第36讲 空间向量及其应用

合集下载

空间向量的几何应用

空间向量的几何应用

空间向量的几何应用引言:空间向量是三维空间中具有大小和方向的数学量,是解决几何问题的有力工具。

本文将讨论空间向量在几何中的应用,包括向量的表示、向量的运算和向量的几何性质。

一、向量的表示1.1 坐标表示法空间中的向量可以用坐标表示法表示,即用其坐标分量表示。

设向量A的坐标分量为(Ax, Ay, Az),表示A在x、y、z三个坐标轴上的投影长度。

1.2 大小及方向空间向量除了可以用坐标表示法表示,还可以用大小和方向表示。

向量的大小表示为其长度,用|A|表示,可以通过勾股定理计算。

向量的方向表示为与坐标轴的夹角或者与其他向量的夹角。

二、向量的运算2.1 向量的加法向量的加法是指将两个向量按照一定的规则进行相加,得到一个新的向量。

向量A加向量B的结果表示为向量A+B。

具体的计算规则为将两个向量的对应坐标分量相加。

2.2 向量的减法向量的减法是指将一个向量减去另一个向量,得到一个新的向量。

向量A减向量B的结果表示为向量A-B。

具体的计算规则为将两个向量的对应坐标分量相减。

2.3 向量的数量积向量的数量积又称为点积,是指两个向量相乘后取乘积的数量。

向量A和向量B的数量积表示为A·B,具体的计算规则为将两个向量的对应坐标分量相乘后相加。

2.4 向量的向量积向量的向量积又称为叉积,是指两个向量相乘后取乘积的向量。

向量A和向量B的向量积表示为A×B,具体的计算规则为将两个向量的对应坐标分量按照一定的规则相乘后相加。

三、向量的几何性质3.1 平行向量如果两个向量方向相同或者相反,那么它们被称为平行向量。

平行向量的数量积为0。

3.2 垂直向量如果两个向量的数量积为0,那么它们被称为垂直向量。

垂直向量的夹角为90度。

3.3 几何向量的共线条件三个向量共线的充分必要条件是其中两个向量的数量积等于第三个向量的数量积的相反数。

3.4 向量的投影向量的投影是指把一个向量投影到另一个向量上得到的新向量。

通过投影可以求解向量在某个方向上的分量。

空间向量应用知识点总结

空间向量应用知识点总结

空间向量应用知识点总结一、空间向量的定义和性质1. 空间向量的定义:空间中的向量是指具有大小和方向的物理量,可以在空间中表示为一个由起点和终点确定的有向线段。

2. 空间向量的几何意义:空间向量的几何意义是指用有向线段来表示向量,其方向由箭头表示,长度由线段的长度表示。

3. 空间向量的性质:空间向量与平面向量相似,具有平行、共线、相等、相反等性质,还有长度相等、共线向量的倍数、共面向量的叉乘等性质。

二、空间向量的运算1. 空间向量的加法:空间向量的加法是指两个向量相加后得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

2. 空间向量的减法:空间向量的减法是指一个向量减去另一个向量得到一个新的向量,其结果向量的大小和方向由两个向量的大小和方向决定。

3. 空间向量的数量积:空间向量的数量积是指两个向量相乘后得到一个数量,其结果是一个标量,其大小等于两个向量的模的乘积,其方向由两个向量的夹角决定。

4. 空间向量的叉积:空间向量的叉积是指两个向量相乘后得到一个新的向量,其结果向量的大小等于两个向量构成的平行四边形的面积,其方向垂直于两个向量构成的平面。

5. 空间向量的混合积:空间向量的混合积是指三个向量相乘后得到一个数量,其结果是一个标量,其大小等于三个向量构成的平行六面体的体积。

三、空间向量在物理学中的应用1. 力的合成:在物体受到多个力的作用时,可以利用空间向量的加法和减法原理,将所有的力向量进行合成或分解,从而求出合力或分力的大小和方向。

2. 力的平衡:当一个物体处于受力平衡状态时,可以利用空间向量的数量积或叉积原理,求出合力或力矩为零的条件,从而判断物体是否处于平衡状态。

3. 力的做功:当一个物体受到外力作用而发生位移时,可以利用空间向量的数量积原理,求出外力做功的大小和方向,从而判断外力对物体的能量变化情况。

4. 力的矢量描述:在分析物体的运动和力的作用时,可以通过空间向量的描述方法,将力的大小和方向用向量来表示,从而对物体的运动和受力情况进行分析。

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用

高中数学-空间向量及向量的应用一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。

设血勺乃召),氓叫•乃w ),AB = OB-OA=(^y 2l 切—(吊丹 丑)=(乃—咛乃—丹 勺一匂)空间向量的直角坐标运算:设Q =2],砌,色3 $ =1鹉毎妇则;① 口+ b= P],曲,电 宀|俎,给禺 ・=I 角十知鬥 +為、屯 +鸟I ? ② a-b = \ a^a 2,a 21■ 诲.场岛i =(业一% 气-如 码一為 帀 ③ 加=兄I 曲卫2,© ' = I 現珂"久卷 '(/i e 7?); ④ 总■&= |气命4 片妇任 | = &占 + 逐血 +&並:⑤ 口0Fe 鱼二 空三生=左或。

『舌寻口[三碣‘ - 冊节 处二赵;对® $⑥ 7丄匸q 口血十口曲十m 禺=0 ;空间两点间距离:丄“「1 :利用空间向量证明空间位置关系(同平面向量)2:利用空间向量求线线角、线面角(1)异面直线所成角Z • gw 设Q”分别为异面直线讥的方向向量,则则:空间线段的中点M (x ,y ,z )的坐标: 空间直角坐标系的原则:规定:一切空间向量的起点都是坐标系原点,于是,空间任意一个向量与它的终点坐标一一对应(2) 线面角凰打殳《是直线l 的方向向量,n 是平面的法向量,则3 :利用空间向量求二面角其计算公式为:设 加“分别为平面G 8的法向量,则 与,剤7 互补或相等,- • «. m * n|( csfl i = |A>| = I 忘I * I 云I操作方法:1 •空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

①棱上一点双垂线法:②面上一点三垂线法:③空间一点垂面法:斜面面积和射影面积的关系公式: S S cos (S 为原斜面面积,S 为射影面积,为斜面与射影所成二面角的平面角)这个公式对于斜面为三角形,任意多边形都成立.是求二面角的好方法.当作二面角的平面角有困难时如果能找得斜面面积的射影面积,可直接应用公式,求岀二面角的大小。

