废橡胶可以回收吗

合集下载

促进废旧橡胶综合利用,发展橡胶工业

促进废旧橡胶综合利用,发展橡胶工业

组 织 预 测 ,到 2 2 0 0年 我 国橡 胶 消 费将 从 现 在 的 占 世 界 橡胶 消费 2 %,上 升 为 2 %,是现 在 的两倍 。 2 9 要 保 持 我 国橡 胶 工 业 持 续 发 展 ,橡 胶 资源 的 消耗 量 必 然增 加 。 但 如 果 不 从 根 本 上 改 变 传 统 的 发 展 模 式 .仍 大 量 消 耗 橡 胶 资 源 .发 展 将 难 以为 继 。 所 以 ,必 须 大 力 发 展 循 环 经 济 ,开 源 节 流 , 促 进橡 胶 资源 的高 效利 用 和循 环利 用 。 20 0 5年 我 国橡 胶工 业 总 产值 达 到 22 2亿 元 . 0 其 中再生橡胶 5 0亿 元 ,比上 年 增 长 14 :橡 胶 0% 工 业 销 售 收入 达 到 2 1 3亿 元 ,其 中再 生 橡 胶 4 1 5 亿 元 ,比上年 增长 7 %。 6
1 制 成再 生橡胶 和 胶粉 综合 循环 利 用 . 4
轮 胎 翻新 技 术 和 利 用 废 旧橡 胶 制 品生 产再 生
橡胶 和 胶粉技 术 成熟 .生产 的再 生胶 和胶 粉 可广 泛 应用 于橡 胶工业 生 产 中 ,可 减 少 新 橡 胶 用 量 ;轮 胎 翻 新 延 长 了轮 胎 使 用 寿 命 .减 少 了废 轮胎 的堆 放 对 环 境 的 污 染 ,达 到 “ 自然 资源一产 品— 废 旧品 再生 资 源利 用 ”的循 环 生产方 式 ( 图 1所示) 如 。 建 国 以来 .废 橡 胶 利 用 行 业 回收 利 用 废 橡 胶
1 废 旧轮胎 和橡胶 制品处理利用途径
1 作为垃圾填埋 . 1
过去的 1 0多 年 中 .废 旧轮 胎及 橡 胶 制 品 作 为
垃圾 填 埋 是 欧 美 发 达 国家 主 要 处 理 方 法 。 1 9 9 4年 用 于填 埋 的废 旧 轮 胎 占总 废 旧轮 胎 量 的 6 %。 由 2

国家对废旧塑料回收利用的优惠政策

国家对废旧塑料回收利用的优惠政策

国家对废旧塑料回收利用的优惠政策国家对废旧塑料回收利用的优惠政策(主要摘自《实用塑料加工技术》)对废旧塑料、废橡胶制品、废合成纤维等废弃物的回收利用,变废为宝,属污染治理、环境保护及资源回收利用生产项目,又是高科技开发推广项目,许多国家政府相继制订了一些有关政策法规,给予扶持、优惠。

我国政府对此也很重视,陆续制订颁发了一些鼓励、优惠、法规、政策。

1、第五届全国人民代表大会常务委员会第十一次会议于1979年9月13日原则通过的《中华人民共和国环境保护法(试用)》中即有有关表扬、奖励和减税等政策。

2、国务院批转原国家经委《关于开展资源综合利用若干问题的暂行规定》(国发[1985]117号)文中和原国家经委、财政部、商业部、原国家物资局颁发的《关于进一步开展利用再生资源若干问题的通知》(经综[1987]353号)文中,都颁发了对利用再生资源的鼓励和优惠政策。

3、国家计划委员会计资源[1989]12号文:《关于印发1989-2000年全国资源综合利用发展纲要的通知》中,要求对社会上废塑料、废橡胶等废弃的资源要大部分回收利用,发展其它经济效益好的项目,如……废塑料、废化纤的加工、再生。

4、中国1992年开始实行的《城市市容和环境卫生管理条例》中明确指出:对城市生活废弃物应当逐步做到分类收集、运输和处理。

5、财政部、国家税务总局颁发的财税字[1994]001号文《关于企业所得税若干优惠政策的通知(节选)》中有有关优惠政策。

6、按财政部、国家税务总局、中国人民银行[1994]财预字55号文的规定,废旧塑料回收利用,势在必行。

7、2000年5月,江苏省环保局、省经委、省建委等12个部门联合发布江苏白色污染防治工作;江苏省人民政府于2000年上半年颁发《江苏省白色污染防治监督管理办法》,年内,各市都要初步建立起废旧塑料回收和综合利用网络。

