线y=﹣x+2与反比例函数y= 的图象有唯一公共点,假设直线y=﹣x+b与反比例函数y= 的图象有2个公共点,那么b的取值范围是〔〕A. b>2B. ﹣2<b<2C. b>2或b<﹣2D. b<﹣28.如图,:如图,在直角坐标系中,有菱形OABC,A点的坐标为〔10,0〕,对角线OB、AC相交于D点,双曲线y=〔x>0〕经过D点,交BC的延长线于E点,且OB•AC=160,有以下四个结论:①双曲线的解析式为y=〔x>0〕;②E点的坐标是〔5,8〕;③sin∠COA=;④AC+OB=12.其中正确的结论有〔〕A. 1个B. 2个C. 3个D. 4个9.如图,直线y=k1x+b与x轴,y轴相交于P,Q两点,那么y= 的图象相交于A〔﹣2,m〕,B〔1,n〕两点,连接OA,OB,给出以下结论:①k1k2<0;②m+ n=0;③S△AOP=S△BOQ;④不等式k1x+b>的解集在x<﹣2或0<x<1,其中正确的结论是〔〕A. ②③④B. ①②③④C. ③④D. ②③10.反比例函数y=和正比例函数y=mx的图象如图.由此可以得到方程=mx的实数根为〔〕A. x=﹣2B. x=1C. x1=2,x2=﹣2D. x1=1,x2=﹣211.如图,直线y=﹣x+3与y轴交于点A,与反比例函数y= 〔k≠0〕的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,那么反比例函数的解析式为〔〕A. y=B. y=﹣C. y=D. y=﹣12. 如图,过点P〔2,3〕分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y= 〔x >0〕的图象于点A、B,那么四边形BOAP的面积为〔〕A. 3B. 3.5C. 4D. 5【二】填空题13.反比例函数的图象经过点P〔﹣1,2〕,那么此反比例函数的解析式为________.14.假设函数y=〔m+2〕x|m|﹣3是反比例函数,那么m的值为________ .15.假设函数是反比例函数,且它的图象在第【二】四象限,那么m的值是________16.某住宅小区要种植面积为500m2的矩形草坪,草坪长y〔m〕与宽x〔m〕之间的函数关系为________ .17.y与成反比例,当y=1时,x=4,那么当x=2时,y=________18.反比例函数y= 的图象经过点〔1,6〕和〔m+1,﹣3〕,那么m=________.19.在〝2019年北京郁金香文化节〞中,北京国际鲜花港的3×106株郁金香为京城增添了亮丽的色彩.假设这些郁金香平均每平方米种植的数量为n〔单位:株/平方米〕,总种植面积为S〔单位:平方米〕,那么n与S的函数关系式为________ .〔不要求写出自变量S的取值范围〕20.如图,M为双曲线y= 上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,假设直线y=﹣x+m与y轴交于点A,与x轴相交于点B,那么AD•BC的值为________.【三】解答题21.y=y1+y2,假设y1与x﹣1成正比例,y2与x+1成反比例,当x=0时,y=﹣5;当x=2时,y=1.〔1〕求y与x的函数关系式;〔2〕求当x=﹣2时,y的值.22.如下图,制作一种产品的同时,需要将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x 分钟,据了解,该材料在加热过程中温度y与时间x成一次函数关系,该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热.停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.〔1〕分别求出该材料加热过程中和停止加热后y与x之间的函数表达式,并写出x的取值范围;〔2〕根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间是多少?【四】综合题24.如图,反比例函数y= 的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为〔2,6〕,点B的坐标为〔n,1〕.〔1〕求反比例函数与一次函数的表达式;〔2〕点E为y轴上一个动点,假设S△AEB=10,求点E的坐标.25.如图,反比例函数y= 〔x>0〕的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B 的坐标为〔2,0〕,tan∠AOB= .〔1〕求m的值;〔2〕将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y= 〔x>0〕的图象恰好经过DC的中点E,求直线AE的函数表达式;〔3〕假设直线AE与x轴交于点M,与y轴交于点N,问线段AN与线段ME的大小关系如何?请说明理由.【一】选择题【解析】【解答】解:∵函数是反比例函数,∴a2﹣2=﹣1,a﹣2≠0.解得:a=±1.应选:A、【分析】依据反比例函数的定义可知:a﹣2≠0,a2﹣2=﹣1,从而可求得a的值.【解析】【分析】因为k=2>0,根据反比例函数性质,可知图象在【一】三象限.【解答】∵k=2>0,∴图象在【一】三象限.应选B、【点评】对于反比例函数y=〔k≠0),〔1)k>0,反比例函数图象在【一】三象限;〔2)k<0,反比例函数图象在第【二】四象限内.