隐函数极其求导法则

合集下载

3.4 隐函数的求导及高阶导数

3.4 隐函数的求导及高阶导数
上式两边对 x 求导得
1 y
y (cos x ln x
sin x x
)
y y (cos x ln x sin x
1
x
sin x
(cos x ln x
sin x
x sin x
)
x
)
方法二:将 y x
改写成 y e
sin x ln x
例 解 两边取对数
y x ( 2 x ) ( 3 x ) p5 ( x )
2 3
其中 p 5 ( x ) 为 x 的 5 次多项式,
108 x p 5 ( x )
6
y
(6)
108 6!.
例 设 x 4 xy y 4 1 , 求 y 在点 ( 0 ,1 )处的值 . 解 方程两边对 x 求导 , 得

注意: y 是 x 的函数.
对方程两边取对数,按隐函数的求导法则求导. 高阶导数及其物理意义
思考题
求 f (a ).
设 g ( x ) 连续 , 且 f ( x ) ( x a ) 2 g ( x ),
解答
g ( x ) 可导
( a ) 2 ( x a ) g ( a ) ( a a ) 2 g ( a ) a f x x x x
例 设 y arctan x , 求 y x 0 , y x 0 . 解
y 1 1 x
2
y (
1 1 x
) 2

2x (1 x )
2 2
2x y 2 3 2 2 (1 x ) (1 x )
3 3 , 2 2

第六节隐函数的求导公式

第六节隐函数的求导公式
上页
下页 返回
若F( x, y )的二阶偏导数也都连续,则
Fx d2y Fx d y ( ) ( ) 2 d x x Fy y Fy d x
Fx Fy
x
y
x
x Fy Fx Fx F x F 2 ( 求二阶导数 y y d y x y 或 2 x 2 的通常方法 ) dx Fy dy dy ( Fxx Fxy )Fy Fx ( Fyx Fyy ) dx dx 2 d y F x Fy d x F 2 2 y Fxx Fy 2 Fxy FxFy Fyy Fx . 3 Fy 上页 下页 返回
上页
下页 返回
x y z x y z
x x
dy dz z xf ( x y ) y y( x ) 例5、 设 确定 , 求 及 . y, z) 0 dx dx F ( x, z z( x )
解:将每个方程两边对 x求导得
z f xf (1 y )
2 FxFz Fx Fx z Fz Fzy z Fy Fz Fz z Fx Fy . 3 Fz 2 2 2 F F 2 F F F F F z Fx d y xx y xy x y yy x x Fz dx 2 Fy 3
上页
下页 返回
y
若F( x , y, z ) 的二阶偏导数也都连续,则
2 2 Fx x Fz 2Fx z Fx Fz Fz z Fx z . 2 3 x Fz 2 2 2 Fy y Fz 2Fy z Fy Fz Fz z Fy z . 2 3 y Fz 2

隐函数求导法则

隐函数求导法则

隐函数求导法则隐函数求导法则和复合函数求导相同。

由xy²-e^xy+2=0,y²+2xyy′-e^xy(y+xy′)=0,y²+2xyy′-ye^xy-xy′e^xy=0,(2xy-xe^xy)y′=ye^xy-y²,所以y′=dy/dx=y(e^xy-y0/x(2y-e^xy)。

求导法则对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。

在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有y'的一个方程,然后化简得到y'的表达式。

隐函数导数的求解一般可以采用以下方法:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

举个例子,若欲求z=f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。

显函数与隐函数显函数解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。

显函数可以用y=f(x)来表示。

隐函数如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。

隐函数与显函数的区别1.隐函数不一定能写为y=f(x)的形式,如x²+y²=0。

2.显函数是用y=f(x)表示的函数,左边是一个y,右边是x的表达式。

比如:y=2x+1。

隐函数是x和y都混在一起的,比如2x-y+1=0。

3.有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。

第五节隐函数求导法则

第五节隐函数求导法则
dy dx
x 0 y 1
0,
x d( ) 2 d y y xy y 2 dx dx y2
y x 2 y
x y
1 3, y
d2y dx2
x 0 y 1
1.
隐函数的求导方法可推 广到多个变量的情形 .
设 方 程 F ( x1 , x2 , , xn , z ) 0 确 定 了 z是x1 , x2 , , xn 的可微隐函数 z z( x1 , x2 , , xn ),
则有 Fxn Fx1 Fx2 z z z , , , x1 Fz x2 Fz xn Fz
2 z 2 2 2 例 2 设 x y z 4 z 0 ,求 2 . x 解1 利用公式
令 F ( x , y , z ) x 2 y 2 z 2 4 z , 则 Fx 2 x , Fz 2 z 4,
(F , G ) v ( u, y ) . (F , G ) y ( u, v )
特别地,方程组
F ( x, y, z ) 0 G ( x , y , z ) 0
可以确定函数 y y( x ), z z( x ), 且
(F ,G ) dy ( x, z ) dx (F ,G ) ( y, z )
x x 0 f1 ( 1) f 2 ( xz yz ), y y
整理得
x f1 xzf 2 , f1 yzf 2 y
把 y 看成 x , z 的函数对方程两边关于 z 求偏导数得
y y 1 f1 ( 1) f 2 ( xy xz ), z z
F u Gu
u F v F v x x x u G v G u x x x