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法

空间向量的应用认识空间向量的应用和几何解题方法空间向量的应用及认识空间向量的应用在数学中,空间向量是指具有大小和方向的向量,也称为三维向量。

空间向量在几何学和物理学中有广泛的应用,它们可以用于解决各种几何问题和实际应用中的物理问题。

本文将介绍空间向量及其应用,并讨论几种常见的解题方法。

一、空间向量的定义与性质空间向量是指由三个有序实数组成的有向线段。

假设有两点A和B,空间向量AB可以表示为→AB,它的大小等于线段AB的长度,方向则与线段AB的方向一致。

空间向量具有以下性质:1. 加法性质:如果有两个空间向量→AB和→BC,它们的和为→AC,即→AC = →AB + →BC。

2. 数乘性质:对于任意实数k,空间向量→AB乘以k的结果为k→AB,即k→AB = →BA。

3. 数量积性质:空间向量→AB和→AC的数量积为它们的模的乘积与它们夹角的余弦的乘积,即→AB·→AC = |→AB| × |→AC| × cosθ。

二、空间向量的应用1. 几何问题中的位置关系:空间向量可以用于判断点的位置关系。

例如,已知三个点A、B和C,可以通过向量→AB和→AC的数量积来判断它们的位置关系。

若→AB·→AC = 0,则表示点C在向量→AB 的延长线上;若→AB·→AC > 0,则表示点C在向量→AB的同侧;若→AB·→AC < 0,则表示点C在向量→AB的异侧。

2. 几何问题中的求解:空间向量可用于求解几何问题,如线段的中点坐标、平行四边形的面积等。

通过定义空间向量→AB = (x2-x1, y2-y1, z2-z1),可以得到线段AB的中点坐标为[(x1+x2)/2, (y1+y2)/2,(z1+z2)/2];平行四边形的面积可以通过向量的叉积来计算,即以两个边向量的叉积的模作为平行四边形的面积。

3. 物理学中的应用:空间向量在物理学中也有广泛的应用。

1.4 空间向量的应用 课件(可编辑图片版)(共31张PPT)

1.4 空间向量的应用 课件(可编辑图片版)(共31张PPT)

(2,-1,1).
[方法技巧] 求平面法向量的三个注意点 (1)选向量:在选取平面内的向量时,要选取不共线的两个向量. (2)取特值:在求→n 的坐标时,可令 x,y,z 中一个为一特殊值 得另两个值,就是平面的一个法向量. (3)注意 0:提前假定法向量→n =(x,y,z)的某个坐标为某特定 值时一定要注意这个坐标不为 0.
解析:∵μ·a=-12+16-4=0, ∴μ⊥a,∴l⊂α或l∥α. 答案:l⊂α或l∥α
题型一 求平面的法向量
如图,已知 ABCD 是直角梯形,∠ABC=90°,SA⊥平面 ABCD,
SA=AB=BC=1,AD=1,试建立适当的坐标系. 2
(1)求平面 ABCD 的一个法向量; (2)求平面 SAB 的一个法向量; (3)求平面 SCD 的一个法向量.
[方法技巧] 1.在空间中,一个向量成为直线 l 的方向向量,必须具备以下 两个条件:(1)是非零向量;(2)向量所在的直线与直线 l 平行或重合. 2.与直线 l 平行的任意非零向量→a 都是直线的方向向量,且直 线 l 的方向向量有无数个. 3.给定空间中任意一点 A 和非零向量→a ,就可以确定唯一一 条过点 A 且平行于向量→a 的直线. 4.表示同一条直线的方向向量,由于它们的模不一定相等, 因此,它们不一定相等;虽然这些方向向量都与直线平行,但它们
3.若平面α,β的一个法向量分别为m=(-
1 6

1 3
,-1),n=
(12,-1,3),则( )
A.α∥β
B.α⊥β
C.α与β相交但不垂直 D.α∥β或α与β重合
解析:∵n=-3m,∴m∥n,∴α∥β或α与β重合.故选D. 答案:D
4.若直线l的方向向量a=(2,2,-1),平面α的法向量μ=(- 6,8,4),则直线l与平面α的位置关系是________.

空间向量的应用PPT课件

空间向量的应用PPT课件

一复习回顾
C
P
4空间向量基本定理:
A1
O
A
B
B1 P1
• 如果三个向量a、b、c不共面,那么对空间任一 向量p,存在一个唯一的有序实数组x,y,z, 使p=xa+yb+zc。 • 任意不共面的三个向量都可做为空间的一个基底, 零向量的表示唯一。
5 空间两个向量的数量积
(1)
(2)
(3)
数量积的运算律
BE1=(0,-1/4,1),DF1=(0,1/4,1) Z ∣BE1∣=√17/4 ∣DF1∣=√17/4 BE1· DF1 =15/16 ∴cos<BE1,DF1> = ∣BE1∣· ∣DF1∣ =15/17 BE1· DF1 D A
D1
A1
F1 E1 B1
C1
C
B
Y
X
2已知在一个二面角的棱l上有两个点A,B,线段AC BD 分 别在这个二面角的两个面内,且AC⊥l,BD⊥l AB=4cm,, AC=6cm,BD=8cm, CD=2√17求异面直线AC、BD所成角
A A’
C’ D’
B’ D C
B
∴∣AC∣=√85
例3 已知 正方形ABCD 求证 CA1⊥平面AB1D1 B 证明 连结 A1C1 ∵CC1⊥平面A1B1C1D1 B1D1⊥A1C1 ∴A1C⊥B1D1 同理可证 A1C⊥AD1 ∵B1D1∩AD1=D1 ∴CA1⊥平面AB1D1
A
Z D
C
A1
y
C1
D1
B1 X
Hale Waihona Puke 三 练习反馈1已知线段AB在平面α 内,线段AC⊥α ,线段BD⊥AB 线段DD'⊥α ,∠DBD1=300如果AB=a,AC=BD=b 求C、D间的距离

