运筹学实验一线性规划求解、运输问题、整数规划求解

合集下载

运筹学-第3章整数规划

运筹学-第3章整数规划

2018/8/17
9

生产计划问题

某机器制造厂可生产四种产品,对于三种主要资源(钢, 人力,能源)的单位消耗及单位利润见表。问如何安排 生产,可使总利润最大?
消耗 产品1
1
产品2 产品3
10 6 0 7 3 4 2 8
产品4
0 1 5 4
资源量
5000 3000 3000
资源A(钢)
资源B(人力) 2 资源C(能源) 2 单位利润 1
这里取M=5000
2018/8/17
15

(2)批量生产

在前例中的基础上, 增加假设:产品4要求批量生 产,批量为不少于500件。 试建立最佳生产计划模型。

定义0-1变量y4
1 , x 4 500 y 4= 0 , x 4=0
500y4 x4 My4 y4 {0,1}
增加约束
2018/8/17 4

附加条件

项目1和项目3至少采纳一个; y1+y2 ≥1 项目2和项目5不能同时采纳; y2+y5 ≤1 项目1仅在项目2采纳后才可考虑是否采纳; y1≤ y2 项目1仅在项目2和3同时采纳后才可考虑是否采纳; 项目1,2,3不能同时采纳; y1+y2+y3 ≤2 或者选择项目1和2,或者选择项目3; y1= y2, y1+y3 =1; 或者 0.5(y1+y2) +y3 =1.
i 1 j 1 5 4
1, 采用Ai建厂 yi , i 3,4,5 0 ,不采用
s.t. x11 x12 x13 x14 400 x x x x 600 23 24 21 22 x31 x32 x33 x34 200y3 x41 x42 x43 x44 200y4 x x x x 200y 5 51 52 53 54 y3 y 4 y5 1 x11 x21 x31 x41 x51 300 x12 x22 x32 x42 x52 350 x13 x23 x33 x43 x53 400 x x x x x 150 24 34 44 54 14 xij 0, i 1,2,3,4,5, j 1,2,3,4 y3 , y4 , y5 {0,1}

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

运筹学教材编写组《运筹学》课后习题(第1章 线性规划与单纯形法——第3章 运输问题)【圣才出品】

②因为 P1 、 P3 线性无关,故有
2xx11
x3 8 6x3
3x2 3 2x2
4
x4 7 x4
令非基变量
x2
x4
0 ,解得
x1
45 13 , x3
14 13
,故
X (2)
45 13
,
0,
14 13
,
0
T
不是可
行解。
③因为 P1 、x2 3 2x2
x3 6x3
令非基变量
x2
x3
0 ,解得
x1
34 5 , x4
7 5
,故有基可行解
X
(3)
34 5
, 0, 0,
7
T
5

z3
117 5

④因为 P2 、 P3 线性无关,故有
32xx22
x3 8 6x3
2 3
x1 x1
4x4 7 x4
令非基变量
x1
x4
0 ,解得
4x1 x2 2x3 x4 2
s.t.
x1
x2
2x1
3x3 3x2
x4 x3
14 2x4
2
x1, x2 , x3 0, x4无约束
解:令 x4 x4 ' x4 '',且 x4 ', x4 '' 0 ;在第一个约束条件两边同时乘以-1 后引入人工
变量 x5 ,在第二个约束条件右端加上松弛变量 x6 ;在第三个约束条件右端减去剩余变量 x7 ,
令非基变量
x1
x3
0 ,解得
X
(5)
0,
68 , 0, 29

运筹第四章整数规划与分配问题

运筹第四章整数规划与分配问题
x1 ≤ 4 + y1 M x2 ≥ 1 − y1 M x1 > 4 − y2 M x ≤ 3+ y M 2 2 y1 + y2 = 1
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。