高等数学 第八章 第4节 隐函数的求导公式

高等数学 第八章 第4节 隐函数的求导公式

求导, 将所给方程的两边对 y 求导,用同样方法得
∂u xv − yu , = 2 2 ∂y x + y
∂v xu + yv . =− 2 2 x +y ∂y
18
x + y + z = 0 du 例6 u = sin xy , 且 2 2 2 , 求 . dz x + y + z = 1
解 : 方程组对 求导 方程组对z
1(1)(3),2,3,4
B组 组
1,3

思考题
x y 为可微函数, 已知 = ϕ ( ) ,其中ϕ 为可微函数, z z ∂z ∂z 求x + y =? ∂x ∂y
22
思考题解答
1 则 Fx = , z −x y (− y ) y 1 Fy = −ϕ ′( ) ⋅ , Fz = 2 − ϕ ′( ) ⋅ 2 , z z z z z y − zϕ ′ ( ) Fy ∂z ∂z Fx z z , =− = , =− = Fz x − yϕ ′( y ) Fz x − yϕ ′( y ) ∂y ∂x z z
F ( x , y , u( x , y ), v ( x , y )) = 0 ∴ G ( x , y , u( x , y ), v ( x , y )) = 0 方程组对x 方程组对 求偏导
∂u ∂v Fx + Fu ∂x + Fv ∂x = 0 G + G ∂u + G ∂v = 0 u v x ∂x ∂x
19
三、小结
(分以下几种情况) 隐函数的求导法则 分以下几种情况)
(1) F ( x , y ) = 0
( 2) F ( x , y , z ) = 0

第五节隐函数的求导

第五节隐函数的求导

Fx Fz 或 yx , yz Fy Fy
7
例3(1) 解 设 则
z tanx yz 2
xy z
F x, y, z z tanx yz 2 xy z
2 xy z
z z ,求 , x y
z Fx sec2 x yz 2 xy (ln 2) y
则 Fx 2 x, Fy 2 y, Fz 2 z 4 z x z y , x 2 z y 2 z
2 z x 2 3 2 z 2 z 2 2 2 z y zy 2 z y2 z y 3 2 2 y y 2 z 2 z 2 z
y x
解 设
F x, y x y
y
x

Fx yx y 1 y x ln y
Fy x ln x xy
y x 1
所以
Fx yx y ln y y y x 1 Fy x ln x xy
x
6
y 1
定理2 设函数F x, y, z 在点 x0 , y0 , z0 的某一邻域内具有连续 偏导数,且F x0 , y0 , z0 0, Fz x0 , y0 , z0 0, 则方程F x, y, z 0 在点 x0 , y0 , z0 的某一邻域内能唯一确定一个具有连续导数的函 Fy Fx z z 数z f x, y , 它满足z0 f x0 , y0 , 并且 , x Fz y Fz
z x 2 x x 2 z
2
2 z x zx
2
2
12
例6 设u f x, y, z 具有连续的一阶偏导数,又函数y y x ,

隐函数的求导公式


把 x看成z, y 的函数对y 求偏导数得
0
f
u
(
x y
1)
fv
( xz
yz x), y
整理得 x fu xzfv ,
y
fu yzfv
把 y 看成 x, z的函数对z 求偏导数得
1
f
u
(
y z
1)
fv ( xy
xz y), z
整理得
y 1 fu xyfv . z fu xzfv
Gu Gv
v 1 (F ,G) Fu Fx Fu Fv x J (u, x) Gu Gx Gu Gv u 1 (F ,G) Fy Fv Fu Fv , y J ( y,v) Gy Gv Gu Gv v 1 (F ,G) Fu Fy Fu Fv . y J (u, y) Gu Gy Gu Gv
点 P( x0 , y0 , u0 ,v0 )的某一邻域内有对各个变量的连 续偏导数,且F ( x0 , y0 , u0 ,v0 ) 0,G( x0 , y0 , u0 ,v0 )
0,且偏导数所组成的函数行列式(或称雅可比
式)
F F
J
(F ,G) (u, v )
u G
v G
u v
在点P( x0 , y0 , u0 ,v0 )不等于零,则方程组 F ( x, y,u,v) 0、 G( x, y,u,v) 0
u f (x, y)
六、设函数u( x)由方程组 g( x, y, z) 0所确定,
h( x, z) 0
且g 0, h 0,求 du .( f , g, h均可微)
y z
dx
七、设 y f ( x, t), 而t 是由方程 F ( x, y, t) 0 所确定的