《空间向量的应用》课件


向量的向量积运算性质
总结词:反交换律
详细描述:空间向量的向量积满足反交换律,即对于任意向量$mathbf{a}$和 $mathbf{b}$,有$mathbf{a} times mathbf{b} = -mathbf{b} times mathbf{a}$。
向量的向量积运算性质
总结词
与数量积的分配律不兼容
数乘的性质
结合律和分配律成立,即k(a+b)=(ka)+(kb)和(k+l)a=ka+la。
向量的模与向量的数量积
向量的模的性质
非负性、正定性、齐次性、三角不等式成立 。
向量的数量积
两个向量的数量积表示它们的夹角,记作 a·b,计算公式为$|a||b|cosθ$。
数量积的性质
交换律和分配律成立,即a·b=b·a和(k a)·b=k(a·b)。
04
空间向量的坐标表示
向量的坐标表示方法
固定原点
选择一个固定的点作为原点,并确定三个互相垂直的 坐标轴。
向量表示
将向量表示为坐标系中的有序实数组,例如向量A可 以表示为[a, b, c]。
长度和方向
向量的长度可以通过其坐标的模计算,方向可以通过 其分量表示。
向量在坐标系中的变换
平移变换
将向量在坐标系中沿某一轴平移一定 的距离,例如向量A平移d个单位后 变为[a+d, b, c]。
工程学的应用
总结词
在工程学中,空间向量被广泛应用于解决实际问题和设计复和土木工程等领域,空间向量被用于描述物体的位置、方向和运动状态,以及进行各 种物理量(如力、速度、加速度等)的分析和计算。此外,空间向量还被用于解决实际工程问题,如结构分析、 流体动力学和控制系统等。

第36讲 空间向量的应用(解析版)2021年新高考数学一轮专题复习(新高考专版)