广工管理运筹学第三章运输问题

广工管理运筹学第三章运输问题

闭合回路法的优点是能够找到全局最 优解,适用于大型复杂运输问题。但 该方法的计算复杂度较高,需要较长 的计算时间。
商位法
01
商位法是一种基于商位划分的优化算法,用于解决运输问题。该方法通过将供 应点和需求点划分为不同的商位,并最小化总运输成本。
02
商位法的计算步骤包括:根据地理位置和货物需求量,将供应点和需求点划分 为不同的商位;根据商位的地理位置和货物需求量,计算总运输成本;通过比 较不同商位的总运输成本,确定最优的配送路线。
80%
线性规划法
通过建立线性规划模型,利用数 学软件求解最优解,得到最小化 总成本的运输方案。
100%
启发式算法
采用启发式规则逐步逼近最优解 ,常用的算法包括节约算法、扫 描算法等。
80%
遗传算法
基于生物进化原理的优化算法, 通过模拟自然选择和遗传机制来 寻找最优解。
02
运输问题的数学模型
变量与参数
约束条件
供需平衡
每个供应点的供应量等于对应 需求点的需求量,这是运输问 题的基本约束条件。
非负约束
运输量不能为负数,即每个供 应点对每个需求点的运输量都 应大于等于零。
其他约束条件
根据实际情况,可能还有其他 约束条件,如运输能力的限制 、运输路线的限制等。
03
运输问题的求解算法
表上作业法
总结词
直到达到最优解。这两种方法都可以通过构建线性规划模型来求解最优解。
04
运输问题的优化策略
节约法
节约法是一种基于节约里程的优化算法,用于解决 运输问题。该方法通过比较不同配送路线的距离和 货物需求量,以最小化总运输距离为目标,确定最 优的配送路线。
节约法的计算步骤包括:计算各供应点到需求点的 距离,找出最短路径;根据最短路径和货物需求量 ,计算节约里程;按照节约里程排序,确定最优配 送路线。

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

运筹学中的运输问题

运筹学中的运输问题

1 运输问题基本概念
例1 某公司有三个加工厂A1、A2、A3生产某产品,每日 的产量分别为:7吨、4吨、9吨;该公司把这些产品分别 运往四个销售点B1、B2、B3、B4,各销售点每日销量分 别为:3吨、6吨、5吨、6吨;从各工厂到各销售点的单 位产品运价如表1所示。问该公司应如何调运这些产品, 在满足各销售点的需要量的前提下,使总运费最少?
(3)销大于产(供不应求)运输问题
(以满足小的产量为准) i
j=
2 运输问题数学模型和电子表格模型
例2 某厂按合同规定须于当年每个季度末分别提供 10,15,25,20台同一规格的柴油机。已知该厂各 季度的生产能力及生产每台柴油机的成本如表所示。 如果生产出来的柴油机当季不交货的,每台每积压 一个季度需储存、维护等费用1500元。要求在完成 合同的情况下,做出使该厂全年生产(包括储存、 维护)费用最小的决策。
表1 各工厂到各销售点的单位产品运价(元/吨)
B1
B2
B3
B4 产量(吨)
A1
3
A2
1
A3
7
销量(吨) 3
11
3
10 7
9
2
84
4
10
5
9
6
5
6
对于例1,其数学模型如下: 首先,三个产地A1、A2、A3的总产量为7+4+9=20;四个
销地B1、B2、B3、B4的总销量为3+6+5+6=20。由于总产 量等于总销量,故该问题是一个产销平衡的运输问题。
3 各种变形的运输问题建模
现实生活中符合产销平衡运输问题每一个条件的情况很少。一 个特征近似但其中的一个或者几个特征却并不符合产销平衡运 输问题条件的运输问题却经常出现。 下面是要讨论的一些特征:

运筹学运输问题.