从6月份起,南京、无锡、苏州等城市先行开展废塑料分类回收的试点工作。

这些法规、政策中都有一些优惠扶持政策。

橡胶绿色交联策略研究进展--应对硫化污染问题及废橡胶的高值回收

橡胶绿色交联策略研究进展--应对硫化污染问题及废橡胶的高值回收

第37卷第1期高分子材料科学与工程V o l .37,N o .1 2021年1月P O L YM E R MA T E R I A L SS C I E N C E A N DE N G I N E E R I N GJ a n .2021橡胶绿色交联策略研究进展应对硫化污染问题及废橡胶的高值回收张刚刚1,冯皓然1,宋维晓1,郭宝春2,张立群1(1.北京化工大学有机无机复合材料国家重点实验室,北京100029;2.华南理工大学材料科学与工程学院广东广州510640)摘要:橡胶的交联(硫化)是其获得高弹性的前提,只有经过交联的橡胶才具有实用价值㊂但是,目前橡胶工业广泛使用的传统交联方法存在以下几个难以避免的固有问题:(1)硫化体系中会包含有毒的物质;(2)硫化加工过程会释放有毒且难闻的 硫化烟气 ;(3)废弃的橡胶制品回收再利用十分困难,带来严重的 黑色污染 ㊂为了彻底解决上述问题,提出一种橡胶材料 绿色交联 的概念以及设计策略具有重要意义㊂文中首先介绍了橡胶传统硫化方法存在的问题,重点综述了橡胶新型绿色交联策略的研究进展,主要包括以环氧化或羧基化橡胶中的环氧基团或羧基作为交联点,选择生物基二羧酸或环氧大豆油作为绿色交联剂替代硫磺,制备 酯基 交联结构的设计思路㊂最后,对橡胶绿色交联策略面临的挑战和发展方向进行了展望㊂关键词:绿色交联;生物基交联剂;可回收;橡胶改性中图分类号:T Q 333 文献标识码:A 文章编号:1000-7555(2021)01-0267-10d o i :10.16865/j.c n k i .1000-7555.2021.0012收稿日期:2020-11-17基金项目:国家自然科学基金委重大项目(51790501,51825303);国家重点研发计划(51988102)通讯联系人:张立群,主要从事橡胶材料科学与工程研究,E -m a i l :z h a n g l q@m a i l .b u c t .e d u .c n ;郭宝春,主要从事橡胶材料的基础与应用研究,E -m a i l :p s b c gu o @s c u t .e d u .c n 1 橡胶传统硫化方法存在的问题橡胶材料由于其独特的高弹性,被广泛应用于轮胎㊁减震支座㊁输送带和航空航天等领域,是一种重要的战略资源㊂橡胶材料获得高弹性的重要前提是橡胶的交联(也被称为硫化),也就是说,橡胶材料必须通过交联将线型链状结构转变为三维网络状结构,才可能使其转变成有使用价值的橡胶制品㊂但是,目前橡胶工业广泛使用的交联方法(主要为硫磺交联和过氧化物交联)存在以下几个难以避免的固有问题:(1)交联体系中会不可避免地使用有毒的物质;(2)交联反应过程会释放有毒且难闻的 硫化烟气㊂一方面,这会对人的健康造成极大的危害,此外,残留在橡胶制品上的难闻气味还会影响用户的使用体验;(3)废弃的橡胶制品回收利用十分困难,带来严重的黑色污染㊂F i g .1 S c h e m a t i c s h o w i n g t h e c u r r e n t s u l f u r c r o s s -l i n k i n g s t r a t e g y w h i c ha r e s u f f e r i n g f r o ms e v e r a l pe r s i s t e n t i s s u e s1.1硫化剂对于硫磺硫化体系而言,其中的促进剂和活化剂是必不可少的㊂它们的主要作用有:降低硫磺用量,加快硫化速率,降低硫化温度,同时可以提高硫化程度及改善橡胶制品的物理力学性能等㊂橡胶硫化促进剂按化学结构分,主要有次磺酰胺类㊁噻唑类㊁胍类㊁秋兰姆类㊁硫脲类和二硫代氨基甲酸盐类等[1]㊂目前,综合性能最好且使用最广泛的促进剂为次磺酰胺类㊂但是,促进剂的合成过程往往会伴随非常严重的污染㊂促进剂M是噻唑类促进剂的重要品种,也是生产下游苯并噻唑类和次磺酰胺类促进剂的原料(比如促进剂D M和促进剂C Z㊁促进剂N S等)㊂然而,促进剂M合成过程时间长㊁生产效率低㊁能耗高, 三废 污染严重,且难治理[2,3]㊂另外,在硫化反应过程中,一些常用的促进剂会产生致癌物 N-亚硝胺㊂例如,含仲胺结构的次磺酰胺类促进剂首先会产生仲胺,进而与氮氧化物(N O x)反应,生成稳定的致癌物 N-亚硝胺[4]㊂除此之外,一些促进剂本身有毒且容易分解,例如,促进剂D P G会在170ħ开始分解;促进剂C Z会使人的皮肤产生过敏反应㊂氧化锌(Z n O)作为硫化活化剂,可以催化硫化反应,提高硫化胶的交联密度,改善硫化胶的耐老化性能等[5,6]㊂因此,Z n O在硫磺硫化体系中有着举足轻重的地位㊂但是,Z n O会对水生生物产生极强的毒性[7,8]㊂一些研究人员指出,轮胎磨损颗粒和Z n O生产企业可能是锌污染的主要来源[9~11]㊂早在2004年,欧盟2004/73/E C法规就开始限制Z n O在橡胶制品(尤其是轮胎)中的应用㊂此外,在2016年初,美国加州提出一项类似的法案(S B1260),限制Z n O的使用㊂1.2硫化烟气硫磺硫化是一个非常复杂的反应过程㊂因此,在橡胶材料的硫化工序中会产生大量的 硫化烟气 粉尘和有毒且难闻的挥发性有机物(V O C s)㊂硫化烟气的成分十分复杂,其中的污染因子主要是胺类化合物㊁二硫化碳(C S2)㊁羰基硫化物等[12]㊂例如,一些含氮促进剂(如促进剂C Z)在硫化反应过程会释放胺类化合物;硫磺在高温下会产生大量的含硫化合物㊂因此,硫磺等用量越多,硫化温度越高,硫化反应越容易产生大量的硫化烟气㊂此外,这些硫化过程产生的含硫化合物和胺类化合物等大多具有刺激性的恶臭,气味阈值很低,也就是说,空气中有极少量的这些物质就会令人恶心㊁呕吐㊂最重要的是,硫化烟气是诱发职业性肿瘤的罪魁祸首[13]㊂这些难闻且有毒V O C s会一直伴随着橡胶制品,是橡胶制品难闻气味的主要来源㊂尤其是橡胶制品(如汽车密封条)在密闭的环境中使用时,不仅会对用户的健康产生极大的危害,而且还会使其产生强烈不适感[14]㊂除了硫磺硫化体系,过氧化物硫化体系也会产生大量有毒且难闻的V O C s,比如,常用的过氧化二异丙苯(D C P)硫化反应过程中会产生有毒且难闻的分解产物 苯乙酮[15]㊂1.3 黑色污染橡胶材料广泛使用的硫化方法为硫磺硫化或过氧化物硫化,硫化最终形成的交联键(主要为C-S, C-C键等)是典型的不可逆共价键㊂橡胶交联后,就会变得 不溶不熔 ,不能再次重复加工使用㊂同时,废橡胶制品的回收利用非常困难,造成严重的 黑色污染 [16~18]㊂目前,全球每年废橡胶的产生量约为3ˑ107t,其中大部分被焚烧回收热能或经粉碎制成胶粉㊂还有一部分废橡胶可以被用于制备再生胶,即通过打开废橡胶交联键中的C-S-C,C-S-S-C 或C-S x-C键,破坏其中的网络结构,得到再生胶[17]㊂但是传统的脱硫技术打开交联键不具选择性,同时也会造成橡胶分子链被破坏,从而导致再生胶性能较差;另外脱硫工艺还存在能耗大和污染严重等问题[19,20]㊂2橡胶材料新型绿色交联体系的设计针对橡胶传统硫化方法存在的上述问题,北京化工大学张立群教授在国际上提出了橡胶材料 绿色交联 的概念以及设计策略[21]㊂在进行新型绿色交联体系的设计时,该研究团队将交联反应落脚于环氧基团与羧基之间的反应,主要原因可以归结于以下几个方面:(1)环氧与羧基之间有着比较合适的反应活性,非常适合于橡胶的硫化加工过程,从而可以得到一种兼顾焦烧安全性和交联效率的交联体系;(2)环氧化和羧基化橡胶比较容易实现工业化制备,并且已经有商品化的产品,如环氧化天然橡胶(E N R)和羧基化丁腈橡胶(X N B R);(c)基于环氧基团与羧基之间的反应,可以构建一个 酯基 交联网络结构㊂在酸或碱的催化下,交联结构中的 酯基 被选择性地断开,从而得到一种温和且高效的橡胶回收再利用的方法(F i g.2)㊂因此,该新型绿色交联策略可以使橡胶材料实现绿色且高效的交联,还能有利于废橡胶高效回收再利用㊂862高分子材料科学与工程2021年F i g .2G r e e n c u r i n g s t r a t e g y f o r d i e n e r u b b e r b a s e d o n e s t e r l i n k a ge 2.1 生物基二羧酸绿色交联环氧化橡胶大多数二烯烃橡胶的官能化改性都是建立在改变不饱和双键的思路之上,以双键作为反应位点,对其进行氢化㊁环氧化和羧基化等[22]㊂其中,环氧化改性是橡胶改性中最简单㊁易操作的方法,几乎适用于所有的二烯烃橡胶,因此具有非常好的应用前景[23]㊂目前,已经报道的比较常见的环氧化橡胶有E N R [24,25]㊁环氧化丁苯橡胶[26]等㊂因此,可以以环氧化橡胶中的环氧基团作为交联点,选择生物基㊁绿色无毒的二羧酸作为交联剂替代硫磺或过氧化物;基于环氧基团与羧基之间的反应,构建含 酯基 的交联网络结构㊂早在2010年,P i r e 等[27,28]选择十二烷二酸(D A )作为E N R 的交联剂,基于E N R 中环氧基团与D A 中羧基之间的反应,成功地实现了E N R 的交联㊂但是,由于E N R 中的环氧基团活性较低,导致交联效率较低,硫化反应时间过长;此外,最终形成的交联结构含有大量的悬挂链,即D A 上只有1个羧基反应,未能形成有效的交联㊂因此,在随后的研究中,该研究团队发现以1,2-二甲基咪唑(D M I)作为催化剂,能够有效地提高D A 对E N R 的交联效率,其中催化机理是羧基与D M I 形成羧基咪唑金翁盐,然后再进攻环氧基团进行开环反应(F i g.3)[29,30]㊂但是,D M I 往往会伴随着难闻的气味㊂此外,这一系列工作并未对二羧酸交联环氧化橡胶的可回收性能进行研究㊂F i g .3 (a )C r o s s -l i n k i n g o fE N Rb y d o d e c a n e d i o i c a c i d (D A ),(b )g r a f tD A :d i f f e r e n t s e c o n d a r yi n t e r a c t i o n s i n d u c e db y f r e e c a r b o x y l i c g r o u ps F i g .4 I m i d a z o l i u md i c a r b o x y l a t e p r o p o s e da s q u a n t i t a t i v e i n t e r m e d i a t e i n t h e a c c e l e r