【解析】【解答】∵在反比例函数y= 的图象的每一条曲线上,y都随x的增大而减小,∴k-1>0,那么k>1.应选A.【分析】根据反比例函数的性质,当反比例系数k大于0时,y都随x的增大而减小;.【解析】【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A〔﹣1,h〕,B〔2,k〕代入y= 得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P〔x,y〕代入y= 得到m=xy,将P′〔﹣x,﹣y〕代入y= 得到m=xy,故P〔x,y〕在图象上,那么P′〔﹣x,﹣y〕也在图象上故④正确,应选C【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解析】【解答】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|﹣k|,∴|﹣k|=6,而k<0,即k<0,∴k=﹣6.应选B、【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,那么可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|﹣k|,利用反比例函数图象得到.【解析】【解答】解:解方程组得:x2﹣bx+1=0,∵直线y=﹣x+b与反比例函数y= 的图象有2个公共点,∴方程x2﹣bx+1=0有两个不相等的实数根,∴△=b2﹣4>0,∴b>2,或b<﹣2,应选C、【分析】联立两函数解析式消去y可得x2﹣bx+1=0,由直线y=﹣x+b与反比例函数y= 的图象有2个公共点,得到方程x2﹣bx+1=0有两个不相等的实数根,根据根的判别式可得结果.【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为〔10,0〕,∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C〔6,8〕,∵点D时线段AC的中点,∴D点坐标为,即〔8,4〕,∵双曲线y=〔x>0〕经过D点,∴4=,即k=32,∴双曲线的解析式为:y=〔x>0〕,故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为〔4,8〕,故②错误;∵CF=8,OC=10,∴sin∠COA= ,故③正确;∵A〔10,0〕,C〔6,8〕,∴AC= ,∵OB•AC=160,∴OB= ,∴AC+OB=4+8=12,故④正确.应选:B、【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为〔10,0〕可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=〔x>0〕的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.【解析】【解答】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A〔﹣2,m〕、B〔1,n〕代入y= 中得﹣2m=n,∴m+ n=0,故②正确;把A〔﹣2,m〕、B〔1,n〕代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P〔﹣1,0〕,Q〔0,﹣m〕,∴OP=1,OQ=m,∴S△AOP= m,S△BOQ= m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b>的解集是x<﹣2或0<x<1,故④正确;应选A、【分析】根据一次函数和反比例函数的性质得到k1k2>0,故①错误;把A〔﹣2,m〕、B〔1,n〕代入= 中得到m+ n=0,故②正确;把A〔﹣2,m〕、B〔1,n〕代入y=k1x+b得到y=﹣mx+ m,求得P〔﹣,0〕,Q〔0,﹣m〕,根据三角形的面积公式即可得到S△AOP=S△BOQ;故③正确;根据图象得到不等式k1x+b>的解集是x<﹣2或0<x<1,故④正确.【解析】【解答】解:∵直线y=﹣x+3与y轴交于点A,∴A〔0,3〕,即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C〔﹣1,4〕,∴反比例函数的解析式为:y=﹣.应选:D、【分析】先求出点A的坐标,然后表示出AO、BO的长度,根据AO=3BO,求出点C的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【解析】【解答】解:∵B、A两点在反比例函数y= 〔x>0〕的图象上,∴S△DBO=S△AOC= ×2=1,∵P〔2,3〕,∴四边形DPCO的面积为2×3=6,∴四边形BOAP的面积为6﹣1﹣1=4,应选:C、【分析】根据反比例函数系数k的几何意义可得S△DBO=S△AOC= |k|=1,再利用矩形OCPD的面积减去△BDO 和△CAO的面积即可.【二】填空题【三】解答题【解析】【分析】〔1〕根据题意设出y1=k1〔x﹣1〕,y2=,〔k1≠0,k2≠0〕,再表示出函数解析式y=k1〔x﹣1〕+,然后利用待定系数法把当x=0时,y=﹣5;当x=2时,y=1代入,计算出k1,k2的值,进而得到解析式,〔2〕把x=﹣2代入〔1〕中求得的解析式,即可算出y的值.