第36讲 空间向量的应用一、 考情分析1.理解直线的方向向量及平面的法向量;2.能用向量语言表述线线、线面、面面的平行和垂直关系;3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理;4.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;5.能用向量方法解决点到平面、相互平行的平面的距离问题;6.并能描述解决夹角和距离的程序,体会向量方法在研究几何问题中的作用.二、 知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:给定一个定点A 和一个向量a ,再任给一个实数t ,以A 为起点作向量AP →=t a ,则此向量方程叫做直线l 的参数方程.向量a 称为该直线的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 2.空间位置关系的向量表示3.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD→〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 6.点到平面的距离用向量方法求点B 到平面距离基本思路:确定平面法向量, 在平面内取一点A ,求向量AB →到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n ,点B 到平面α的距离d =|AB →·n ||n |. [微点提醒]1.平面的法向量是非零向量且不唯一.2.建立空间直角坐标系要建立右手直角坐标系.3.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.4.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、 经典例题考点一 利用空间向量证明平行问题【例1】 如图,在四面体ABCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .【解析】证明 法一 如图,取BD 的中点O ,以O 为原点,OD ,OP 所在射线分别为y ,z 轴的正半轴,建立空间直角坐标系O -xyz .由题意知,A (0,2,2),B (0,-2,0),D (0,2,0). 设点C 的坐标为(x 0,y 0,0). 因为AQ→=3QC →, 所以Q ⎝ ⎛⎭⎪⎫34x 0,24+34y 0,12.因为M 为AD 的中点,故M (0,2,1). 又P 为BM 的中点,故P ⎝ ⎛⎭⎪⎫0,0,12, 所以PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0. 又平面BCD 的一个法向量为a =(0,0,1),故PQ →·a =0. 又PQ ⊄平面BCD , 所以PQ ∥平面BCD .法二 在线段CD 上取点F ,使得DF =3FC ,连接OF ,同法一建立空间直角坐标系,写出点A ,B ,C 的坐标,设点C 坐标为(x 0,y 0,0). ∵CF →=14CD →,设点F 坐标为(x ,y ,0),则(x -x 0,y -y 0,0)=14(-x 0,2-y 0,0), ∴⎩⎪⎨⎪⎧x =34x 0,y =24+34y 0,∴OF→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0 又由法一知PQ→=⎝ ⎛⎭⎪⎫34x 0,24+34y 0,0, ∴OF→=PQ →,∴PQ ∥OF .又PQ ⊄平面BCD ,OF ⊂平面BCD , ∴PQ ∥平面BCD .规律方法 (1)恰当建立坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只须证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算. 考点二 利用空间向量证明垂直问题【例2】 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO , ∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB→=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0, ∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB . ∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .规律方法 (1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键. (2)用向量证明垂直的方法①线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.②线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示. ③面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示. 考点三 用空间向量解决有关位置关系的探索性问题 角度1 与平行有关的探索性问题【例3-1】 如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3). 由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1. (2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP→=(-3,1+λ,3λ).设n 3⊥平面DA 1C 1,则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 设n 3=(x 3,y 3,z 3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP . 角度2 与垂直有关的探索性问题【例3-2】 如图,正方形ADEF 所在平面和等腰梯形ABCD 所在的平面互相垂直,已知BC =4,AB =AD =2.(1)求证:AC ⊥BF ;(2)在线段BE 上是否存在一点P ,使得平面P AC ⊥平面BCEF ?若存在,求出BP PE 的值;若不存在,请说明理由.【解析】(1)证明 ∵平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,AF ⊥AD ,AF ⊂平面ADEF , ∴AF ⊥平面ABCD .∵AC ⊂平面ABCD ,∴AF ⊥AC .过A 作AH ⊥BC 于H ,则BH =1,AH =3,CH =3, ∴AC =23,∴AB 2+AC 2=BC 2,∴AC ⊥AB , ∵AB ∩AF =A ,∴AC ⊥平面F AB , ∵BF ⊂平面F AB ,∴AC ⊥BF .(2)解 存在.由(1)知,AF ,AB ,AC 两两垂直.以A 为坐标原点,AB →,AC →,AF →的方向分别为x 轴,y 轴,z 轴正方向,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (0,23,0),E (-1,3,2).假设在线段BE 上存在一点P 满足题意,则易知点P 不与点B ,E 重合,设BPPE =λ,则λ>0,P ⎝⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ. 设平面P AC 的法向量为m =(x ,y ,z ).由AP→=⎝ ⎛⎭⎪⎫2-λ1+λ,3λ1+λ,2λ1+λ,AC →=(0,23,0), 得⎩⎨⎧m ·AP →=2-λ1+λx +3λ1+λy +2λ1+λz =0,m ·AC →=23y =0,即⎩⎪⎨⎪⎧y =0,z =λ-22λx ,令x =1,则z =λ-22λ, 所以m =⎝⎛⎭⎪⎫1,0,λ-22λ为平面P AC 的一个法向量. 同理,可求得n =⎝ ⎛⎭⎪⎫1,33,1为平面BCEF 的一个法向量.当m ·n =0,即λ=23时,平面P AC ⊥平面BCEF ,故存在满足题意的点P ,此时BP PE =23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y ,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.考点四 用空间向量求异面直线所成的角【例4】 (1)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32B.155C.105D.33(2)在三棱锥P -ABC 中,△ABC 和△PBC 均为等边三角形,且二面角P -BC -A 的大小为120°,则异面直线PB 和AC 所成角的余弦值为( ) A.58B.34C.78D.14【答案】 (1)C (2)A【解析】 (1)法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0). 所以AB 1→=(1,-3,1),BC 1→=(1,0,1), 则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5·2=25·2=105,因此,异面直线AB 1与BC 1所成角的余弦值为105.法二 将直三棱柱ABC -A 1B 1C 1补形成直四棱柱ABCD -A 1B 1C 1D 1(如图(2)),连接AD 1,B 1D 1,则AD 1∥BC 1.图(2)则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=5,BC 1=AD 1=2,B 1D 1= 3.由余弦定理得cos ∠B 1AD 1=105.(2)法一 取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角P -BC -A 的平面角,即∠POA =120°,过点B 作AC 的平行线交AO 的延长线于点D ,连接PD ,则∠PBD 或其补角就是异面直线PB 和AC 所成的角.