a t i o nm e c h a n i s mo f c r o s s -l i n k i n gG u o 等[31]通过巯基-烯点击化学的方法,在溶聚丁苯橡胶(S S B R )分子链上引入羟基作为交联点;然后利用氧杂-迈克尔反应,羟基官能化的S S B R 可被多种丙烯酸酯快速交联㊂硫化胶的力学性能和交联962 第1期张刚刚等:橡胶绿色交联策略研究进展应对硫化污染问题及废橡胶的高值回收密度等可以通过改变硫化温度㊁羟基官能化S S B R中羟基含量㊁交联剂丙烯酸酯的官能度或用量等来调节(F i g.5)㊂但是,通过巯基-烯点击化学制备的羟基官能化S S B R中会残存有未反应的巯基乙醇;在硫化过程中,它容易造成橡胶的焦烧(早期交联)㊂此外,该工作也没有关注新型交联橡胶的可回收再利用性能㊂F i g.5(a)M o l e c u l a r s t r u c t u r e s o f c r o s s l i n k e r sw i t hd i f f e r e n t f u n c t i o n a l i t i e s,(b)t h i o l-e n e a d d i t i o nb e t w e e nM Ea n dS S B R[31]近期,张立群教授团队设计合成了一种高活性的环氧化丁苯橡胶,即在乳聚丁苯橡胶(E S B R)的聚合体系中,引入含有环氧基团的第3单体 甲基丙烯酸缩水甘油酯(GMA),成功制备了一系列不同环氧化程度的环氧化乳聚丁苯橡胶(E S B R-GMA)㊂然后,基于E S B R-GMA中环氧基团与二羧酸中羧基之间的反应,构建了 酯基 交联网络结构㊂笔者系统研究了生物基二羧酸的种类和用量以及环氧化橡胶的环氧化程度对E S B R-GMA交联性能的影响(F i g.6)㊂最终,得到了一种简单㊁无催化且高效的绿色交联方法[32]㊂F i g.6(a)P r e p a r a t i o no fE S B R-G M Av i a e m u l s i o n p o l y m e r i z a t i o na n d(b)p r o p o s e d c r o s s-l i n k e ds t r u c t u r e o fE S B R-G M Ac u r e d t h r o u g h e p o x y-a c i d r e a c t i o n s[32]首先,选用不同链长的饱和二羧酸作为交联剂㊂由于饱和二羧酸的p K a值会随链长增加而增加,因此丁二酸(S A)的酸性最大,D A的酸性最小㊂随着二羧酸酸性的提高,E S B R-GMA/C B橡胶复合材料的交联速率㊁交联密度和力学性能等都呈现显著地增加㊂因此,生物基S A表现出最佳的综合性能㊂此072高分子材料科学与工程2021年外,通过研究S A 用量的影响发现,随着S A 用量的增加,样品的交联密度和定伸应力等显著增大,同时交联速率和拉伸强度变化不大(F i g.7)㊂因此,E S -B R -GMA 的力学性能可以通过简单地控制二羧酸的用量等来调节㊂在未加入其它任何助剂的情况下,1ph r S A 就可以使E S B R -GMA /C B 橡胶复合材料获得优异的交联性能和力学性能㊂众所周知,橡胶中的交联点数目也是影响其交联性能的重要因素之一㊂因此,在E S B R -GMA 聚合中,通过调节环氧单体GMA 的比例,从而获得一系列不同GMA 含量的E S B R -GMA ㊂然后,研究E S B R -GMA 的环氧化程度对E S B R -GMA 交联性能的影响㊂结果发现,随着E S B R -GMA 分子链中环氧基团含量增加,样品的交联速率㊁交联密度和定伸应力等显著增大㊂F i g .7 (a )C u r i n g c u r v e s (t =180ħ),(b )t y p i c a l s t r e s s -s t r a i n c u r v e s ,(c )c r o s s -l i n k i n g d e n s i t y,a n d (d )t a n δo f E S B R -G M A /C Bc o m po s i t e sw i t hd i f f e r e n t S Ac o n t e n t s [32] 由于环氧基团与羧酸的反应,在橡胶的交联网络结构中引入了可水解的 酯基 ㊂在强酸或者强碱的催化下,可选择性地将 酯基 水解,从而可以使交联网络中的交联键断开,得到线型回收橡胶㊂如F i g.8所示,二羧酸交联的E S B R -GMA 的交联结构中主要有2种酯基:(1)环氧基团与羧酸交联反应产生的酯基;(2)GMA 单体单元中的酯基㊂在酸或碱的催化下,酯基可以被水解断开,最终可以得到线型羧基化丁苯橡胶㊂这为解决废橡胶带来的 黑色污染 问题提供了新思路㊂综上所述,绿色交联S B R 有望应用在大宗的轮胎制品和橡胶输送带上,帮助轮胎企业降低V O C s 排放,以及降低轮胎产品的气味㊂ F i g .8 S c h e m a t i c i l l u s t r a t i o no f t h e r u b b e r -r e c y c l i n gpr o c e s s o f S A -c u r e dE S B R -G M A [32]172 第1期张刚刚等:橡胶绿色交联策略研究进展应对硫化污染问题及废橡胶的高值回收三元乙丙橡胶(E P D M )具有耐热性能㊁耐老化性能㊁抗冲击性能和低温性能良好等优点,E P D M 最重要的应用领域之一是汽车密封条㊂但是,采用硫磺硫化或过氧化物硫化的E P D M 密封条,会散发出有毒且难闻的V O C s,从而对人的身体健康产生危害㊂近期,张立群教授团队提出对E P D M 进行环氧化改性,然后开发一种新型的绿色交联体系的设计思路[33]㊂首先,通过绿色高效的原位环氧化改性法,成功地制备了环氧化三元乙丙橡胶(e -E P D M )㊂然后,采用生物基D A 作为交联剂,基于e -E P D M 中的环氧基团与生物基D A 中的羧基之间的反应,构建了含β-羟基酯键的共价交联网络结构(F i g .9)㊂该交联体系避免了使用有毒的化学物质,大大降低了硫化过程有毒且难闻V O C s 的释放㊂此外,D A 交联的e -E P -D M /C B 橡胶复合材料具有优异的力学性能,拉伸强度可以达到20M P a 以上㊂从F i g .10可以看到,D A 交联的e -E P D M /C B 橡胶复合材料的拉伸强度与硫磺硫化样品的拉伸强度相近,比D C P 硫化样品的拉伸强度要高得多㊂这个现象的原因可以归结于D A 交联体系的交联网络结构要比D C P 硫化体系的交联网络更均匀㊂综上所述,绿色交联E P D M 有望应用在汽车密封条上,从而推动密封条向 绿色无毒㊁低气味 方向发展㊂F i g .9 (a )P r e p a r a t i o n o f e p o x y g r o u p -f u n c t i o n a l i z e dE P D Mb y i n s i t u e p o x i d a t i o n r e a c t i o n ,(b )t h e c r o s s -l i n k i n gs t r u c t u r e o f e -E P D Mc u r e db y e p o x y-a c i d r e a c t i o n s [33]F i g .10 T y p i c a ls t r e s s -s t r a i nc u r v e so fe -E P D M /C B c o m po s i t e s b a s e d o nd i f f e r e n t c u r i n g s ys t e m s [33]2.2 生物基环氧大豆油绿色交联羧基化橡胶近期,张立群教授团队提出了第2种绿色交联策略,即以羧基化橡胶中的羧基基团作为交联点,以生物基的环氧分子作为交联剂[34]㊂羧基化橡胶在生活中也比较常见㊂目前,已经有商品化的羧基化橡胶,比如羧基丁腈橡胶(X N B R )㊁羧基丁苯橡胶(X S B R )等㊂此外,最重要的是,将交联结构中的酯基水解后,可以重新得到羧基化橡胶,实现羧基化橡胶的 闭环回收㊂该团队以价格低廉的生物基环氧大豆油(E S O )作为商品化X N B R 的绿色交联剂,使X N B R 实现简单㊁有效且绿色的交联㊂基于羧基与环氧基团之间的反应,构建 酯基 交联网络结构㊂该绿色交联方法不使用任何有毒的化学物质,有效降低了硫化过程有毒且难闻V O C s 的释放㊂此外,在发生交联反应前,油状的生物基E S O 还可以大幅度降低X N B R 的门尼黏度,起到增塑作用,有着 一剂多用 的效果(F i g .11)㊂通过调整E S O 的用量,可以实现对X N B R 的交联速率㊁交联密度和力学性能等的调控;E S O 交联的X N B R /C B 橡胶复合材料的力学性能可以在较大的范围内进行调节,尤其是300%定伸应力可以在2.4M P a 到14.1M P a 的范围内调节(F i g.12)㊂这说明该绿色交联体系的力学性能具有优异的可调性,表现出良好的应用前景㊂272高分子材料科学与工程2021年F i g .11 D e s i g n o f n e x t g e n e r a t i o n c r o s s -l i n k i n g s t r a t e g y b a s e do nE S Of o rX N B Rv i a e p o x y-a c i d r e a c t i o n [34]F i g .12 (a )F T -I Rs p e c t r ao fX N B R ,E S O ,X N B R /E S Oc o m p o u n da n d E S O -c u r e d X N B Rc o m p o s i t e ,(b )c u r i n g cu r v e so fX N B R /C B c o m p o u n dw i t hd i f f e r e n t c o n t e n t s o fE S O (t =180ħ),(c )t y p i c a l s t r e s s -s t r a i nc u r v e s a n d (d )c r o s s -l i n k i n g d e n s i t y ofX N B R /C B c o m po s i t e sw i t hd i f f e r e n t c o n t e n t s o fE S O [34]此外,在交联体系中加入少量的Z n O 