《隐函数的求导方法》课件


隐函数与显函数的关系
显函数:由自变量和因变量通过等号 连接的函数,如y=f(x)。
隐函数不一定能通过等号转化为显函 数,但两者都表示了因变量与自变量 之间的关系。
隐函数的几何意义
隐函数在坐标平面上的表现是一条曲线。
通过对方程F(x,y)=0进行求导,可以确定曲线上各点的切线斜率,从而了解曲线的形状和变化趋势。
总结词
通过消去参数,将参数方程转化为普通方程 ,再利用普通方程求导法则进行求导。
详细描述
对于由参数方程 $x = varphi(t), y = psi(t)$ 确定的隐函数,可以通过消去参数 $t$,将 其转化为 $y = f(x)$ 的形式,然后利用复合
函数求导法则和链式法则进行求导。
由极坐标方程确定的隐函数求导
乘积法则
总结词
乘积法则用于求解两个函数的乘积的导数,通过乘积法则可以将两个函数的导 数相加。
详细描述
乘积法则是链式法则的一种特殊形式,如果两个函数y=f(x)和u=g(x)的导数存 在,那么它们的乘积的导数为y的导数乘以u加上u的导数乘以y,即 dy*du=(dy/dx)*u+(u/dx)*y。
商式法则
顺序确定
在求导过程中,运算的顺序需要 确定,根据求导法则和运算优先 级进行判断。
顺序处理
在求导过程中,需要注意运算的 顺序处理,确保运算的正确性和 一致性。
顺序变换
在求导过程中,运算的顺序可能 会发生变化,需要根据求导法则 和运算优先级进行判断。
求导过程中的公式选择问题
公式选择
在求导过程中,公式的选择是关键,需要根据函数的 类型和求导法则进行选择。
02 隐函数的求导法则
链式法则
总结词

高等数学第8章五节隐函数的求导公式最终

d y x y x y y y x y . dx y x
3
引例:已知
e
x y
xy 0 确定 y y( x ), 求 y( x )
e
x y
(1 y) (y xy) 0
注意此方程能确定一个一元函数,是在y可导的前 提下进行的. 并不一定都能确定一元 函数.
10
练习P102 2
y dy 已知 ln x y arctan , 求 . x dx
2 2

公式法
令 F ( x , y ) ln x 2 y 2 arctan y , x x y y x , Fy ( x , y ) 2 , 则 Fx ( x , y ) 2 2 2 x y x y x y dy Fx . y x dx Fy
x2 y2 z2 解 法一 公式法 令 F ( x , y , z ) 2 2 2 1 a b c 2x 2z 则 Fx 2 , F y 2 y , Fz a b2 c2
z c x 2 , x a z
2
c y z 2 b z y
2
( z 0)
在求Fx , Fy, Fz时, 将F(x, y, z)看作是 x, y, z的三个自变量的函数.
能确定
dy 一个隐函数y = f (x), 并求 . dx
x y 记 证 F ( x, y ) xy e e , 则
Fx ( x , y ) y e x 与Fy ( x , y ) x e y
隐函数存在定理1
隐函数 y = f (x), 且
x dy Fx ye . y dx Fy xe
dy Fx ( x , y ) dy Fx . 或简写: dx Fy ( x , y ) dx Fy

§8.5 隐函数有求导法则 - 吉林化工学院


dy Fx x dy 0 ; dx Fy y dx x 0
提示: 由方程F(x y)0确定的隐函数yf(x)的导数为 dy Fx dx Fy
Jlin Institute of Chemical Technology
上页 下页 返回 退出
例1 验证方程x2y210在点(0 1)的某一邻域内能唯一确 定一个有连续导数、当x0时y1的隐函数yf(x) 并求这函数 的一阶与二阶导数在x0的值 解 设F(x y)x2y21 则 Fx2x Fy2y F(0 1)0 Fy(0 1)20 由隐函数存在定理 方程x2y210在点(0 1)的某一邻域内能 唯一确定一个有连续导数、当x0时y1的隐函数yf(x)
上页 下页 返0 1)的某一邻域内能唯一确 定一个有连续导数、当x0时y1的隐函数yf(x) 并求这函数 的一阶与二阶导数在x0的值 解 设F(x y)x2y21 则 Fx2x Fy2y F(0 1)0 Fy(0 1)20 由隐函数存在定理 方程x2y210在点(0 1)的某一邻域内能 唯一确定一个有连续导数、当x0时y1的隐函数yf(x)
隐函数的求导法则
(分以下几种情况)
(1) F ( x, y) 0
(2) F ( x, y, z) 0
F ( x, y , u , v ) 0 (3) G ( x, y, u, v) 0
Jlin Institute of Chemical Technology
上页
下页
返回
退出
dy Fx x dy 0 ; dx Fy y dx x 0
d2y y xy 1 d2y 1 2 3 2 2 dx x 0 dx y y
Jlin Institute of Chemical Technology
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
隐函数极其求导法则
隐函数及其求导法则