设AB =a ,则PB =BD =a ,PO =PD =32a ,所以cos ∠PBD =a 2+a 2-⎝ ⎛⎭⎪⎫32a 22×a ×a=58.法二 如图,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 均为等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以BC ⊥平面P AO ,即平面P AO ⊥平面ABC .且∠POA 就是其二面角P -BC -A 的平面角,即∠POA =120°,建立空间直角坐标系如图所示.设AB =2,则A (3,0,0),C (0,-1,0),B (0,1,0),P ⎝ ⎛⎭⎪⎫-32,0,32,所以AC→=(-3,-1,0),PB →=⎝ ⎛⎭⎪⎫32,1,-32, cos 〈AC→,PB →〉=-58,所以异面直线PB 与AC 所成角的余弦值为58.法三 如图所示,取BC 的中点O ,连接OP ,OA ,因为△ABC 和△PBC 是全等的等边三角形,所以AO ⊥BC ,PO ⊥BC ,所以∠POA 就是二面角的平面角,设AB =2,则AC→=OC →-OA →,PB →=OB →-OP →,故AC →·PB →=(OC →-OA →)·(OB→-OP →)=-52, 所以cos 〈AC →,PB →〉=AC →·PB →|AC →|·|PB →|=-58.即异面直线PB 与AC 所成角的余弦值为58.规律方法 1.利用向量法求异面直线所成角的一般步骤是:(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.2.两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角. 考点五 用空间向量求线面角【例5】如图,在三棱锥P -ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -P A -C 为30°,求PC 与平面P AM 所成角的正弦值. 【解析】(1)证明 因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 连接OB ,因为AB =BC =22AC , 所以AB 2+BC 2=AC 2,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 且OB ∩AC =O ,知PO ⊥平面ABC .(2)解 如图,以O 为坐标原点,OB→的方向为x 轴正方向,建立空间直角坐标系O -xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP →=(0,2,23).取平面P AC 的一个法向量OB→=(2,0,0).设M (a ,2-a ,0)(0<a ≤2),则AM →=(a ,4-a ,0).设平面P AM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈OB →,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB→,n 〉|=32,所以23|a -4|23(a -4)2+3a 2+a 2=32,解得a =-4(舍去),a =43, 所以n =⎝⎛⎭⎪⎫-833,433,-43. 又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面P AM 所成角的正弦值为34. 规律方法 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.考点六用空间向量求二面角【例6】如图1,在高为6的等腰梯形ABCD中,AB∥CD,且CD=6,AB=12,将它沿对称轴OO1折起,使平面ADO1O⊥平面BCO1O,如图2,点P为BC的中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQ∥OB.(1)(一题多解)证明:OD⊥平面P AQ;(2)若BE=2AE,求二面角C-BQ-A的余弦值.【解析】(1)证明法一取OO1的中点F,连接AF,PF,如图所示.∵P为BC的中点,∴PF∥OB,∵AQ∥OB,∴PF∥AQ,∴P,F,A,Q四点共面.由题图1可知OB⊥OO1,∵平面ADO1O⊥平面BCO1O,且平面ADO1O∩平面BCO1O=OO1,OB⊂平面BCO1O,∴OB⊥平面ADO1O,∴PF⊥平面ADO1O,又OD⊂平面ADO1O,∴PF⊥OD.由题意知,AO=OO1,OF=O1D,∠AOF=∠OO1D,∴△AOF ≌△OO 1D , ∴∠F AO =∠DOO 1,∴∠F AO +∠AOD =∠DOO 1+∠AOD =90°,∴AF ⊥OD . ∵AF ∩PF =F ,且AF ⊂平面P AQ ,PF ⊂平面P AQ , ∴OD ⊥平面P AQ .法二 由题设知OA ,OB ,OO 1两两垂直,∴以O 为坐标原点,OA ,OB ,OO 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设AQ 的长为m ,则O (0,0,0),A (6,0,0),B (0,6,0),C (0,3,6),D (3,0,6),Q (6,m ,0).∵点P 为BC 的中点,∴P ⎝ ⎛⎭⎪⎫0,92,3,∴OD →=(3,0,6),AQ →=(0,m ,0),PQ →=⎝ ⎛⎭⎪⎫6,m -92,-3. ∵OD →·AQ →=0,OD →·PQ→=0,∴OD→⊥AQ →,OD →⊥PQ →,又AQ →与PQ →不共线, ∴OD ⊥平面P AQ .(2)解 ∵BE =2AE ,AQ ∥OB ,∴AQ =12OB =3, 则Q (6,3,0),∴QB→=(-6,3,0),BC →=(0,-3,6).设平面CBQ 的法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·QB →=0,n 1·BC →=0,得⎩⎨⎧-6x +3y =0,-3y +6z =0,令z =1,则y =2,x =1,n 1=(1,2,1). 易得平面ABQ 的一个法向量为n 2=(0,0,1).设二面角C -BQ -A 的大小为θ,由图可知,θ为锐角,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=66,即二面角C -BQ -A 的余弦值为66.规律方法 利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. [方法技巧]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量知识证明立体几何问题有两种基本思路:一种是用向量表示几何量,利用向量的运算进行判断;另一种是用向量的坐标表示几何量,共分三步:(1)建立立体图形与空间向量的联系,用空间向量(或坐标)表示问题中所涉及的点、线、面,把立体几何问题转化为向量问题;(2)通过向量运算,研究点、线、面之间的位置关系;(3)根据运算结果的几何意义来解释相关问题.3.用向量的坐标法证明几何问题,建立空间直角坐标系是关键,以下三种情况都容易建系:(1)有三条两两垂直的直线;(2)有线面垂直;(3)有两面垂直.4.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.5.用向量证明立体几何问题,写准点的坐标是关键,要充分利用中点、向量共线、向量相等来确定点的坐标.6.利用空间向量求空间角,避免了寻找平面角和垂线段等诸多麻烦,使空间点、线、面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.7.利用法向量求距离问题的程序思想方法 第一步,确定法向量; 第二步,选择参考向量;第三步,确定参考向量到法向量的投影向量; 第四步,求投影向量的长度.8.异面直线所成的角与其方向向量的夹角:当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;否则向量夹角的补角是异面直线所成的角. 9.利用向量法求二面角大小的注意点(1)建立空间直角坐标系时,若垂直关系不明确,应先给出证明;(2)对于某些平面的法向量,要结合题目条件和图形多观察,判断该法向量是否已经隐含着,不用再求.(3)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.四、 课时作业1.在正方体1111ABCD A B C D -中,异面直线AC 与1B D 所成的角为( ) A .6π B .4π C .3π D .2π 【答案】D【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,则A (1,0,0),C (0,1,0),D (0,0,0),B 1(1,1,1), AC =(﹣1,1,0),1B D =(﹣1,﹣1,﹣1), 设异面直线AC 与B 1D 所成的角为θ, 则cos θ=11||||||AC B D AC B D ⋅⋅=0,∴θ=2π. ∴异面直线AC 与B 1D 所成的角为2π. 故选:D .2.在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30 B .60︒C .90︒D .120︒【答案】C【解析】以D 为坐标原点,分别以DA ,DC ,1DD 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系D xyz -,如图设1AD =,则()1,0,1E ,()0,1,2F ,()0,0,1G ,()1,2,0B , 所以()1,1,1EF =-,()1,2,1BG =--,0EF BG ⋅=,所以EF BG ⊥,所以异面直线EF 与BG 所成角的大小为90︒,故选:C.3.