【解析】【分析】〔1〕把A〔﹣4,n〕,B〔2,﹣4〕分别代入一次函数y=kx+b和反比例函数y=,运用待定系数法分别求其解析式;〔2〕把三角形AOB的面积看成是三角形AOC和三角形OCB的面积之和进行计算;〔3〕看在交点的哪侧,对于相同的自变量,一次函数小于反比例函数的函数值.【四】综合题【解析】【分析】〔1〕把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,得出点B的坐标,再把A、B的坐标代入直线y=kx+b,求出k、b的值,从而得出一次函数的解析式;〔2〕设点E的坐标为〔0,m〕,连接AE,BE,先求出点P 的坐标〔0,7〕,得出PE=|m﹣7|,根据S△AEB=S△BEP﹣S△AEP=10,求出m的值,从而得出点E的坐标.【解析】【分析】〔1〕在Rt△AOB中利用条件可求得A点坐标,利用待定系数法可求得m的值;〔2〕可先求得E点纵坐标,代入反比例函数解析式可求得E点坐标,利用待定系数法可求得直线AE解析式;〔3〕由直线AE解析式可求得M、N的坐标,利用勾股定理可求得线段AN和ME的长度,比较可求得其大小关系.。

2019年中考数学专题一 选择填空压轴题

2019年中考数学专题一 选择填空压轴题
A
解:如图1,CH是AB边上的高,与AB相交于点H, ∵∠C=90°,∠BAC=30°,AB=8,
∴AC=AB×cos30°=8×
3 2
=4
3,
BC=AB×sin30°=8×
1 2
=4

∴CH=
AC创BC = 4 3 4 = 2 3,AH=
AC2 (4 3)2
=
=6
AB
8
AB 8
(1)当0≤t≤2 时3 ,
故选A.
5.如图,点A的坐标为(0,1),点B是x轴正半轴上的
一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,
设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函
数关系的图象大致是( )
A
解:作AD∥x轴,作CD⊥AD于点D,若右图所示, 由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°, AB=AC,点C的纵坐标是y, ∵AD∥x轴, ∴∠DAO+∠AOD=180°, ∴∠DAO=90°, ∴∠OAB+∠BAD= ∠BAD+∠DAC=90°,
专题一 选择填空压轴题
题型一 与函数有关的压轴题
例1 如图,边长分别为1和2的两个等边三角形,开始它
们在左边重合,大三角形固定不动,然后把小三角形自
左向右平移直至移出大三角形外停止.设小三角形移动
的距离为x,两个三角形重叠面积为y,则y关于x的函数
图象是( )
B
解:①x≤1时,两个三角形重叠面积为小三角形的面积,
以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止
运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边
BA向A点运动,到达A点停止运动.设P点运动时间为x

2019年天津中考数学试题及答案

2019年天津中考数学试题及答案 你的中考数学复习的怎么样啦,⼀起来看看考试栏⽬组⼩编为你提供的2019年天津中考数学试题及答案,希望能够帮助到你,想知道更多相关资讯,请关注⽹站更新。

2019年天津中考数学试题及答案 ⼀、选择题 1.如图,在△ABC中,AC=DC=DB,∠ACD=100°,则∠B等于( )A.50°B.40°C.25°D.20° 2.如图,点E在AD的延长线上,下列条件中能判断BC∥AD的是( )A.∠3=∠4B.∠A+∠ADC=180°C.∠1=∠2D.∠A=∠5 3.如图将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是( )A.(-2,-4)B.(-2,4)C. (2,-3)D.(-1,-3) 4.反⽐例函数y=k/x(k>0)的部分图象如图所⽰,A,B是图象上两点,AC⊥x轴于点C,BD⊥x轴于点D,若△AOC的⾯积为S1,△BOD的⾯积为S2,则S1和S2的⼤⼩关系为( )A.S1>S2 B.S1=S2 C.S1 ⼆、填空题 12.某捐款⼤约1510000000元⼈民币,这个数字⽤科学记数法表⽰为 ___________. 13.已知|x|=5,y=3,则x-y=_______ 三、解答题 22.在同⼀条件下,对同⼀型号的汽车进⾏耗油1升所⾏驶路程的实验,将收集到的数据作为⼀个样本进⾏分析,绘制出部分频数分布直⽅图和部分扇形统计图.如下图所⽰(路程单位:km)结合统计图完成下列问题:(1)扇形统计图中,表⽰12.5≤x<13部分百分数是____; (2)请把频数分布直⽅图补充完整,这个样本数据的中位数落在第组; (3)哪⼀个图能更好地说明⼀半以上的汽车⾏驶的路程在13≤x<14之间?哪⼀个图能更好地说明⾏驶路程在12.5≤x<13的汽车多于在14≤x<14.5的汽车?。

2019年陕西省中考数学试题(解析)

又∵l//OB,
∴∠2=∠BOC=64°,
故选C.