运筹学运输问题.

b K bK aL ,划掉运价表的第L行;反之,
'
若 x LK bK ,则令a L
的第k列。
'
aL bK ,划掉运价表
(2)在运价表剩余元素中重复(1),直
至运价表元素全部被划掉。
例:某糖果公司下设三个工厂,每日产量分别为:A1 — 7吨、A2 —4吨、A3 —9吨。该公司将这些产品运往四个 门市部,各门市部每日销量为:B1 —3吨、B2 —6吨、 B3 —5吨、B4 —6吨。各工厂到各门市部的单位运价如 下表,试确定最优的运输方案。
运输问题求解思路图
下面通过例子介绍它的计算步骤。
一、初始方案的给定
1、最小元素法★ 2、Vogel法★
1、最小元素法
基本思路是:就近供应,即从运价表中 最小运价开始确定调运量,然后次小,一直 到给出初始调运方案为止。
(1)找出运价表中最小元素 CLK ,确 定 xLK minaL , bK ,若 x LK a L,则令
x11 x21 xm1 b1 x x x b 12 22 m2 2 x1n x2n xmn bn xij 0(i 1,2,m; j 1,2,n)
min
Z cij xij
若总产量等于总销量(产销平衡),试确定总运费最省
的调运方案。

建 模 : 设 xij 为 从 产 地 Ai 运 往 销 地 Bj 的 物 资 数 量 (i=1,…m;j=1,…n。 销地 产地 A1 A2
. . .
B1 X11 X21
. . .
B2 X12 X22
. . .
... ... ...
. . .

运筹学实验指导书

运筹学实验指导书

实验一、线性规划综合性实验一、实验目的与要求:使学生掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高学生应用线性规划方法解决实际问题的实践动手能力。

通过实验,使学生更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。

要求学生能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包线性规划模块的操作方法与步骤,能对求解结果进行简单的应用分析。

二、实验内容与步骤:1.选择合适的线性规划问题学生可根据自己的建模能力,从本实验指导书提供的参考选题中或从其它途径选择合适的线性规划问题。

2.建立线性规划数学模型学生针对所选的线性规划问题,运用线性规划建模的方法,建立恰当的线性规划数学模型。

3.用运筹学软件求解线性规划数学模型学生应用运筹学软件包线性规划模块对已建好的线性规划数学模型进行求解。

4.对求解结果进行应用分析学生对求解结果进行简单的应用分析。

三、实验例题:(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。

近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。

为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。

2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。

该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。

在市场调查的1999年该集团可供摩托车生产的流动资金总量为4000万元,年周转次数为5次,生产各种型号摩托车资金占用情况如下表2经预测三种系列摩托车1999年产销率及仓储面积占用情况如下表3公司1999年可提供的最大仓储能力为3000个仓储单位,库存产品最大允许占用生产资金为1600万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西华大学上机实验报告一、实验目的掌握线性规划求解的基本方法,熟悉灵敏度分析的步骤和内容;掌握运输问题的模型,概念,求解方法;掌握整数规划的算法。

在熟悉lingo软件基本功能基础上,能熟练操作,正确完成模型求解过程及分析过程。

二、实验内容或设计思想1.lingo软件和运筹学实验软件的安装及菜单熟悉了解.2.lingo软件和运筹学实验软件应用内容之:任选几种不同类型的LP输入计算程序,运行求解;完成产销平衡的运输问题求解;求解任一整数规划。

三、实验环境与工具计算机,lingo软件,运筹学软件四、实验过程或实验数据1、用lingo求解线性规划用DESKS、TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。