在长方体1111ABCD A B C D -中,2AB BC ==,11AA =,则直线1BC 与平面11BB DD 所成角的正弦值为( ) A .63B .102C .155D .105【答案】D【解析】解:以D 点为坐标原点,以1,,DA DC DD 所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系,则1(2,0,0),(2,2,0),(0,2,0),A B C C (0,2,1),1(2,0,1),(2,2,0),BC AC AC ∴=-=-为平面11BB D D 的一个法向量. 110cos ,558BC AC ∴<>==⋅. ∴直线1BC 与平面11BB DD 所成角的正弦值为10. 4.在正方体ABCD -A 1B 1C 1D 1中,点M 为棱C 1D 1的中点,则异面直线AM 与BD 所成角的余弦值为( ) A .2 B .3 C .2 D .3 【答案】C【解析】解:正方体ABCD -A 1B 1C 1D 1,M 为A 1B 1的中点,设正方体ABCD -A 1B 1C 1D 1棱长为1,以D 为原点建立如图所示的空间直角坐标系,A (1,0,0),M (0,12,1),B (1,1,0),D (0,0,0), AM =(-1,12,1),()110DB =,,, cos AM BD <,>=112362-+=-,所以异面直线AM 与BD所成角的余弦值为6, 5.平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =,则下列命题正确的是( ) A .α、β平行 B .α、β垂直C .α、β重合D .α、β不垂直【答案】B【解析】解:平面α的法向量(2,2,2)u =-,平面β的法向量(1,2,1)v =, 因为2420u v =-+=, 所以两个平面垂直.6.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ) A .cos n a n aθ⋅=⋅B .cos n a n aθ⋅=⋅C .sin n a n aθ⋅=⋅D .sin n a n aθ⋅=⋅【答案】D【解析】由于直线l 与平面α的夹角为θ, 其中0θπ≤<, 所以sin 0θ≥, 所以sin cos n a n a n aθ⋅=⋅=⋅.7.直三棱柱ABC —A′B′C′中,AC =BC =AA′,∠ACB =90°,E 为BB′的中点,异面直线CE 与C A '所成角的余弦值是( )A .5 B .5-C .-10 D .10 【答案】D【解析】直三棱柱ABC A B C -'''中,AC BC AA ==',90ACB ∠=︒,E 为BB '的中点. 以C 为原点,CA 为x 轴,CB 为y 轴,CC '为z 轴,建立空间直角坐标系,设2AC BC AA =='=,则(0C ,0,0),(0E ,2,1),(0C ',0,2),(2A ,0,0), (0CE =,2,1),(2C A '=,0,2)-,设异面直线CE 与C A '所成角为θ, 则||10cos ||||58CE C A CE C A θ'==='.∴异面直线CE 与C A '所成角的余弦值为1010.故选:D .8.如图,长方体1111ABCD A B C D -中,14AA AB ==,2AD =,E 、F 、G 分别是1DD 、AB 、1CC 的中点,则异面直线1A E 与GF 所成角的余弦值是( )A .0B .10C .22 D .15【答案】A【解析】如图()()()()12,0,40,0,2,2,2,0,0,4,2A E F G ,所以()()12,0,2,2,2,2A E GF =--=--所以异面直线1A E 与GF 所成角的余弦值110⋅=A E GFA E GF故选:A9.在正三棱柱111ABC A B C -中,若12AB BB ,则1AB 与1C B 所成角的大小为()A .60B .75C .105D .90【答案】D【解析】由题意可得60ABC ∠=,1BB ⊥平面ABC ;设11BB =,则2AB =,又11AB BB BA =-,11BC BC BB =+, 所以11112111()()AB BC BB BA BC BB BB BC BB BA BC BA BB ⋅=-⋅+=⋅+-⋅-⋅ 0122cos6000=+-⨯⨯-=.故11AB BC ⊥.即11AB BC ⊥,即1AB 与1C B 所成角的大小为90.故选D10.在四棱锥P ABCD -中,PA ⊥平面ABCD ,2PA =,24BC AB ==,且四边形ABCD 是矩形,E 是PD 的中点,则异面直线BE 与PC 所成角的余弦值是( )A .618-B .618C .26-D .26【答案】B【解析】根据题意建立如图空间直角坐标系所以()()()()0,0,2,2,0,0,2,4,0,0,2,1P B C E ,所以()()2,2,1,2,4,2=-=-BE PC则异面直线BE 与PC 所成角的余弦值为618⋅=BE PC BE PC 11.如图,四棱锥P ABCD -中,底面ABCD 是矩形,PA AB ⊥,PA AD ⊥,1AD =,2AB =,PAB△是等腰三角形,点E 是棱PB 的中点,则异面直线EC 与PD 所成角的余弦值是( )A 3B 6C 6D 2 【答案】B【解析】因为AB ,AD ,AP 两两垂直,以A 为原点,AB ,AD ,AP 分别为x ,y ,z 轴建立空间直角坐标系.又因为2PA AB ==,1AD =, 所以()0,0,0A ,()2,0,0B ,()2,1,0C ,()0,1,0D ,()0,0,2P因为E 是棱PB 的中点,所以22,0,22E ⎛⎫ ⎪ ⎪⎝⎭,所以22,1,22EC ⎛⎫=- ⎪ ⎪⎝⎭,()0,1,2PD =-, 所以6cos ,1111222EC PD 〈〉==++⨯+ 12.如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C 所成角的余弦值为( )A .10B .15- C .15 D 10 【答案】D【解析】由题意可得221111111111,5,2A M A B B M ABBB A M A B B M =+=-=+=221111,22B C BC BB B C BC BB =-=+=,()21111111111122cos ,210210AB BB BC BB AB BC BBA MBC A M B C A M B C ⎛⎫-⋅-⋅+ ⎪⋅⎝⎭〈〉===0122cos604102.210⨯⨯+⨯==13.若直线l 的方向向量为(1,2,3)a =-,平面α的法向量为(3,6,9)n =--,则( )A .l α⊂B .//l αC .l α⊥D .l 与α相交【答案】C【解析】解:∵直线l 的方向向量为()1,2,3a =-,平面α的法向量为()3,6,9n =--,∴13a n =-,∴a n ,∴l α⊥.14.若三棱锥P -ABC 的三条侧棱两两垂直,且满足PA =PB =PC =1,则点P 到平面ABC 的距离是( )A .66B .63 C .3D .33【答案】D【解析】解:分别以PA ,PB ,PC 所在的直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则A (1,0,0),B (0,1,0),C (0,0,1).()()1,1,0,1,0,1AB AC =-=-.设平面ABC 的一个法向量为(),,n x y z =,由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩得:00x y x z -+=⎧⎨-+=⎩.令1x =,则1y z ==.则平面ABC 的一个法向量为()1,1,1n =.所以点P 到平面ABC 的距离||33||n PA d n =⋅=. 15.长方体1111ABCD A B C D -中12,1AB AA AD ===,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A .1010B .3010C .21510D .310 【答案】B【解析】建立坐标系如图所示.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),1BC =(-1,0,2),AE =(-1,2,1).cos 〈1BC ,AE 〉==3010. 所以异面直线BC 1与AE 3016.直三棱柱111ABC A B C -中,120ABC ∠=︒,11AB BC CC ===,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B .12C 3D .34【答案】D【解析】在直三棱柱111ABC A B C -中,120ABC ∠=︒,取AC 中点O ,11AB BC CC ===,则OB A C ⊥, 所以2sin 603AC BC =︒=,以AC 的中点O 坐标原点,OB 为x 轴,OC 为y 轴,以过点O 垂直平面ABC 的垂线为z 轴,建立空间直角坐标系,如图:则30,A ⎛⎫ ⎪ ⎪⎝⎭,11,0,12B ⎛⎫ ⎪⎝⎭,1,0,02B ⎛⎫ ⎪⎝⎭,13C ⎛⎫ ⎪ ⎪⎝⎭, 所以113,22AB ⎛⎫= ⎪ ⎪⎝⎭,113,22BC ⎛⎫=- ⎪ ⎪⎝⎭, 设异面直线1AB 与1BC 所成角为θ, 则1111131344cos 422AB BC AB BC θ-++⋅===⨯⋅. 17.在正方体1111ABCD A B C D -中,M N ,分别为AD ,11C D 的中点,O 为侧面11BCC B 的中心,则异面直线MN 与1OD 所成角的余弦值为( )A .16B .14C .16-D .14- 【答案】A【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 所在直线为,,x y z 轴建立空间直角坐标系. 设正方体的棱长为2,则()()()()1100,012,121,002M N O D ,,,,,,,,, ∴()()11,1,2,1,2,1MN OD =-=--. 则11111cos,666MN ODMNODMN OD⋅===⋅.∴异面直线MN与1OD所成角的余弦值为16,故选A.18.