【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解本题的关键.
4.若正比例函数 的图象经过点O(a-1,4),则a的值为()
A. -1B. 0C. 1D. 2
【答案】A
【解析】
【分析】
把点(a-1,4)直接代入正比例函数y=-2x中求解即可.
把y=4代入 ,得4= ,解得:x= ,
∴M点的横坐标为 ,
∴点M的坐标为 ,
故答案为 .
【点睛】本题考查了矩形的对称性,反比例函数图象上点的坐标特征,三角形的中位线等知识,熟练掌握和灵活运用相关知识是解题的关键.注意数形结合思想的运用.
14.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC边上,且BM=6. P为对角线BD上一点,则PM—PN的最大值为___.
【答案】2.
【解析】
【分析】
如图所示,以BD为对称轴作N的对称点 ,连接 ,根据对称性质可知, ,由此可得 ,当 三点共线时,取“=”,此时即PM—PN的值最大,由正方形的性质求出AC的长,继而可得 , ,再证明 ,可得PM∥AB∥CD,∠ 90°,判断出△ 为等腰直角三角形,求得 长即可得答案.
【详解】如图所示,以BD为对称轴作N的对称点 ,连接 ,根据对称性质可知, ,∴ ,当 三点共线时,取“=”,
16.化简:
【答案】a
【解析】
【分析】
括号内先通分进行分式的加减法运算,然后再进行分式的乘除运算即可.
【详解】原式=
=
=a.
【点睛】本题考查了分式的混合运算,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.

陕西省2019年中考数学试题(含解析)和答案

2019年陕西中考数学一、选择题(共10小题,每小题3分,共30分) 1. 计算:()=03-A.1B.0C. 3D.31-2. 如图,是由两个正方体组成的几何体,则该几何体的俯视图为3. 如图,OC 是∠AOB 的角平分线,l //OB,若∠1=52°,则∠2的度数为A.52°B.54°C.64°D.69° 4. 若正比例函数x y 2-=的图象经过点O (a -1,4),则a 的值为A. -1B.0C.1D.2 5. 下列计算正确的是A. 222632a a a =⋅ B.()242263b a ba =-C.()222b a b a -=- D.2222a a a =+-6. 如图,在△ABC 中,∠B=30°,∠C=45°,AD 平分∠BAC 交BC 于点D ,DE⊥AB,垂足为E 。

若DE=1,则BC 的长为A.2+2B.32+C.2+3D.37. 在平面直角坐标系中,将函数x y 3=的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为A. (2,0)B.(-2,0)C.(6,0)D.(-6,0)8. 如图,在矩形ABCD 中,AB=3,BC=6,若点E ,F 分别在AB,CD 上,且BE=2AE ,DF=2FC ,G ,H 分别是AC 的三等分点,则四边形EHFG 的面积为 A.1 B.23C.2D.49. 如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是A.20°B.35°C.40°D.55°10. 在同一平面直角坐标系中,若抛物线()42122-+-+=m x m x y 与()n x n m x y ++-=32关于y 轴对称,则符合条件的m ,n 的值为 A. m=75,n=718- B.m=5,n= -6 C.m= -1,n=6 D.m=1,n= -2二、填空题(共4小题,每小题3分,共12分) 11. 已知实数21-,0.16,3,π,25,34,其中为无理数的是 12. 若正六边形的边长为3,则其较长的一条对角线长为13. 如图,D 是矩形AOBC 的对称中心,A(0,4),B (6,0),若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为14. 如图,在正方形ABCD 中,AB=8,AC 与BD 交于点O ,N 是AO 的中点,点M 在BC 边上,且BM=6. P 为对角线BD 上一点,则PM —PN 的最大值为三、解答题(共78分)15. (5分)计算:2321-3-127-2--⎪⎭⎫⎝⎛+⨯16. (5分)化简:aa a a a a a 22482222-+÷⎪⎭⎫⎝⎛-++-17. (5分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的高。