作为交联反应的催化剂,可以显著地促进环氧-羧基交联反应的进行,加快交联速率和提高交联程度㊂同时,锌离子与羧基形成的离子对或者离子簇可作为增强点,从而可以提高X N B R 的力学性能㊂特别地,当加入2p h r Z n O 时,X N B R /C B 橡胶复合材料的拉伸强度和300%定伸应力分别增加了26.7%和71.1%(F i g.13)㊂T a b .1 M o l e c u l a rw e i g h t o f t h e o r i gi n a l X N B R a n d r e c yc l e dX N B R [33]S a m p l e M n ˑ10-4M w ˑ10-4P D IX N B R9.826.82.72R e c yc l e dX N B R 9.128.93.16在硫酸的催化下,交联结构中的 酯基 被水解成羟基和羧基,重新得到了线型X N B R (F i g.14)㊂372 第1期张刚刚等:橡胶绿色交联策略研究进展应对硫化污染问题及废橡胶的高值回收回收后橡胶的相对分子质量与原始的X N B R 相对分子质量非常接近(T a b .1)㊂从F i g.15中可以发现,再加工后样品的强度得到了很好的恢复㊂再加工后样品的拉伸强度㊁定伸应力和断裂伸长率等都能够恢复到接近初始样品的水平㊂因此,利用该方法,X N -B R 可以被多次循环使用,得到一种高效的 闭环回收 方法㊂综上所述,绿色交联X N B R 有望应用在印刷胶辊以及橡胶手套上,帮助企业降低成本㊂F i g .13 (a )C u r i n g c u r v e s ,(b )t y p i c a l s t r e s s -s t r a i n c u r v e s o fE S O -c u r e dX N B R /C Bc o m po s i t e sw i t hd i f f e r e n t c o n t e n t s o fZ n Ow h i l e t h e c o n t e n t o fE S Ow a s s e t a s 12.0p h r[34]F i g .14 C h e m i c a l r e c y c l i n gpr o c e s s e s o fE S O -c u r e dX N B R (a )o r i g i n a l ,(b )p o s t -s w e l l i n g ,(c )p o s t -r e c y c l i n g r e a c t i o n ,a n d (d )p o s t -c o a g u l a t i n g o f t h eE S Oc u r e dX N B Rs a m pl e [34]F i g .15 (a )F T -I Rs p e c t r a o f t h e o r i g i n a l X N B Ra n d r e c y c l e dX N B R ,(b )t y pi c a l s t r e s s -s t r a i n c u r v e s o f t h e o r i g i n a l a n d r e c y c l e dX N B R /C Bc o m po s i t ew i t h12.0p h rE S O [34]3 展望目前,新型绿色交联橡胶材料的设计㊁制备和性能研究取得了一定的进展,展现出实际应用的潜力㊂但同时也存在许多难题和挑战:(1)与传统硫化体系相比,新型绿色交联体系的硫化温度更高,硫化速率较低;(2)由于交联体系比较简单,新型绿色交联体系的硫化动力学控制,不如硫磺硫化体系灵活;(3)由于交联结构中 酯基 是相对较弱的化学键, 酯基 可能易被破坏,从而可能造成交联橡胶较差的耐老化及耐候性㊂因此,在今后的研究中,如何通过交联体系的设计,实现高硫化速率与焦烧安全性的兼顾,将会是一个重要的研究方向㊂此外,汽车轮胎是橡胶材472高分子材料科学与工程2021年料消耗量最大的橡胶制品;因此,将这种绿色交联方法应用到轮胎制品中,具有重要的科学意义和应用前景㊂参考文献:[1]杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005.[2]肖军.我国橡胶助剂三废治理述评[J].化学工业,2011,29(6):38-41.X i a o J.R u b b e r a d d i t i v e s t h r e ew a s t e s t r e a t m e n t i nC h i n a[J].C h e m i c a l I n d u s t r y,2011,29(6):38-41.[3]唐志民,夏海洋,李世伍.橡胶防老剂中间体4-A D P A与促进剂M绿色生产工艺[J].上海化工,2013,38(2):28-32.T a n g Z M,X i a H Y,L iS W.G r e e n p r o d u c t i o n p r o c e s s e so f r u b b e r a n t i o x i d a n t i n t e r m e d i a t e4-A D P Aa n da c c e l e r a n t M[J].S h a n g h a i C h e m i c a l I n d u s t r y,2013,38(2):28-32. [4]张刚刚,梁宽,史金炜,等.橡胶制品生产过程低V O C s技术进展:从材料到工艺[J].高分子通报,2019(2):81-89.Z h a n g GG,L i a n g K,S h i JW,e t a l.R e c e n t a d v a n c e i n r e d u c i n g V O C s e m i s s i o n i nr u b b e r p r o d u c t sm a n u f a c t u r i n g i n d u s t r y[J].P o l y m e rB u l l e t i n,2019(2):81-89.[5] H e i d e m a nG,D a t t aRN,N o o r d e r m e e r JW M,e t a l.A c t i v a t o r s i na c c e l e r a t e d s u l f u r v u l c a n i z a t i o n[J].R ub b e r C h e m i s t r y a n dT e c h n o l o g y,2004,77:512-541.[6] K o o d z i e j c z a k-R a d z i m s k aA,J e s i o n o w s k iT.Z i n c o x i d e-f r o ms y n t h e s i s t o a p p l i c a t i o n:a r e v i e w[J].M a t e r i a l s,2014,7:2833-2881.[7] A d a m sL K,L y o nD Y,A l v a r e zPJ.C o m p a r a t i v ee c o-t o x i c i t yo f n a n o s c a l eT i O2,S i O2,a n dZ n Ow a t e r s u s p e n s i o n s[J].W a t e r R e s e a r c h,2006,40:3527-3532.[8] F r a n k l i nN M,R o g e r sNJ,A p t e SC,e t a l.C o m p a r a t i v e t o x i c i t y o fn a n o p a r t i c u l a t e Z n O,b u l k Z n O,a n d Z n C l2t o a f r e s h w a t e r m i c r o a l g a:t h e i m p o r t a n c eo f p a r t i c l es o l u b i l i t y[J].E n v i r o n m e n t a l S c i e n c e&T e c h n o l o g y,2007,41:8484-8490.[9] C o u n c e l lTB,D u c k e n f i e l dK U,L a n d aER,e t a l.T i r e-w e a rp a r t i c l e s a s a s o u r c e o f z i n c t o t h e e n v i r o n m e n t[J].E n v i r o n m e n t a l S c i e n c e&T e c h n o l o g y,2004,38:4206-4214.[10] R h o d e sEP,R e nZ,M a y sDC.Z i n c l e a c h i n g f r o mt i r e c r u m br u b b e r[J].E n v i r o n m e n t a lS c i e n c e&T e c h n o l o g y,2012,46: 12856-12863.[11]S m o l d e r sE,D e g r y s eF.F a t e a n d e f f e c t o f z i n c f r o mt i r e d e b r i si ns o i l[J].E n v i r o n m e n t a lS c i e n c e&T e c h n o l o g y,2002,36:3706-3710.[12]丁学锋,张慧君,曹睿.浅议轮胎企业有机废气排放因子[J].环境科学导刊,2013,32(5):14-16.D i n g X F,Z h a n g H J,C a o R.D i s c u s s i o n o nt h ee m i s s i o nf a c t o r so ft h e o rg a n i c e xh a u s t g a s o fti r e e n t e r p r i s e s[J].E n v i r o n m e n t a l S c i e n c eS u r v e y,2013,32(5):14-16.[13]黄荣征.硫化烟气危害与治理的研究进展[J].