在棱长为3的正方体1111ABCD A B C D-中,E为线段1AA中点,F为线段11C D上靠近1D的三等分点,则异面直线1A B与EF所成角的余弦值为( )A.114B.2C.3D.17【答案】B【解析】如图建立空间直角坐标系,则知1(3,0,0)A,(3,3,3)B,33,0,2E⎛⎫⎪⎝⎭,(0,1,0)F,所以1(0,3,3)A B=,33,1,2EF⎛⎫=--⎪⎝⎭,所以1119322|cos,|714||322A B EFA B EFA B EF-⋅〈〉===⋅⨯.故选:B.19.如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC=4,AB=AC,∠BAC=90°,D为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A 【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=.依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点,所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO ,则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23, 所以212212388BD AB h BD AB h h ⋅==⋅+⋅+, 即2222,16,483h h h h ===+. 所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+. 故选:A20.如图,三棱锥V ABC -的侧棱长都相等,底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,E 为线段AC 的中点,F 为直线AB 上的动点,若平面VEF 与平面VBC 所成锐二面角的平面角为θ,则cos θ的最大值是( )A 3B .23C 5D 6 【答案】D【解析】底面ABC 与侧面VAC 都是以AC 为斜边的等腰直角三角形,则Rt ABC Rt VAC ≅ ,所以VA VC BA BC ===设2VA VC BA BC VB ===== ,由E 为线段AC 的中点, 则2VE BV ==由222VE BE VB += ,所以VE EB ⊥,以E 为原点,EB 为x 轴,E C 为y 轴,EV 为z 轴, 建立空间直角坐标系,如图所示:则()2,0C ,2,0,0B ,(2V ,设,2,Fxx-,(0,2,2VC =- ,(2,0,2VB =- ,(2EV = ,(,2,2VF x x = ,设平面VBC 的一个法向量()111,,m x y z = ,则00m VC m VB ⎧⋅=⎨⋅=⎩ ,即1111220220z x ⎧=⎪⎨-=⎪⎩ , 令11x =,则11y = ,11z =, 所以()1,1,1m = .设平面VEF 的一个法向量()222,,n x y z = ,则00n EV n VF ⎧⋅=⎨⋅=⎩ ,即(222220220z x x x y z ⎧=⎪⋅+⋅+=⎪⎩, 解得20z =,令21y = ,则221x =-, 所以21,1,0n x ⎛⎫=- ⎪ ⎪⎝⎭,平面VEF 与平面VBC 所成锐二面角的平面角为θ,则22cos 22232m n x m n x xθ⋅==-+ ,将分子、分母同除以1x,可得 2222322226626x xx x =-+-+令()2226626632f x x x x ⎛⎫=-+=-+ ⎪ ⎪⎝⎭, 当22x =时,()min 3f x = , 则cos θ的最大值为:263= . 21.(多选题)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6πB .平面11D A P ⊥平面1A APC .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=- ()11221cos ,0112D P AC D P AC D P ACa b ⋅==<++-⨯1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误;对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确; 对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误; 故选:BC .22.(多选题)正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为11,,BC CC BB 的中点.则( )A .直线1D D 与直线AF 垂直B .直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点C和点G到平面AEF的距离相等【答案】BC【解析】对选项A:(方法一)以D点为坐标原点,DA、DC、1DD所在的直线分别为x、y、z轴,建立空间直角坐标系,则(0,0,0)D、(1,0,0)A、1(1,0,1)A、1,1,02E⎛⎫⎪⎝⎭、10,1,2F⎛⎫⎪⎝⎭、11,1,2G⎛⎫⎪⎝⎭.从而1(0,0,1)DD=,11,1,2AF⎛⎫=-⎪⎝⎭,从而112DD AF⋅=≠,所以1DD与直线AF不垂直,选项A错误;(方法二)取1DD的中点N,连接AN,则AN为直线AF在平面11ADD A内的射影,AN与1DD不垂直,从而AF与1DD也不垂直,选项A错误;取BC的中点为M,连接1A M、GM,则1A M AE∥,GM EF∥,易证1A MG AEF平面∥平面,从而1A G AEF∥平面,选项B正确;对于选项C,连接1AD,1D F,易知四边形1AEFD为平面AEF截正方体所得的截面四边形(如图所示),且15D H AH==12A D=1221232(5)222AD HS∆⎛⎫=-=⎪⎪⎝⎭,而113948AD HAEFDS S==四边形△,从而选项C正确;对于选项D :(方法一)由于111111112222224GEF EBG BEFG S S S ∆∆⎛⎫=-=+⨯-⨯⨯= ⎪⎝⎭梯形,而11112228ECF S ∆=⨯⨯=,而13A GEF EFG V S AB -∆=⋅,13A ECF ECF V S AB -∆=⋅,所以2A GEF A ECF V V --=,即2G AEF C AEF V V --=,点G 到平面AEF 的距离为点C 到平面AEF 的距离的二倍.从而D 错误.(方法二)假设点C 与点G 到平面AEF 的距离相等,即平面AEF 将CG 平分,则平面AEF 必过CG 的中点,连接CG 交EF 于点O ,易知O 不是CG 的中点,故假设不成立,从而选项D 错误.23.(多选题)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-设平面1B CE 的一个法向量为111(,,)n x y z =,则 由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y = 所以(1,2,1)n =,同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高, 所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△, 故C 正确;三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径22222462R ++==,所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确. 故选:CD.24.(多选题)如图,在菱形ABCD 中,2AB =,60BAD ∠=︒,将ABD △沿对角线BD 翻折到PBD △位置,连结PC ,则在翻折过程中,下列说法正确的是( )A .PC 与平面BCD 所成的最大角为45︒B .存在某个位置,使得PB CD ⊥C .当二面角P BD C --的大小为90︒时,6PC =D .存在某个位置,使得B 到平面PDC 的距离为3 【答案】BC【解析】如图所示:对A ,取BD 的中点O ,连结OP ,OC ,则当60POC ∠=时,PC 与平面BCD 所成的最大角为60︒,故A 错误;对B ,当PD PC =时,取CD 的中点N ,可得,,CD PN CD BN ⊥⊥所以CD ⊥平面PBN , 所以PB CD ⊥,故B 正确;对C ,当二面角P BD C --的大小为90时,所以90∠=POC ,所以3PO OC ==,所以6PC =,故C 正确; 对D ,因为3BN =,所以如果B 到平面PDC 的距离为3,则BN ⊥平面PCD ,则2,3,1,1PB BN PN DN ====,所以2PD =,显然不可能,故D 错误;故选:BC.25.(多选题)如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为2D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD【解析】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A,(P C B,因为点Q是PD的中点,所以Q,平面PAD的一个法向量为(0,1,0)m =,6(QC=,显然m与QC不共线,所以CQ与平面PAD不垂直,所以A不正确;3632(6,23,32),(,0,),(26,PC AQ AC=-==,设平面AQC的法向量为(,,)n x y z=,则3622260n AQ xzn AC⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z==,所以(1,2,n=-,设PC与平面AQC所成角为θ,则21sin36n PCn PCθ⋅===,所以cos3θ=,所以B正确;三棱锥BACQ-的体积为1132B ACQ Q ABC ABCV V S OP--==⋅1116322=⨯⨯⨯=,。