2019年中考数学:精选25道 最新圆 填空题 专选培优练习 (含答案)

精选25道最新圆填空题专选培优练习1.(2019•雨湖区一模)如图,点A、B、C、D在圆O上,∠A=140°,则∠C=.2.(2019•吴兴区校级一模)如图,一个圆形硬币刚好和一块三角尺的两边相切,其中与AB 边的切点为D,若∠C=30°,BC=6,BD=,则圆形硬币的半径为.3.(2019•简阳市模拟)如图,△ABC内接于⊙O.AB为⊙O的直径,BC=3,AB=5,D、E 分别是边AB、BC上的两个动点(不与端点A、B、C重合),将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上(包含端点A、C),若△ADB′为等腰三角形,则AD的长为.4.(2019•宝山区二模)如果圆O的半径为3,圆P的半径为2,且OP=5,那么圆O和圆P 的位置关系是.5.(2019•天桥区一模)如图,在3×3的方格纸中,每个小方格都是边长为l的正方形,点O,A,B均为格点,则的长等于.6.(2019•青羊区模拟)如图,矩形ABCD中,AB=8,BC=4,以CD为直径的半圆O与AB 相切于点E,连接BD,则阴影部分的面积为.(结果保留π)7.(2019•江北区模拟)如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E三点,F是弧EC上的一个点,且∠B=24°,则∠AFC=.8.(2019•延庆区一模)如图,⊙O的直径AB垂直于弦CD,垂足是E,已知∠A=22.5°,OC=2,则CD的长为.9.(2019•金山区二模)一个正多边形的对称轴共有10条,且该正多边形的半径等于4,那么该正多边形的边长等于.10.(2019•路桥区一模)如图,点B,C,F在⊙O上,∠C=18°,BE是⊙O的切线,B为切点,OF的延长线交BE于点E,则∠BEO=度.11.(2019•香坊区一模)如图,AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O 于点C,E是AB上一点,延长CE交⊙O于点D,则∠CDB的度数是°.12.(2019•哈尔滨模拟)某扇形的面积为6π,弧长为3π,此扇形的圆心角的度数为.13.(2019•信阳一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是.14.(2019•盐城一模)如图,已知正方形ABCD,边长为4cm,边CD的中点E,连结AE,将△ADE绕顶点A顺时针方向旋转90°到△ABF,则线段DE所扫过的面积为cm2.15.(2019•闵行区二模)如图,已知在⊙O中,半径OC垂直于弦AB,垂足为点D.如果CD =4,AB=16,那么OC=.16.(2019•沈河区校级模拟)如图,O点在梯形ABCD的下底AB上,且⨀O与梯形的上底及两腰都相切,若AB=5cm,CD=2cm,则梯形ABCD的周长等于.17.(2019•河南一模)如图,在△ABC中,∠BAC=120°,AB=AC=4,现将△ABC绕点C 顺时针旋转60°得到△A′B′C,其中点B的运动路径为,点A的运动路径为,则图中阴影部分的面积是.18.(2019•莆田模拟)等宽曲线是这样的一种几何图形,它们在任何方向上的直径(或称宽度)都是相等的.如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧则弧AB,弧BC弧AC组成的封闭图形就是“莱洛三角形”.莱洛三角形是“等宽曲线”,用莱洛三角形做横断面的滚子,能使载重物水平地移动而不至于上下颠簸.诺AB=3,则此“莱诺三角形”的周长为.19.(2019•铁西区三模)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=1,则⊙O的半径长为.20.(2019•永康市模拟)木工师傅可以用角尺测量并计算出圆的半径.如图,用角尺的较短边紧靠⊙O于点A,并使较长边与⊙O相切于点C.