中国职业医学,1995(4):46-47.H u a n g RZ.R e s e a r c h p r o g r e s so nt h eh a r m a n dt r e a t m e n to fs u l f i d e f l u e g a s[J].C h i n a O c c u p a t i o n a l M e d i c i n e,1995(4):46-47.[14] C h e n g H,H uY,R e i n h a r d M.E n v i r o n m e n t a l a n dh e a l t h i m p a c t so f a r t i f i c i a l t u r f:a r e v i e w[J].E n v i r o n m e n t a l S c i e n c e&T e c h n o l o g y,2014,48:2114-2129.[15] N a s k a rK.T h e r m o p l a s t i c e l a s t o m e r s b a s e d o nP P/E P D Mb l e n d s b yd y n a m i cv u l c a n i z a t i o n[J].R u b be r C h e m i s t r y a n d T e c h n o l o g y,2007,80:504-519.[16]I m b e r n o nL,N o r v e zS.F r o ml a n d f i l l i n g t ov i t r i m e r c h e m i s t r y i nr u b b e r l i f ec y c l e[J].E u r o p e a nP o l y m e r J o u r n a l,2016,82:347-376.[17] T a n g Z H,L i uYJ,H u a n g Q Y,e t a l.Ar e a l r e c y c l i n g l o o p o fs u l f u r-c u r e d r u b b e r t h r o u g h t r a n s a l k y l a t i o ne x c h a n g e o fC-Sb o n d s[J].G r e e nC h e m i s t r y,2018,20:5454-5458.[18] K o j i m aM,T o s a k a M,I k e d aY.C h e m i c a l r e c y c l i n g o f s u l f u r-c u r e dn a t u r a l r u b b e r u s i n g s u p e r c r i t i c a l c a r b o n d i o x i d e[J].G r e e nC h e m i s t r y,2004,6:84-89.[19]S h i JW,J i a n g K,R e nD Y,e t a l.S t r u c t u r e a n d p e r f o r m a n c e o fr e c l a i m e dr u b b e ro b t a i n e d b y d i f f e r e n t m e t h o d s[J].J o u r n a lo fA p p l i e dP o l y m e r S c i e n c e,2013,129:999-1007.[20]S h iJ,Z o u H,D i n g L,e ta l.C o n t i n u o u s p r o d u c t i o no f l i q u i dr e c l a i m e dr u b b e rf r o m g r o u n dt i r er u b b e ra n di t sa p p l i c a t i o na sr e a c t i v e p o l y m e r i c p l a s t i c i z e r[J].P o l y m e r D e g r a d a t i o n a n dS t a b i l i t y,2014,99:166-175.[21]Z h a n g G G,Z h o uX X,Z h a n g L Q.C u r r e n t i s s u e s f o rr u b b e rc r o s s l i n k i n g a nd i t s f u t u re t r e n d sofg r e e nch e mi s t r y s t r a t e g y[J].E x p r e s s P o l y m e rL e t t e r s,2019,13:406-406.[22]储俊峰,于丽,刘超豪,等.橡胶环氧化改性的研究进展[J].化工新型材料,2016,44(10):28-29.C h u JF,Y u L,L i u C H,e ta l.R e s e a r c h p r o g r e s so fr u b b e re p o x i d a t i o nm o d if i c a t i o n[J].N e w C h e m i c a l M a t e r i a l s,2016,44(10):28-29.[23]M e n g Y,C h uJF,X u e J J,e t a l.D e s i g na n ds y n t h e s i so fn o n-c r y s t a l l i z a b l e,l o w-T g p o l y s i l o x a n e e l a s t o m e r s w i t h f u n c t i o n a le p o x y g r o u p st h r o u g h a n i o n i cc o p o l y m e r i z a t i o n a n d s u b s e q u e n te p o x i d a t i o n[J].R S CA d v a n c e s,2014,4:31249-31260.[24]何灿忠,彭政,钟杰平,等.环氧化天然橡胶的研究进展[J].高分子通报,2012(2):86-95.H eCZ,P e n g Z,Z h o n g J P,e t a l.R e s e a r c h p r o g r e s s o n e p o x i d i z e dn a t u r a l r u b b e r[J].P o l y m e r B u l l e t i n,2012(2):86-95. [25] Z h a n g X,N i u K,S o n g W,e ta l.T h ee f f e c to fe p o x i d a t i o no ns t r a i n-i n d u c e d c r y s t a l l i z a t i o n o f e p o x i d i z e d n a t u r a lr u b b e r[J].M a c r o m o l e c u l a rR a p i dC o m m u n i c a t i o n s,2019,40:1900042.[26] Q i a oH,C h a oM Y,H u i D,e t a l.E n h a n c e d i n t e r f a c i a li n t e r a c t i o n a n d e x c e l l e n t p e r f o r m a n c e o f s i l i c a/e p o x y g r o u p-f u n c t i o n a l i z e d s t y r e n e-b u t a d i e n e r u b b e r(S B R)n a n o c o m p o s i t e sw i t h o u t a n y c o u p l i n g a g e n t[J].C o m p o s i t e sP a r tB:E n g i n e e r i n g, 2017,114:356-364.[27] P i r eM,N o r v e zS,I l i o p o u l o s I,e t a l.E p o x i d i z e dn a t u r a l r u b b e r/d i c a r b o x y l i ca c i dse l f-v u l c a n i z e db l e n d s[J].P o l y m e r,2010,51:5903-5909.[28] P i r e M,O i k o n o m o u E K,I m b e r n o n L,e ta l.C r o s s l i n k i n g o f572第1期张刚刚等:橡胶绿色交联策略研究进展 应对硫化污染问题及废橡胶的高值回收e p o x i d i z e dn a t u r a l r u b b e rb y d i c a r b o x y l i ca c i d s:a na l t e r n a t i v e t os t a n d a r d v u l c a n i z a t i o n[J].M a c r o m o l e c u l a r S y m p o s i a,2013,331:89-96.[29]P i r eM,L o r t h i o i rC,O i k o n o m o uEK,e t a l.I m i d a z o l e-a c c e l e r a t e d c r o s s l i n k i n g o f e p o x i d i z e dn a t u r a l r ub b e r b y d ic a r b o x y l i ca c i d s:a m e c h a n i s t i ci n v e s t i g a t i o n u s i n g N M R s p e c t r o s c o p y[J].P o l y m e rC h e m i s t r y,2012,3:946-953.[30]P i r eM,N o r v e z S,I l i o p o u l o s I,e t a l.I m i d a z o l e-p r o m o t e da c c e l e r a t i o n o f c r o s s l i n k i n g i n e p o x i d i z e d n a t u r a l r ub b e r/d ic a r b o x y l i ca c i db l e n d s[J].P o l y m e r,2011,52:5243-5249.