max=50*desks+30*tables+20*chairs;7*desks+6*tables+chairs<=46;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;Global optimal solution found.Objective value: 272.0000Total solver iterations: 2Variable Value Reduced CostDESKS 0.000000 6.000000TABLES 1.600000 0.000000Row Slack or Surplus Dual Price1 272.0000 1.0000002 25.20000 0.0000003 0.000000 12.000004 0.000000 4.0000005 3.400000 0.0000002、用LINGO软件计算运输问题model:sets:warehouses/wh1..wh6/: capacity;vendors/v1..v8/: demand;links(warehouses,vendors): cost, volume;endsetsmin=@sum(links: cost*volume);@for(vendors(J):@sum(warehouses(I): volume(I,J))=demand(J));@for(warehouses(I):@sum(vendors(J): volume(I,J))<=capacity(I));data:capacity=60 55 51 43 41 52;demand=35 37 22 32 41 32 43 38;cost=6 2 6 7 4 2 9 54 95 3 8 5 8 25 2 1 9 7 4 3 37 6 7 3 9 2 7 12 3 9 5 7 2 6 55 5 2 2 8 1 4 3;enddataendGlobal optimal solution found.Objective value: 638.0000Total solver iterations: 16Variable Value Reduced CostCAPACITY( WH3) 57.00000 0.000000 CAPACITY( WH4) 43.00000 0.000000 CAPACITY( WH5) 41.00000 0.000000 CAPACITY( WH6) 52.00000 0.000000 DEMAND( V1) 35.00000 0.000000 DEMAND( V2) 37.00000 0.000000 DEMAND( V3) 25.00000 0.000000 DEMAND( V4) 32.00000 0.000000 DEMAND( V5) 41.00000 0.000000 DEMAND( V6) 36.00000 0.000000 DEMAND( V7) 43.00000 0.000000 DEMAND( V8) 38.00000 0.000000 COST( WH1, V1) 8.000000 0.000000 COST( WH1, V2) 2.000000 0.000000 COST( WH1, V3) 6.000000 0.000000 COST( WH1, V4) 7.000000 0.000000 COST( WH1, V5) 4.000000 0.000000 COST( WH1, V6) 2.000000 0.000000 COST( WH1, V7) 9.000000 0.000000 COST( WH1, V8) 5.000000 0.000000 COST( WH2, V1) 4.000000 0.000000 COST( WH2, V2) 9.000000 0.000000 COST( WH2, V3) 5.000000 0.000000 COST( WH2, V4) 3.000000 0.000000 COST( WH2, V5) 8.000000 0.000000 COST( WH2, V6) 5.000000 0.000000 COST( WH2, V7) 8.000000 0.000000 COST( WH2, V8) 2.000000 0.000000 COST( WH3, V1) 5.000000 0.000000 COST( WH3, V2) 2.000000 0.000000 COST( WH3, V3) 1.000000 0.000000 COST( WH3, V4) 9.000000 0.000000 COST( WH3, V5) 7.000000 0.000000 COST( WH3, V6) 4.000000 0.000000 COST( WH3, V7) 3.000000 0.000000 COST( WH3, V8) 3.000000 0.000000 COST( WH4, V1) 7.000000 0.000000 COST( WH4, V2) 6.000000 0.000000 COST( WH4, V3) 7.000000 0.000000 COST( WH4, V4) 3.000000 0.000000 COST( WH4, V5) 11.00000 0.000000 COST( WH4, V6) 2.000000 0.000000 COST( WH4, V7) 7.000000 0.000000 COST( WH4, V8) 1.000000 0.000000 COST( WH5, V1) 2.000000 0.000000 COST( WH5, V2) 3.000000 0.000000 COST( WH5, V3) 9.000000 0.000000 COST( WH5, V4) 5.000000 0.000000 COST( WH5, V5) 7.000000 0.000000 COST( WH5, V6) 2.000000 0.000000 COST( WH5, V7) 6.000000 0.000000 COST( WH5, V8) 5.000000 0.000000 COST( WH6, V1) 5.000000 0.000000 COST( WH6, V2) 5.000000 0.000000 COST( WH6, V3) 2.000000 0.000000 COST( WH6, V4) 2.000000 0.000000 COST( WH6, V5) 8.000000 0.000000 