新人教版_第十一章_三角形_知识点总结

合集下载

新人版八年级数学(上册)知识点总结归纳

新人版八年级数学(上册)知识点总结归纳

新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

新人教版八年级上册数学知识点归纳及常考题型

新人教版八年级上册数学知识点归纳及常考题型
方案二:乙队单独工作时完成这一工程要比规定时间多用5天; 方案三:假设甲乙两队合作4天后,余下的由乙队单独工作也正 好如期完成。
问:〔1〕求甲乙两队单独工作完成这一工程各需多少天?
〔2〕在不耽误工期的情况下,你认为哪种施工方案较节省 工程款?
第二十四页,共24页。
教学资料整理
• 仅供参考,
只需增加的一个条件是
.A
D
B
图3
C
第七页,共24页。
考点2.如图2,∠1=∠2,要得到
△ABD≌△ACD,还需从以下条件中补选一个,
则错误的选法是〔 〕
A、AB=AC
B、DB=DC
C、∠ADB=∠ADC D、∠B=∠C
考点3.如右图所示,点A、D、B、F在一
条直线上,AC=EF,AD=FB,要使
△ABC≌△FDE,还需添加一个条件,
第十七页,共24页。
第十五章分式考点归纳
1、分式的判断 P127
考点 1.下列各式中, 1 x+ 1 y, 1 , 1 ,—4xy , x , x
3 2 xy 5 a
x2
是分式有
2、分式方程的判断 P
考点 1:下列属于分式的是(
A. X-2
B. y 2x x 1
) C. 8 6 a3
D. 2X-7=16
新人教版八年级上册数学知识点 归纳及常考题型
第十一章三角形考点归纳
1、判断三边能否组成三角形。P3
考点1.以以下各组线段为边,能组成三角形的是〔

A. 1,2,4
B. 4,6,8 C. 5,6,12 D.2,3,5
2、求第三边的取值范围。P3
考点1.三角形的三边长分别是2 ,5 ,x,则x的取值范围

新人教版八年级数学知识点总结归纳上下册

新人教版八年级数学知识点总结归纳上下册

新人教版八年级上册数学知识点总结归纳1 第十一章三角形第十二章全等三角形第十三章轴对称第十四章整式乘法和因式分解第十五章分式第十一章三角形1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。

2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。

(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。

(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。

3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。

三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。

4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上三角形是封闭图形(3)首尾顺次相接三角形用符号“∆”表示,顶点是A、B、C的三角形记作“∆ABC”,读作“三角形ABC”。

5、三角形的分类三角形按边的关系分类如下:不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形三角形按角的关系分类如下:直角三角形(有一个角为直角的三角形)三角形锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。

它是两条直角边相等的直角三角形。

6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

最新人教版八年级数学上册知识点总结归纳【最新整理】

最新人教版八年级数学上册知识点总结归纳【最新整理】

最新人教版八年级数学上册知识点总结归纳【最新整理】复资料、知识分享】新人教版八年级上册数学知识点总结归纳第十一章三角形1.三角形的概念三角形是由不在同一直线上的三条线段首尾顺次相接组成的图形。