[31]Z h a n g X,T a n g Z,G u oB.R e g u l a t i o n o fm e c h a n i c a l p r o p e r t i e s o fd ie n er u b b e r c u r e d b y o x a-M i c h a e l R e a c t i o n v i a m a n i p u l a t i n gn e t w o r k s t r u c t u r e[J].P o l y m e r,2018,144:57-64.[32]Z h a n g G,L i a n g K,F e n g H,e t a l.D e s i g n o f e p o x y-f u n c t i o n a l i z e d s t y r e n e-b u t a d i e n e r u b b e rw i t hb i o-b a s e dd i c a r b o x y l i ca c i d a s a c r o s s-l i n k e r t o w a r d t h e g r e e n-c u r i n g p r o c e s s a n dr e c y c l a b i l i t y[J].I n d u s t r i a l&E n g i n e e r i n g C h e m i s t r y R e s e a r c h, 2020,59:10447-10456.[33]Z h a n g G,Z h o uX,L i a n g K,e t a l.M e c h a n i c a l l y r o b u s t a n dr e c y c l a b l e E P D M r u b b e r c o m p o s i t e s b y a g r e e n c r o s s-l i n k i n g s t r a t e g y[J].A C SS u s t a i n a b l eC h e m i s t r y&E n g i n e e r i n g,2019,7: 11712-11720.[34]Z h a n g G,F e n g H,L i a n g K,e t a l.D e s i g n o f n e x t-g e n e r a t i o n c r o s s-l i n k i n g s t r u c t u r ef o re l a s t o m e r st o w a r d g r e e n p r o c e s sa n dar e a l r e c y c l i n g l o o p[J].S c i e n c eB u l l e t i n,2020,65:889-898.P r o g r e s s o nG r e e nC r o s s-L i n k i n g S t r a t e g i e s o fR u b b e r:C o p i n g w i t hV u l c a n i z a t i o nP o l l u t i o n a n dH i g h-V a l u eR e c o v e r y o fW a s t eR u b b e rG a n g g a n g Z h a n g1,H a o r a nF e n g1,W e i x i a oS o n g1,B a o c h u nG u o2,L i q u nZ h a n g1(1.S t a t eK e y L a b o r a t o r y o f O r g a n i c-I n o r g a n i cC o m p o s i t e s,B e i j i n g U n i v e r s i t y o fC h e m i c a lT e c h n o l o g y,B e i j i n g100029,C h i n a;2.D e p a r t m e n t o f P o l y m e rM a t e r i a l s a n dE n g i n e e r i n g,S o u t hC h i n aU n i v e r s i t y o f T e c h n o l o g y,G u a n g z h o u510640,C h i n a)A B S T R A C T:T h ec o v a l e n tc r o s s-l i n k i n g o fe l a s t o m e r si st h e m o s ti m p o r t a n ts t e p f o ra c h i e v i n g h i g he l a s t i c i t y.H o w e v e r,t h e r eh a v eb e e ns e v e r a l i n h e r e n t i s s u e s c a u s e db y t r a d i t i o n a l c r o s s-l i n k i n g m e t h o d s.F i r s t,s o m e c u r i n g a d d i t i v e s h a v e c a u s e d g r e a t t r o u b l e f o r t h e e n v i r o n m e n t.S e c o n d,s o m e c u r i n g a d d i t i v e s t e n d t o r e l e a s e t o x i c v o l a t i l e o r g a n i c c o m p o u n d s(V O C s)a c c o m p a n i e db y u n p l e a s a n t s m e l l d u r i n g s u l f u rv u l c a n i z a t i o n p r o c e s s e s.F u r t h e r m o r e, t h e c o v a l e n t l y c r o s s-l i n k e de l a s t o m e r sa r e i n h e r e n t l y d i f f i c u l t t ob er e c y c l e da n dr e p r o c e s s e d,r e s u l t i n g i ns e r i o u s e n v i r o n m e n t a l p r o b l e m s a n d r e s o u r c ew a s t e a t t h e i r e n d o f l i f e.T oo v e r c o m e t h e a b o v e-m e n t i o n e d i n h e r e n t i s s u e s,i t i s o f g r e a t s i g n i f i c a n c e t o p u t f o r w a r d t h e c o n c e p t a n dd e s i g n s t r a t e g y o f g r e e n c r o s s-l i n k i n g s y s t e m.I n t h i s r e v i e w, t h e p r o b l e m s o f t r a d i t i o n a l v u l c a n i z a t i o nm e t h o d sw e r e i n t r o d u c e d f i r s t,a n d f o c u s e d o n t h e r e s e a r c h p r o g r e s s o n g r e e n c r o s s-l i n k i n g s t r a t e g i e so fr u b b e r.I t m a i n l y i n c l u d e dt h es t r a t e g y a b o u tt h ed e s i g no fc r o s s-l i n k e dd i e n e-t y p e d e l a s t o m e r s b a s e do nh y d r o l y z a b l ee s t e r c r o s s-l i n k s.T h e c r o s s-l i n k i n g s i t e s c o u l db eb a s e do nt h ee p o x yg r o u p so r c a r b o x y l g r o u p s r a t h e r t h a n t h e d o u b l e b o n d s,w h i l e b i o-b a s e d a n d g r e e nd i c a r b o x y l i c a c i do r e p o x i d i z e d s o y b e a no i l c o u l d s e r v e a s c r o s s-l i n k e r i n s t e a d o f s u l f u r,r e s u l t i n g i n c r o s s l i n k i n g n e t w o r k s c o n t a i n i n g e s t e r l i n k a g e s.F i n a l l y,t h e c h a l l e n g e s a n d f u t u r e p r o s p e c t s i n t h i s n e w l y e m e r g i n g f i e l dw e r e p r o s p e c t e d.K e y w o r d s:g r e e n c r o s s-l i n k i n g;b i o-b a s e d c r o s s-l i n k e r;r u b b e r r e c y c l i n g;r u b b e rm o d i f i c a t i o n672高分子材料科学与工程2021年。