记角尺的直角顶点为B,量得AB=2cm,BC=4cm,则⊙O的半径等于cm.21.(2019•娄底模拟)如图,在△ABC中,∠ACB=90°,AC=1,BC=,以点A为圆心、AC的长为半径画弧,交AB边于点D,则弧CD的长等于(结果保留π)22.(2019•江岸区校级模拟)如图,已知四边形ABCD外接圆⊙O的半径为5,对角线AC与BD交于点E,BE=DE,AB=BE,且AC=8,则四边形ABCD的面积为.23.(2019•安徽一模)如图.点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O 于C.若AP=8,PB=2,则PC的长是.24.(2019•安徽模拟)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,连接OC与半圆相交于点D,则CD的长为.25.(2019•慈溪市模拟)如图,已知半圆O的直径AB为12,OP=1,C为半圆上一点,连结CP.若将CP沿着射线AB方向平移至DE,若DE恰好与⊙O相切于点D,则平移的距离为.参考答案1.解:∵点A、B、C、D在圆O上,∴∠A+∠C=180°,∴∠C=40°,故答案为:40°.2.解:设圆心为O,连接OD,OA,∵∠C=30°,∠ABC=90°∴tan C==,∠BAC=60°∴AB=2,∵BD=,∴AD=AB﹣BD=,∵AB,AC都与⊙O相切,∴∠DAO=∠BAC=30°,OD⊥AD,∴tan∠DAO=,∴DO=1,故答案为:1.3.解:∵AB为⊙O的直径,∴∠C=90°,∵BC=3,AB=5,∴AC=4,∵将△BDE沿DE折叠,点B的对应点B′恰好落在线段AC上,∴BD=B′D,BE=B′E,若△ADB′为等腰三角形,①当AB′=DB′时,设AB′=DB′=BD=x,则AD=5﹣x,如图1,过B′作B′F⊥AD于F,则AF=DF=AD,∵∠A=∠A,∠AF B′=∠C=90°,∴△AFB′∽△ACB,∴=,∴=,解得:x=,∴AD=5﹣x=;②当AD=DB′时,则AD=DB′=BD=AB=;③当AD=AB′时,如图2,过D作DH⊥AC于H,∴DH∥BC,∴==,设AD=5m,∴DH=3m,AH=4m,∴DB′=BD=5﹣5m,HB′=5m﹣4m=m,∵DB′2=DH2+B′H2,∴(5﹣5m)2=(3m)2+m2,∴m=,m=(不合题意舍去),∴AD=,故答案为:或或.4.解:∵圆O的半径为3,圆P的半径为2,且OP=5,∴OP=R+r=2+3=5,∴两圆外切,故答案为:外切.5.解:在△ACO和△ODB中,,∴△ACO≌△ODB(SAS)∴∠AOC=∠OBD,∵∠BOD+∠OBD=90°,∴∠BOD+∠AOC=90°,即∠AOB=90°,由勾股定理得,OA=OB==,∴的长==π,故答案为:π.6.解:连接OE,如图,∵以CD为直径的半圆O与AB相切于点E,∴OD=4,OE⊥BC,易得四边形OEAD为正方形,∴由弧DE、线段AE、AD所围成的面积=,∴阴影部分的面积:,故答案为:4π.7.解:如图,连接AE.∵∠BAC=90°,BE=CE,∴AE=BE=CE,∴∠B=∠EAB=24°,∴∠AEC=∠B+∠EAB=48°,∴∠AFC=∠AEC=48°,故答案为48°.8.解:∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=2,∴x2+x2=4,解得:x=,即:CE=2,∴CD=2,故答案为:29.解:∵正多边形的对称轴共有10条,∴这个正多边形是正十边形,设这个正十边形的中心为O,则OA=OB=4,∠AOB==36°,∵OA=OB,∴∠OAB=∠B=72°,作AC平分∠OAB交OB于C,则∠OAC=∠O,∠ACB=∠B,∴OC=CA=AB,△ABC∽△OAB,∴=,即AB2=4×(4﹣AB),解得,AB1=2﹣2,AB2=﹣2﹣2(舍去),∴AB=2﹣2,故答案为:2﹣2.10.解:∵∠C=18°,∴∠BOE=36°,∵BE是⊙O的切线,∴∠OBE=90°,∴∠OEB=90°﹣36°=54°,故答案为:5411.解:连接AC,∵由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°﹣∠ABT=40°,∴∠CDB=∠CAB=40°,故答案为:4012.