COST( WH6, V6) 1.000000 0.000000 COST( WH6, V7) 4.000000 0.000000VOLUME( WH1, V2) 37.00000 0.000000 VOLUME( WH1, V3) 0.000000 3.000000 VOLUME( WH1, V4) 0.000000 4.000000 VOLUME( WH1, V5) 41.00000 0.000000 VOLUME( WH1, V6) 2.000000 0.000000 VOLUME( WH1, V7) 0.000000 4.000000 VOLUME( WH1, V8) 0.000000 4.000000 VOLUME( WH2, V1) 0.000000 2.000000 VOLUME( WH2, V2) 0.000000 7.000000 VOLUME( WH2, V3) 0.000000 2.000000 VOLUME( WH2, V4) 14.00000 0.000000 VOLUME( WH2, V5) 0.000000 4.000000 VOLUME( WH2, V6) 0.000000 3.000000 VOLUME( WH2, V7) 0.000000 3.000000 VOLUME( WH2, V8) 0.000000 1.000000 VOLUME( WH3, V1) 0.000000 5.000000 VOLUME( WH3, V2) 0.000000 2.000000 VOLUME( WH3, V3) 14.00000 0.000000 VOLUME( WH3, V4) 0.000000 8.000000 VOLUME( WH3, V5) 0.000000 5.000000 VOLUME( WH3, V6) 0.000000 4.000000 VOLUME( WH3, V7) 43.00000 0.000000 VOLUME( WH3, V8) 0.000000 4.000000 VOLUME( WH4, V1) 0.000000 5.000000 VOLUME( WH4, V2) 0.000000 4.000000 VOLUME( WH4, V3) 0.000000 4.000000 VOLUME( WH4, V4) 5.000000 0.000000 VOLUME( WH4, V5) 0.000000 7.000000 VOLUME( WH4, V6) 0.000000 0.000000 VOLUME( WH4, V7) 0.000000 2.000000 VOLUME( WH4, V8) 38.00000 0.000000 VOLUME( WH5, V1) 35.00000 0.000000 VOLUME( WH5, V2) 0.000000 1.000000 VOLUME( WH5, V3) 0.000000 6.000000 VOLUME( WH5, V4) 0.000000 2.000000 VOLUME( WH5, V5) 0.000000 3.000000 VOLUME( WH5, V6) 6.000000 0.000000 VOLUME( WH5, V7) 0.000000 1.000000 VOLUME( WH5, V8) 0.000000 4.000000 VOLUME( WH6, V1) 0.000000 4.000000 VOLUME( WH6, V2) 0.000000 4.000000 VOLUME( WH6, V3) 11.00000 0.000000 VOLUME( WH6, V4) 13.00000 0.000000 VOLUME( WH6, V5) 0.000000 5.000000 VOLUME( WH6, V6) 28.00000 0.000000 VOLUME( WH6, V7) 0.000000 0.000000 VOLUME( WH6, V8) 0.000000 3.000000 Row Slack or Surplus Dual Price1 638.0000 -1.0000002 0.000000 -2.0000003 0.000000 -2.0000004 0.000000 -3.0000005 0.000000 -3.0000006 0.000000 -4.0000007 0.000000 -2.0000008 0.000000 -5.0000009 0.000000 -1.00000010 0.000000 0.00000012 0.000000 2.00000013 0.000000 0.00000014 0.000000 0.00000015 0.000000 1.0000003、用lingo解整数规划问题min=5*x1+x2+3*x3+7*x4+x5+x6+3*x7;6*x1+3*x2+2*x3+x4+x5>=50;x2+2*x4+x5+5*x6>=35;x3+x5+3*x7>=10;在lingo窗口输入以下代码,min=5*x1+x2+3*x3+7*x4+x5+x6+3*x7;6*x1+3*x2+2*x3+x4+x5>=50;x2+2*x4+x5+5*x6>=35;x3+x5+3*x7>=10;@gin(x1);@gin(x2);@gin(x3);@gin(x4);@gin(x3);@gin(x6);@gin(x7);END运行结果为:Global optimal solution found.Objective value: 27.00000Extended solver steps: 0Total solver iterations: 4Variable Value Reduced CostX1 0.000000 5.000000X2 14.00000 1.000000X3 0.000000 2.000000X4 0.000000 7.000000X5 10.00000 0.000000X6 3.000000 1.000000X7 0.000000 0.000000Row Slack or Surplus Dual Price1 27.00000 -1.0000002 2.000000 0.0000003 4.000000 0.0000004 0.000000 -1.000000五、总结正确安装了运筹学的lingo实验软件,对lingo软件的菜单有了一定的了解和熟悉,掌握了线性规划求解的基本方法,了解灵敏度分析的步骤和内容;掌握了运输问题的模型,概念,求解方法;掌握了整数规划的算法。

相关文档
最新文档