废旧橡胶轮胎综合利用深加工技改项目可研

废旧橡胶轮胎综合利用深加工技改项目可研

废旧橡胶轮胎综合利用深加工技改项目可研一、项目背景和意义随着世界经济的快速发展,橡胶轮胎的需求量不断增加,而废旧橡胶轮胎的处理却成为一个世界性的环境问题。

废旧橡胶轮胎的处理方式主要有焚烧、填埋和再生利用三种。

传统的废旧橡胶轮胎处理方式会对环境产生严重的污染,尤其是焚烧过程中产生的有害气体会对人体健康和环境造成严重的危害。

因此,开展废旧橡胶轮胎综合利用深加工技改项目具有重要的现实意义。

对废旧橡胶轮胎进行深加工,可以将其转化成多种高附加值产品,如再生胶、橡胶粉等。

这不仅可以循环利用资源,减少环境污染,而且还具有较高的经济效益。

二、项目规划和目标本项目的规划是在现有的废旧橡胶轮胎处理基础上,引进先进的深加工技术和设备,对废旧橡胶轮胎进行再利用。

项目的主要目标包括:1.建立一条完整的废旧橡胶轮胎深加工生产线,实现废旧橡胶轮胎的再利用和资源化利用。

2.通过技术改造,提高废旧橡胶轮胎的加工效率和质量,增加再生胶的产出率。

3.开发和生产具有自主知识产权的高附加值橡胶制品,提高产品的市场竞争力。

4.减少焚烧和填埋废旧橡胶轮胎对环境造成的污染,保护生态环境。

三、项目可行性分析1.技术可行性:废旧橡胶轮胎深加工技术已经比较成熟,通过引进先进的设备和工艺,可以提高再生胶的产出率和产品质量。

2.经济可行性:废旧橡胶轮胎综合利用深加工项目具有较高的经济效益。

废旧橡胶轮胎再利用可以降低原材料成本,提高产品附加值。

3.环境可行性:废旧橡胶轮胎再利用可以减少焚烧和填埋所产生的有害气体,对环境污染的影响较小。

四、项目实施方案1.技术改造:引进先进的废旧橡胶轮胎深加工设备和工艺,提高废旧橡胶轮胎的加工效率和质量。

2.产品开发:研发和生产具有自主知识产权的高附加值橡胶制品,提高产品的竞争力和市场份额。

3.销售渠道建设:建立和拓展废旧橡胶轮胎再生胶和橡胶粉的销售渠道,提高产品的市场覆盖率和销售额。

五、项目投资和预期效益1.项目投资:预计项目的总投资额为XXX万元,其中设备投资占XX%。

加快开发废橡胶能源利用的必要性分析

加快开发废橡胶能源利用的必要性分析
12 废 橡 胶 能 源 利 用途 径 .
总量 中废 旧轮胎约为7 %以上 , 0 其次是废 旧橡胶制 品 ,
占2%以上【 仅废轮 胎全世 界每天 就可产生 约5 0 0 ; 0 万
条嘲 根据橡胶 消费测 算 , 0 0 , 国废 旧橡胶的发 。 到2 2 年 我
生量将超过 60万 t 0 ,大量废橡胶 的出现不仅 占用 土
摘要 : 废橡胶 能源利用有各种途径 , 从环境保护 、 回收利 用难度 、 处理消耗 量等 多个方面的分析 , 可以看 出废 橡胶能源利用很 有必要 , 我国必须要加快废橡胶 能源利 用的研 究与开发。
关 键 词 : 橡 胶 ;环境 污 染 ;回收 利 用 ;能 源利 用 废
中图分类号 : 7 33 文献标 志码 : 文章编 号 : 6 4 0 1 (0 8 1— 0 8 0 X 8. A 1 7 — 9 2 20 )0 0 2 —4
用于这方面的废轮胎达 1 亿条 , 0 0 . 3  ̄2 0 年增长 1%, 2 占 当年废轮胎生成量的6 . T F 了能部分替代石油 1 %。 D 除 6 和天然气外 , 还有热值高 、 成本低及不产生二次污染等
优点嘲 美 国牛津能源公 司在加利福尼亚州摩德斯托建 。
1 废橡胶 能源 利用的方法与途径
温度 高达 150℃, 0 轮胎 内的钢丝熔化 粘贴在 炉壁上 , 常常造成燃烧 炉故 障 的难题 。 目前英 国至少有 5 以 座 上以废 旧轮 胎为燃 料 的电厂 ,每 年可处理英 国2 %的 3 废轮胎 , 并且在发 电成本上可 与常规燃料相竞争[ 7 1 。
废橡胶 ( 轮胎 ) 、 电在 国外很受重视 , 供热 发 即轮胎
衍 生燃料 ( r d r e e,D ) t e ei df l F 。最初 是将废轮胎 和 y v u T 燃煤掺和使用 , 因效 果好 改为全用 。 这种方式水泥厂率 先使用 , 后来 推广到发电和造纸 等行业 。20 年 , 国 01 美