解:设扇形的圆心角是n°,半径为R,∵扇形的面积为6π,弧长为3π,∴R=6π,解得:R=4,则由扇形的面积公式得:=6π,解得:n=135,即扇形的圆心角是135°,故答案为:135°.13.解:∵在Rt△ABC,∠C=90°,∠A=30°,AC=,∴∠B=60°,BC=tan30°×AC=1,阴影部分的面积S=S扇形ACE +S扇形BCD﹣S△ACB=+﹣=﹣,故答案为:﹣.14.解:由旋转得:△ADE≌△ABF,∵四边形ABCD是正方形,∴∠ADE=90°,AD=CD=4,∵E是CD的中点,∴DE=2,∴AE==2,∴线段DE所扫过的面积=S扇形AEF +S△ADE﹣S△ABF﹣S扇形ADB=S扇形AEF﹣S扇形ADB=﹣=π,故答案为:π;15.解:∵半径OC垂直于弦AB,∴AD=AB=8,∠ADO=90°,设CO=x,则AO=x,DO=x﹣4,x2=82+(x﹣4)2,解得:x=10,∴CO=10,故答案为:10.16.解:设⨀O与梯形的上底及两腰的切点分别为E、F、G,如图,连接OE,OF,作DH⊥AB于H,∴OE⊥CD,∵AB∥CD,∴OE⊥AB,∴DH∥OE,∴DH=OE,∵OE=OF,∴OF=DH,在△ADH和△AOF中∴△AD H≌△AOF(AAS),∴AD=OA,∴AD+BC=AB,∵AB=5cm,CD=2cm,∴梯形ABCD的周长=2AB+CD=12cm,故答案为12cm.17.解:如图1,过A作AD⊥BC于D∵∠BAC=120°,AB=AC=4,∴AD=2,BD=CD=2∴BC=4∵根据旋转的性质知∠BCB'=∠ACA'=60°,△ABC≌△A'B'C,∴S△ABC =S△A'B'C,∴S阴影=S扇形CB'B+S△A'B'C﹣S△ABC﹣S扇形CA'A=﹣=.故答案是:π.18.解:连接OB、OC,作OD⊥BC于D,∵△ABC是正三角形,∴∠BAC=60°,∴的长为:=π,∴“莱洛三角形”的周长=π×3=3π.故答案为3π19.解:如右图所示,连接AO,BO,DO,BD,连接AO交BD于点E,∵⊙O为四边形ABCD的外接圆,O为圆心,∠BCD=120°,AB=AD=1,∴∠BAD=180°﹣∠BCD=60°,∠AOB=∠AOD,∴∠BOD=2∠BAD=120°,∴∠AOB=∠AOD=120°,∴AB=BD=AD=1,∴△ABD是等边三角形,∴AE⊥BD,AE平分BD,∴∠BOE=60°设OA=a,则OE=a,BE=,∴a2=,解得,a=,故答案为:.20.解:设圆的半径为rcm,如图,连接OC、OA,作AD⊥OC,垂足为D.则OD=(r﹣2)cm,AD=BC=4cm,在Rt△AOD中,r2=(r﹣2)2+42解得:r=5.即该圆的半径为5cm.故答案为:5.21.解:∵∠ACB=90°,AC=1,BC=,∴∠ABC=30°,∴∠A=60°,又∵AC=1,∴弧CD的长为,故答案为:.22.解:∵BE=DE,AB=BE,∴AB2=2BE2=BE•BD,∴AB:BE=BD:AB,又∠EBA=∠ABD,∴△ABE∽△DBA,∴∠ADB=∠BAE,∵∠ADB=∠ACB,∴∠ACB=∠CAB,∴AB=BC.连接BO,交AC于H,连接OA,∵AB=BC,∴BO⊥AC,∴CH=AH,∴CH=AH=AC=4∵AO=5,∴OH==3,BH=OB﹣OH=5﹣3=2.=AC•BH=×5×2=5,∴S△ABC∵E是BD的中点,∴S △ABE =S △ADE ,S △BCE =S △DCE ,∴S △ABC =S △ADC ,∴S 四边形ABCD =2S △ABC =10,故答案为10.23.解:延长CP 交圆于一点D , ∵PC ⊥OP ,∴PC =PD (垂径定理),∴PC 2=PA •PB ,∵AP =8,PB =2,∴PC 2=2×8,解得:PC =4.故答案为:4.24.解:如图,设⊙O 与AC 相切于点E ,连接OE ,则OE ⊥AC , ∵AB =10,AC =8,BC =6,∴AB 2=AC 2+BC 2,∴∠C =90°,∴BC ⊥AC ,∴OE ∥BC ,∵AO =OB ,∴AE =EC =AC =4,∵OA =AB =5,∴OE =3,∴OD=3,在Rt△ABC中,OC是斜边AB上的中线,∴OC=AB=5,∴CD=OC﹣OD=5﹣3=2.故答案为2.25.解:∵半圆O的直径AB为12,∴OD=OB=6,如图,过OM⊥CD于M,连接OD,则CM=DM,∵DE是⊙O的切线,∴OD⊥DE,∵将CP沿射线AB方向平移至DE,∴CD∥PE,CD=PE,∴∠1=∠2,∵∠DMO=∠ODE=90°,∴△DMO∽△ODE,∴=,设CD=x,则OE=OP+PE=x+1,∴=,∴x=8,x=﹣9(舍去),∴平移的距离为8,故答案为:8.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择填空限时练(九)