我们知道用解析法表示函数,可以有不同的形式.
若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇
到的函数
大多都是显函数.
一般地,如果方程F(x,y)=0中,令x在某一区间内任取一值时,相应地总有满足此方程的y值存在,
则我们就
说方程F(x,y)=0在该区间上确定了x的隐函数y.
把一个隐函数化成显函数的形式,叫做隐函数的显化。
注:有些隐函数并不是很容易化为显函数的,那么在求其导数时该如何呢?
下面让我们来解决这个问题!
隐函数的求导

若已知F(x,y)=0,求时,一般按下列步骤进行求解:
a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;
b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数

用复合函数求导法则进行。

例题:已知,求
解答:此方程不易显化,故运用隐函数求导法.
2

两边对x进行求导,

故=
注:我们对隐函数两边对x进行求导时,一定要把变量y看成x的函数,然后对其利用复合函数求导
法则进行求导。
例题:求隐函数,在x=0处的导数
解答:两边对x求导


当x=0时,y=0.故
有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较
直观的方法呢?
下面我们再来学习一种求导的方法:对数求导法
3

积分
黎曼积分
如果函数f(X)在闭区间[a,b]上定义,而(P,ζ)是这个闭区间的一个带点分割,则和
ζ(f;p,ζ):=Σ f(ζi)ΔXi
叫做函数f在区间[a,b]上对应于带点分割(P,ζ)的积分和,其中ΔXi=Xi-X(i-1)

存在这样一个实数I,如果对于任何ε>0可以找到一个δ>0,使对区间[a,b]的任何带点分割(P,ζ),只要分化P的参数λ(P)<δ,
就有|I-ζ(f;p,ζ)|<ε,则称函数f(X)在闭区间[a,b]上黎曼可积,而I就成为函数f(X)在闭区间[a,b]上的黎曼积分。
微积分

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求
曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。
积分 integral 从不同的问题抽象出来的两个数学概念。定积分和不定积分的统称。不定积分是为解决求导和微分的逆运算而提出
的。例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)= f(x)。函数
f(x)的不定积分是f(x)的全体原函数(见原函数),记作 。如果F(x)是f(x)的一个原函数,则 ,其中C为任意常数。例如, 定
积分是以平面图形的面积问题引出的。y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y=f(x)所围图形的
面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n
等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面
积S。把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<
xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即 称[a,
b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。当f(x)的原函数存在时,定积分的计算可转化为求f(x)
的不定积分:这是c牛顿莱布尼兹公式。

以上讲的是传统意义上的积分也即黎曼积分。
微积分(Calculus)是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。
微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认
为是常量处理,最终加起来就行。

微积分学是微分学和积分学的总称。 它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的
思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的
路程之和就是积分的概念。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部
分就是微积分。微积分堪称是人类智慧最伟大的成就之一。
4

极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别
独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯
建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。

微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用
切线问题(微分学的中心问题),求积问题(积分学的中心问题)。
牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经
过的路程(积分法)。
微积分的基本内容

研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。
本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数
学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。

微分学的主要内容包括:极限理论、导数、微分等。
积分学的主要内容包括:定积分、不定积分等。
微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。
此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科
学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断
发展。

一元微分
定义: 设函数y = f(x)在某区间内有定义,x0及x0 + Δx在此区间内。如果函数的增量Δy = f(x0 + Δx) − f(x0)可表示为 Δy = AΔx0
+ o(Δx0)(其中A是不依赖于Δx的常数),而o(Δx0)是比Δx高阶的无穷小,那么称函数f(x)在点x0是可微的,且AΔx称作函数
在点x0相应于自变量增量Δx的微分,记作dy,即dy = AΔx。

通常把自变量x的增量 Δx称为自变量的微分,记作dx,即dx = Δx。于是函数y = f(x)的微分又可记作dy = f'(x)dx。函数的
微分与自变量的微分之商等于该函数的导数。因此,导数也叫做微商。

几何意义
设Δx是曲线y = f(x)上的点M的在横坐标上的增量,Δy是曲线在点M对应Δx在纵坐标上的增量,dy是曲线在点M的切线
对应Δx在纵坐标上的增量。当|Δx|很小时,|Δy-dy|比|Δy|要小得多(高阶无穷小),因此在点M附近,我们可以用切线段来近似代
替曲线段。

多元微分
同理,当自变量为多个时,可得出多元微分得定义。
5

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求
曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。

一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。它等于该函数的一个原函数在b的值减去在a的值。

相关文档
最新文档