混凝土用废旧轮胎橡胶的新标准

混凝土用废旧轮胎橡胶的新标准

混凝土用废旧轮胎橡胶的新标准一、前言混凝土是一种重要的建筑材料,其强度和可靠性是影响建筑质量的关键因素。

然而,传统的混凝土材料存在许多问题,如易开裂、易受潮、易老化等。

废旧轮胎橡胶是一种常见的废弃物,其回收利用可以有效减少环境污染和资源浪费。

因此,将废旧轮胎橡胶作为混凝土材料的一部分已成为一种新型的环保材料。

为了规范混凝土用废旧轮胎橡胶的使用,我们需要建立一系列的标准,以确保其材料的可靠性和安全性。

二、混凝土用废旧轮胎橡胶的基本要求1.废旧轮胎橡胶应经过预处理,去除异物、尘土和水分等,确保其质量符合要求。

2.废旧轮胎橡胶的使用量应根据混凝土的强度等级、用途和要求进行确定。

3.混凝土中的废旧轮胎橡胶应均匀分散,并与其它混凝土材料充分混合,确保混凝土的均匀性和稳定性。

4.混凝土用废旧轮胎橡胶的使用应符合国家有关规定,确保其环保、安全。

三、混凝土用废旧轮胎橡胶的性能指标1.强度指标:混凝土中的废旧轮胎橡胶不应影响混凝土的强度,其强度应符合混凝土设计强度要求。

2.稳定性指标:混凝土中的废旧轮胎橡胶应具有良好的稳定性,不应影响混凝土的耐久性和抗裂性。

3.耐久性指标:混凝土中的废旧轮胎橡胶应具有较好的耐久性,在长期使用中不应发生老化和腐蚀现象。

4.环保性指标:混凝土中的废旧轮胎橡胶应符合国家环保标准,不应对环境造成污染和危害。

四、混凝土用废旧轮胎橡胶的试验方法1.强度试验:采用标准试块进行压缩试验,测定其强度。

2.稳定性试验:采用标准试块进行冻融循环试验,测定其稳定性。

3.耐久性试验:采用标准试块进行老化试验,测定其耐久性。

4.环保性试验:采用标准方法测定其环保指标,如重金属含量、VOC 排放等。

五、混凝土用废旧轮胎橡胶的质量控制1.原料控制:对废旧轮胎橡胶进行筛选、清洗、干燥等处理,确保其质量符合要求。

2.生产控制:混凝土生产过程中,应严格按照配比要求投入废旧轮胎橡胶,确保其用量和质量均符合要求。

3.成品控制:对生产出的混凝土进行强度、稳定性、耐久性和环保性等多项指标的检测,确保其质量符合要求。

浅析废旧橡胶对我国再生胶工业产生的影响

浅析废旧橡胶对我国再生胶工业产生的影响
几代科技工作者和业 内人士为之奋斗不息的任务。
因此, 笔者认为认真妥善处理好废旧橡胶, 对充分 利用再生资源 、 摆脱 自然资源之匮乏, 减少环境污
月2 9日,法国政府颁布了一项强制回收废旧轮胎 的法规。根据法规, 自2 0 年起,法国境内的轮 03
Hale Waihona Puke 染,改善人民的生存环境具有极为深远的积极意 义和 现实 意义 。 根据 中 国石 油 和化 学工 业协 会 、中 国橡胶工业协会等有关行业协 会的不完全统计我 国废旧橡胶利用率约为 5鬈 右, 0左 不到西方 发达国 家的 3 鬈 与此同时,在我国不少地方对废 旧橡胶 0。
家生产商决定投资 2 . 万欧元,将 “ 65 旧轮胎 回收 与环保协会 注册成阿利亚皮尔股份公司, 并聘用
生产再生胶颗粒或者再生胶粉。根据商务部门统
维普资讯

2・ 8
信息 传递
计再生胶的利用量 占我国废旧橡胶利用率的8 以 0
上,胶粉和胶粒大约 占7 左右。在某种意义上讲 鬈
由于再生胶可以直接代替橡胶,在橡胶制品
应用技术 由此诞生 。法国政府 的努力与企业 的实 践再次证明, 旧轮胎黑色大 山下面埋藏着金光闪
闪的 “ 朝阳产业 ,废 旧轮胎再生产业投 资规模不 大, 利润空间不小,只要上下齐心, 操作难度也不
大。19 年,法国轮胎生产厂 、销售商以及各回 93 收企业成立 “ 旧轮胎回收与环保协会 。此后法国 政府出台旧轮胎强制回收法规,给厂商规定的回
的处理还是采取 比较原始 的焚烧 、填埋等处理方 法。但是在西方国家则采取各种鼓励措施对废 旧 轮胎进行 回收再利用,发展循环经济。 例如, 国 法 自 上个世纪 8 年代起就禁止填埋 、丢弃和焚烧 旧 0 轮胎, 同时通过减税 、 补贴等方式支持旧轮胎 回收 企业的创业和经营, 鼓励这一领域的研发。 多项旧 轮胎贴面 翻新再利用 、废 旧橡胶再生材料生产及

废旧轮胎回收综合利用目标和意义

废旧轮胎回收综合利用目标和意义

废旧轮胎回收综合利用目标和意义废旧轮胎中的橡胶可以通过热分解或物理加工等方法提取出来,再经过处理可以用于制造新轮胎、橡胶板、橡胶地垫等产品。

这些再生橡胶与原生橡胶相比具有更低的生产成本和更好的环境效益。

废旧轮胎回收综合利用面临着环保意识提升和技术进步所带来的机遇,可以有效地循环利用资源,并为经济发展带来新的机遇。

同时也需要应对废旧轮胎回收处理技术尚未成熟、有害物质处理、经济和政策挑战等困境。

只有充分认识和解决这些机遇与挑战,才能促进废旧轮胎回收综合利用行业的可持续发展。

废旧轮胎回收综合利用可以提供丰富的原材料资源。

再生橡胶、再生钢丝等再生材料的生产能够满足一定范围内的需求,并降低了对原生材料的依赖。

这不仅可以节约生产成本,还可以减少资源开采的压力,从而提高企业的竞争力和盈利能力。

本文内容信息来源于公开渠道,对文中内容的准确性、完整性、及时性或可靠性不作任何保证。

本文内容仅供参考与学习交流使用,不构成相关领域的建议和依据。

一、废旧轮胎回收综合利用形势(一)废旧轮胎对环境及资源的影响废旧轮胎是指已经不能再继续使用、或者已经不能达到设计要求,需要淘汰下来的轮胎。

废旧轮胎的回收处理一直是环境保护和资源循环利用的重要内容,因为废旧轮胎的随意丢弃会对环境和人类健康造成极大危害。

首先,废旧轮胎的垃圾处理难度大,会对土壤、水源及空气质量造成污染。

如不经特殊处理,而随意堆放在野外,会导致轮胎变成蚊虫的滋生地,对周边的自然环境造成破坏。

其次,废旧轮胎可以被分解为不同的有机化学物质,其中包含多种化学物质,如苯、甲苯、乙苯、苯并花、多环芳烧等,这些化学品会因为不当处理和运输而泄漏,进而污染环境。

再者,废旧轮胎会占用大量的土地资源,不符合资源节约型社会的发展方向。

废旧轮胎以永久性污染物的性质存在于大自然之中,可以对周边环境及人类健康造成潜在威胁。

(二)废旧轮胎回收综合利用的方式废旧轮胎的综合利用是一个复杂的工程,主要包括以下几个环节:1、回收:废旧轮胎回收是指将废旧轮胎从环境中清除出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

废橡胶可以回收吗
由于废橡胶不会自然分解,使得废橡胶的量非常接近于橡胶的生产量,大量废旧轮胎的堆积和不适当处理,在造成资源浪费的同时,还严重的污染环境,造成“黑色污染”。

那么废橡胶可以回收吗?生活垃圾的处理方法是怎样的呢?今天就带大家来了解一下这些固体废弃物安全小知识。

废橡胶是可以回收的,废橡胶的回收利用:
一、轮胎的原形利用和翻新原形利用
1.对轮胎产品,提高翻新率,然后针对翻新使用后的轮胎产品再进行其他类型的回收和再利用。

2.针对非轮胎产品,也要考虑翻新的问题,如不能翻新和不能再次翻新,进行其他类型的回收和利用;。

相关文档
最新文档