组成三角形的线段称为三角形的边,相邻两边的公共端点称为三角形的顶点,相邻两边所组成的角称为三角形的内角,简称三角形的角。

2.三角形中的主要线段1) 三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段称为三角形的角平分线。

2) 在三角形中,连接一个顶点和它对边的中点的线段称为三角形的中线。

3) 从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段称为三角形的高线,简称三角形的高。

3.三角形的稳定性三角形的形状是固定的,这个性质称为三角形的稳定性。

在生产生活中,需要稳定的东西一般都制成三角形的形状。

4.三角形的特性与表示三角形有下面三个特性:三角形有三条线段,三条线段不在同一直线上,三角形是封闭图形,首尾顺次相接。

三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。

5.三角形的分类按边的关系分类:不等边三角形、三角形底和腰不相等的等腰三角形、等腰三角形、等边三角形。

按角的关系分类:直角三角形、锐角三角形、斜三角形、钝角三角形。

特殊的三角形:等腰直角三角形,两条直角边相等的直角三角形。

6.三角形的三边关系定理及推论1) 三角形三边关系定理:三角形的两边之和大于第三边。

推论:三角形的两边之差小于第三边。

2) 三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。

③证明线段不等关系。

7.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。

推论:①直角三角形的两个锐角互余。

②三角形的一个外角等于和它不相邻的来两个内角的和。

③三角形的一个外角大于任何一个和它不相邻的内角。

注:在同一个三角形中,等角对等边,等边对等角,大角对大边,大边对大角。

人教版初中八年级上册数学第十一章三角形知识归纳

人教版初中八年级上册数学第十一章三角形知识归纳

第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。

按边分类、三角形的稳定性。

11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。

直角三角形的两个锐角互余。

有两个角互余的三角形是直角三角形。

推论:三角形的外角等于与它不相邻的两个内角的和。

备注:推论和定理一样,可以作为进一步推理的依据。

11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。

对角线:连接多边形不相邻的两个顶点的线段。

正多边形:各个角都相等,各条边都相等的多边形。

n边形内角和等于(n-2)×180º。

多边形的外角和等于360º。

作者留言:
非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!
良好的学习态度能够更好的提高学习能力。

良好的学习态度应该包括:
1、主动维持学习的兴趣,不断提升学习能力。

2、合理安排学习的时间。

3、诚挚尊重学习的对象,整合知识点。

4、信任自己的学习能力,制定学习复习计划。

5、做题的时候要学会反思、归类、整理出对应的解题思路。

因此,良好的学习态度的养成,应该从养成良好的学习习惯开始。

无论是初学者,还是学有所成者,都应该有一个良好的学习态度,都应该有一个良好的学习习惯。

最新人教版初中八年级上册数学第十一章三角形知识归纳

最新人教版初中八年级上册数学第十一章三角形知识归纳

第十一章三角形
11.1 与三角形有关的线段【高、中线(重心)、角平分线】
两边之差<第三边<两边之和。

按边分类、三角形的稳定性。

11.2 与三角形有关的角
三角形内角和定理:三角形三个内角的和等于180º。

直角三角形的两个锐角互余。

有两个角互余的三角形是直角三角形。

推论:三角形的外角等于与它不相邻的两个内角的和。

备注:推论和定理一样,可以作为进一步推理的依据。

11.3 多边形及其内角和
多边形:在平面内,由一些线段首尾顺次相接组成的封闭式图形。

对角线:连接多边形不相邻的两个顶点的线段。

正多边形:各个角都相等,各条边都相等的多边形。

n边形内角和等于(n-2)×180º。

多边形的外角和等于360º。

作者留言:
非常感谢!您浏览到此文档。

为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。

新人教版八年级数学上册第11--13章知识点总结

新人教版八年级数学上册第11--13章知识点总结

新人教版八年级数学上册第11--13章知识点总结第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边;任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线;顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中;连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交;这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的;三角形的这个性质叫三角形的稳定性.7.多边形:在平面内;由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段;叫做多边形的对角线.11.正多边形:在平面内;各个角都相等;各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖;叫做用多边形覆盖平面;13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n边形的内角和等于(2)n-·180°⑷多边形的外角和:多边形的外角和为360°.⑸多边形对角线的条数:①从n边形的一个顶点出发可以引(3)n-条对角线;把多边形分成(2)n-个三角形.②n边形共有(3)2n n-条对角线.第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了;这个三角形的形状、大小就全确定;这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等;对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件;如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意;画出图形;并用数字符号表示已知和求证.⑶经过分析;找出由已知推出求证的途径;写出证明过程.第十三章轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠;直线两旁的部分能够互相重合;这个图形就叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠;如果它能够与另一 个图形重合;那么就说这两个图形关于这条直线对称.⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线;叫做这 条线段的垂直平分线.⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫 做腰;另一条边叫做底边;两腰所夹的角叫做顶角;底边与腰的夹角叫做 底角.⑸等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称;对称轴都是任何一 对对应点所连线段的垂直平分线.②对称的图形都全等.⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等.②与一条线段两个端点距离相等的点在这条线段的垂直平分线上. ⑶关于坐标轴对称的点的坐标性质①点P (,)x y 关于x 轴对称的点的坐标为'P (,)x y -.②点P (,)x y 关于y 轴对称的点的坐标为"P (,)x y -.⑷等腰三角形的性质:①等腰三角形两腰相等.②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线;底边上的高相互重合. ④等腰三角形是轴对称图形;对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等.②等边三角形三个内角都相等;都等于60°③等边三角形每条边上都存在三线合一.④等边三角形是轴对称图形;对称轴是三线合一(3条).3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形.②如果一个三角形有两个角相等;那么这两个角所对的边也相等(等角对等边).⑵等边三角形的判定:①三条边都相等的三角形是等边三角形.②三个角都相等的三角形是等边三角形.③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点;作所连线段的垂直平分线.⑷作已知图形关于某直线的对称图形:。