限时:20分钟满分:32分
一、选择题(每小题2分,共16分)
1.五月的怀柔,青山含翠,鸟语花香,是最宜人的旅游季节.据统计,五一小长假,全区共接待游客760000人次,同比增长
8.5%,实现旅游营业收入1.35亿元,同比增长8.9%,创同期旅游接待历史新高.将760000用科学记数法表示为()
A.7.6×105
B.7.6×106
C.7.6×107
D.0.76×107
2.下列运算正确的是()
A.2x2+x2=3x4
B.(-mn2)·2mn=-2m2n3
C.y8÷y2=y4
D.(3a2b)2=6a4b2
3.把不等式x≤-2的解集在数轴上表示出来,下列正确的是 ()
图X9-1
4.在一个不透明的袋子里装着9个完全相同的乒乓球,把它们分别标记上数字1,2,3,4,5,6,7,8,9,从中随机摸出一个小球,标号为奇数的概率为 ()
A B C D
5.下列图形中,不是轴对称图形的是 ()
图X9-2
6.若a2-2a-3=0,()
A B C.-3 D.3
7.图X9-3是北京怀柔医院一位病人在4月8日6时到4月10日18时的体温记录示意图,下列说法中,错误的是
()
图X9-3
①护士每隔6小时给病人量一次体温;
②这个病人的体温最高是39.5摄氏度,最低是36.8摄氏度;
③他的体温在4月9日18时到4月10日18时比较稳定;
④他的体温在4月8日18时到4月9日18时下降最快.
A.①
B.②④
C.④
D.③④
8.依据国家实行的《国家学生体质健康标准》对怀柔区初一学生身高进行抽样调查,以便总结怀柔区初一学生现存的身高问题,分析其影响因素,为学生的健康发展及学校体育教育改革提出合理建议.已知怀柔区初一学生有男生840人,女生800人,他们的身高在150≤x<175范围内,随机抽取初一学生进行抽样调查.抽取的样本中,男生比女生多2人,利用
所得数据绘制如下统计图表:
身高情况分组表
图X9-4
根据统计图表提供的信息,下列说法中:
①抽取的男生样本中,身高在155≤x<165之间的学生有18人;
②初一学生中男生的身高的中位数在B组;
③抽取的样本中,抽取女生的样本容量是38;
④初一学生身高在160≤x<170之间的学生约有800人.
合理的是()
A.①②
B.①④
C.②④
D.③④
二、填空题(每小题2分,共16分)
9.计算:|-2+3|= .
10.若正多边形的一个内角是160°,则该正多边形的边数是.
11.小明去文具店购买了5支黑色碳素笔和3个修正带,一共花费74元,其中黑色碳素笔的单价比修正带的单价多2元,求黑色碳素笔的单价和修正带的单价.设黑色碳素笔的单价为x元,修正带的单价为y元,依题意可列方程组为.
12.把方程x2-2x-4=0用配方法化为(x+m)2=n的形式,则m= ,n= .
13.在边长为1的正方形网格中,如图X9-5所示,△ABC中,AB=AC,若点A的坐标为(0,-2),点B的坐标为(1,1),则点C 的坐标为.
图X9-5
14.如图X9-6,在△ABC中,点E,F分别是AC,BC的中点,若S四边形ABFE=9,则S△EFC= .
图X9-6
15.某学校准备从甲、乙两位学生中选拔一人参加区级射击比赛.在选拔比赛中,两个人10次射击成绩的统计结果如下表:
你认为参加区级比赛的学生应该是,理由为.
16.下面是“已知线段AB,在线段AB上方作等腰直角三角形ABC”的尺规作图的过程.
已知:线段AB.
图X9-7
求作:在线段AB上方作等腰直角三角形ABC.
作法:如图X9-8.
图X9-8
(1)分别以点A和点B为圆心,的长为半径作弧,
两弧相交于E,F两点;
(2)作直线EF,交AB于点O;
(3)以O为圆心,OA为半径作☉O,在AB上方交EF于点C;
(4)连接AC,BC.
则△ABC为所求的等腰直角三角形.。

相关文档
最新文档