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版

数学八年级上册知识点总结人教版第十一章三角形。

1. 三角形的概念。

- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三条边、三个内角和三个顶点。

2. 三角形的分类。

- 按角分类:- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形,直角三角形中直角所对的边叫做斜边,另外两条边叫做直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类:- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。

等腰三角形中,等边三角形是特殊的等腰三角形,它的三边都相等。

3. 三角形的三边关系。

- 三角形两边之和大于第三边,两边之差小于第三边。

- 用式子表示为:a + b>c,a - b(a、b、c为三角形的三边)。

4. 三角形的高、中线与角平分线。

- 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。

三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。

- 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

三角形的三条中线都在三角形内部,且相交于一点,这个点叫做三角形的重心。

- 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线都在三角形内部,且相交于一点。

5. 三角形的内角和与外角和。

- 三角形内角和定理:三角形的内角和为180^∘。

- 三角形的外角:三角形的一边与另一边的延长线组成的角叫做三角形的外角。

- 三角形的外角性质:- 三角形的一个外角等于与它不相邻的两个内角之和。

- 三角形的一个外角大于与它不相邻的任何一个内角。

- 三角形的外角和为360^∘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册知识点总结
1
第十一章 三角形知识点总结
11.1 与三角形有关的线段 第1课时 三角形的边 1. 三角形的概念
由不在同一条直线上的 相接所组成的图形叫做三角形。

2.三角形按边分类
3. 三角形三边的关系(重点)
三角形的 。

三角形的 。

用数学表达式表达就是:记三角形三边长分别是a ,b ,c ,则 或 。

已知三角形两边的长度分别为a ,b ,求第三边长度的范围:|a -b |<c <a +b 要求会的题型: ①数三角形的个数
方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形 方法:最小边+较小边>最大边 不用比较三遍,只需比较一遍即可 ③给出多条线段的长度,要求从中选择三条线段能够组成三角形
方法:从所给线段的最大边入手,依次寻找较小边和最小边;直到找完为止,注意不要找重,也不要漏掉。

④已知三角形两边的长度分别为a ,b ,求第三边长度的范围 方法:第三边长度的范围:|a -b |<c <a +b
⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长
方法:因为不知道这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上”,将上面讨论的结果做个总结。

第2课时 三角形的高、中线与角平分线 1. 三角形的高
从△ABC 的顶点向它的对边BC 所在的直线 ,垂足为D ,那么线段AD 叫做△ABC 的边BC 上的高。

三角形的三条高的交于一点,这一点叫做 。

2. 三角形的中线
连接△ABC 的顶点A 和它所对的对边BC 的 D ,所得的线段AD 叫做△ABC 的边BC 上的中线。

三角形三条中线的交于一点,这一点叫做 。

三角形的中线可以将三角形分为 的两个小三角形。

3. 三角形的角平分线
∠A 的平分线与对边BC 交于点D ,那么线段AD 叫做三角形的角平分线。

要区分三角形的“角平分线”与“角的平分线”,其区别是:三角形的角平分线是条 ;角的平分线是条 。

三角形三条角平分线的交于一点,这一点叫做 。

要求会的题型:
①已知三角形中两条高和其所对的底边中的三个长度,求其中未知的高或者底边的长度 方法:利用“等积法”,将三角形的面积用两种方式表达,求出未知量。

第2课时 三角形的稳定性
1. 三角形具有 性.
2. 四边形及多边形 性.
要使多边形具有稳定性,方法是将多边形分成多个 ,这样多边形就具有稳定性了。

11.2 与三角形有关的角 第1课时 三角形的内角 1. 三角形的内角和定理
三角形的内角和为 ,与三角形的形状无关。

2. 直角三角形两个锐角的关系
直角三角形的两个锐角 (即相加为 °)。

有两个角 的三角形是直角三角形。

第2课时 三角形的外角 1. 三角形外角的意义
三角形的一边与另一边的 组成的角叫做三角形的外角。

2. 三角形外角的性质
三角形的一个外角等于与它不相邻的 。

三角形的一个外角 (大于,小于,等于)与它不相邻的任何一个内角。

3. 五个基本图形
(1)∠1+∠2 ∠3+∠4 (2)∠BOC ∠A +∠B +∠C
八年级数学上册知识点总结
2
11.3 多边形及其内角和 第1课时 多边形 1. 多边形的概念
在平面中,由一些线段 组成的图形叫做多边形,多边形中 组成的角叫做它的内角。

多边形的边与它邻边的 组成的角叫做外角。

连接多边形 的两个顶点的线段叫做多边形的对角线。

一个n 边形从一个顶点出发的对角线的条数为 条,其所有的对角线条数为
.
2. 凸多边形
画出多边形的 所在的直线,如果多边形的其它边都在这条直线的 ,那么这个多边形就是凸多边形。

3. 正多边形
各角 ,各边 的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立) 要求会的题型:
①告诉多边形的边数,求多边形过一个顶点的对角线条数或求多边形全部对角线的条数
方法:一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为 . 将边数带入公式即可。

第2课时 多边形的内角和
1. n 边形的内角和定理:n 边形的内角和为:
2. n 边形的外角和定理:多边形的外角和等于 °,与多边形的形状和边数无关。

一、填空题.
1.三角形的三个外角中,钝角的个数最多有______个,锐角最多_____个.
2.造房子时屋顶常用三角结构,从数学角度来看,是应用了_______,而活动挂架则用了四边形的________.
3.用长度为8cm ,9cm ,10cm 的三条线段_______构成三角形.(•填“能”或“不能”) 4.要使五边形木架不变形,则至少要钉上_______根木条.
5.已知在△ABC 中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______. 6.如图1所示,AB ∥CD ,∠A=45°,∠C=29°,则∠E=______.
(1) (2) (3) 7.如图2所示,∠α=_______.
8.正十边形的内角和等于______,每个内角等于_______.
9.一个多边形的内角和是外角和的一半,则它的边数是_______.
10.把边长相同的正三角形和正方形组合镶嵌,若用2个正方形,则还需要____个正三角形才可以镶嵌.
11.等腰三角形的周长为20cm ,一边长为6cm ,则底边长为______.
12.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有_____•条对角线.
13.如图3所示,共有_____个三角形,其中以AB 为边的三角形有_____,以∠C•为一个内角的三角形有______.
14.如图4所示,∠A+∠B+∠C+∠D+∠E=________.
(4) (5) (6) 二、选择题。

15.下列说法错误的是( ).
A .锐角三角形的三条高线,三条中线,三条角平分线分别交于一点
B .钝角三角形有两条高线在三角形外部
C .直角三角形只有一条高线
D .任意三角形都有三条高线,三条中线,三条角平分线 16.在下列正多边形材料中,不能单独用来铺满地面的是( ). A .正三角形 B .正四边形 C .正五边形 D .正六边形
17.如图5所示,在△ABC 中,D 在AC 上,连结BD ,且∠ABC=∠C=∠1,∠A=∠3,则∠A 的度数
为( ).
A .30°
B .36°
C .45°
D .72°
18.D 是△ABC 内一点,那么,在下列结论中错误的是( ).
A .BD+CD>BC
B .∠BDC>∠A
C .BD>C
D D .AB+AC>BD+CD 19.正多边形的一个内角等于144°,则该多边形是正( )边形. A .8 B .9 C .10 D .11 20.如图6所示,BO ,CO 分别是∠ABC ,∠ACB 的两条角平分线,∠A=100°,则∠BOC 的度数为( ). A .80° B .90° C .120° D .140°
21.如果多边形的内角和是外角和的k 倍,那么这个多边形的边数是( ). A .k B .2k+1 C .2k+2 D .2k-2 22.如图所示,在长为5cm ,宽为3cm 的长方形内部有一平行四边形,则平行四边形的面积为( ).
A .7cm 2
B .8cm 2
C .9cm 2
D .10cm 2。

相关文档
最新文档