《空间向量的应用》课件

向量的坐标。
向量的数量积
通过对应坐标的乘积求和得到一个标量。
向量的向量积
通过对应坐标的乘积求和得到一个新的向量。
空间向量的应用
1
物理问题求解
2
空间向量非常有用,可以解决力的合成、
力的平衡以及矩形的平衡问题。
3
几何问题求解
通过使用空间向量解析,我们可以解决 各种平面和空间几何问题。
《空间向量的应用》PPT 课件
这是一份关于空间向量应用的PPT课件,我们将探讨空间向量的定义、基本运 算和广泛应用于几何、物理和工程问题的实例。
什么是空间向量?
空间向量是多维空间中的一个向量,由起点和终点确定,并可用坐标表表示。
空间向量的基本运算
向量加法
将两个向量的对应坐标相加得到新向量的坐标。
工程问题求解
在三维空间中,我们可以使用空间向量 进行建模、计算和坐标系的转换。
结论
空间向量是多维空间中一个重要的概念,广泛应用于几何、物理、工程等领 域,发挥着重要的作用。

空间向量及其运算(共22张PPT)

向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十六讲 空间向量及其应用一、复习目标要求(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。

(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二、知识精点讲解1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。

如位移、速度、力等。

相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

2.向量运算和运算率加法交换率:.a b b a+=+加法结合率:).()(c b a c b a++=++数乘分配率:.)(b a b aλλλ+=+说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。

3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。

a 平行于b 记作a ∥b。

注意:当我们说a 、b共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说a 、b平行时,也具有同样的意义。

共线向量定理:对空间任意两个向量a (a ≠)、b ,a ∥b 的充要条件是存在实数λ使b =λa注:⑴上述定理包含两个方面:①性质定理:若a ∥b (a ≠0),则有b =λa,其中λ是唯一确定的实数。

②判断定理:若存在唯一实数λ,使b =λa (a ≠0),则有a ∥b (若用此结论判断a 、b所在直线平行,还需a (或b )上有一点不在b (或a)上)。

⑵对于确定的λ和a ,b =λa 表示空间与a 平行或共线,长度为 |λa |,当λ>0时与a同向,当λ<0时与a反向的所有向量。

⑶若直线l ∥a,l A ∈,P 为l 上任一点,O 为空间任一点,下面根据上述定理来推导的表达式。

推论:如果 l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式=a t+ ①其中向量a叫做直线l 的方向向量。

在l 上取a=,则①式可化为 .)1(t t +-= ②当21=t 时,点P 是线段AB 的中点,则 ).(21+= ③ ①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。

⑶结合三角形法则记忆方程。

4.向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。

注意:向量a∥α与直线a ∥α的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理 如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①注:与共线向量定理一样,此定理包含性质和判定两个方面。

推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.y x ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。

①式叫做平面MAB 的向量表示式。

又∵.,OM OA MA -=.OM -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。

5.空间向量基本定理:如果三个向量a 、b 、c不共面,那么对空间任一向量,存在一个唯一的有序实数组x , y , z , 使.c z b y a x p++=说明:⑴由上述定理知,如果三个向量a 、b 、c不共面,那么所有空间向量所组成的集合就是{}R z y x c z b y a x p p ∈++=、、,|,这个集合可看作由向量a 、b 、c 生成的,所以我们把{a ,b ,c }叫做空间的一个基底,a ,b ,c 都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于0可视为与任意非零向量共线。

与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是0 。

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的有序实数组z y x 、、,使.OC z OB y OA x OP ++=6.数量积(1)夹角:已知两个非零向量a 、b ,在空间任取一点O ,作a=,b =,则角∠AOB 叫做向量a 与b 的夹角,记作〉〈b a,说明:⑴规定0≤〉〈b a ,≤π,因而〉〈b a,=〉〈a b ,;⑵如果〉〈b a ,=2π,则称a 与b 互相垂直,记作a ⊥b ;⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,图(3)中∠AOB =〉〈,, 图(4)中∠AOB =-π〉〈,,从而有〉〈-OB OA ,=〉-〈OB OA ,=-π〉〈OB OA ,.(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。

(3)向量的数量积:〉〈b a b a ,cos 叫做向量a 、b的数量积,记作b a ⋅。

即b a ⋅=〉〈b a b a,cos ,向量AB 方向上的正射影在e:B A e a e a ''=〉〈=⋅,cos ||(4)性质与运算率⑴〉〈=⋅e a e a,cos 。

⑴()()a b a b λλ⋅=⋅ ⑵a ⊥b ⇔b a ⋅=0 ⑵b a ⋅=b a ⋅⑶2||.a a a =⋅ ⑶()a b c a b a c ⋅+=⋅+⋅AaBaOa(3) a abaa ab aAaBaO a(1) O a a abaa a baAaBa(2)三.典例解析题型1:空间向量的概念及性质例1.有以下命题:①如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-,也是空间的一个基底。

其中正确的命题是( )()A ①② ()B ①③ ()C ②③ ()D ①②③解析:对于①“如果向量,a b 与任何向量不能构成空间向量的一组基底,那么,a b的关系一定共线”;所以①错误。

②③正确。

点评:该题通过给出命题的形式考察了空间向量能成为一组基的条件,为此我们要掌握好空间不共面与不共线的区别与联系。

例2.下列命题正确的是( )()A 若a 与b 共线,b 与c 共线,则a 与c共线;()B 向量,,a b c共面就是它们所在的直线共面;()C 零向量没有确定的方向;()D 若//a b ,则存在唯一的实数λ使得a b λ= ;解析:A 中向量为零向量时要注意,B 中向量的共线、共面与直线的共线、共面不一样,D 中需保证b 不为零向量。

答案C 。

点评:零向量是一个特殊的向量,时刻想着零向量这一特殊情况对解决问题有很大用处。

像零向量与任何向量共线等性质,要兼顾。

题型2:空间向量的基本运算例3.如图:在平行六面体1111D C B A ABCD -中,M 为11C A 与11D B 的交点。

若AB a = ,AD b = ,1AA c =,则下列向量中与BM 相等的向量是( )()A 1122a b c -++ ()B 1122a b c ++()C 1122a b c --+ ()D c b a +-2121解析:显然=+-=+=111)(21AA AB AD M B BB BM 1122a b c -++ ;答案为A 。

点评:类比平面向量表达平面位置关系过程,掌握好空间向量的用途。

用向量的方法处理立体几何问C1题,使复杂的线面空间关系代数化,本题考查的是基本的向量相等,与向量的加法.考查学生的空间想象能力。

例4.已知:,28)1(,0423p y n m x b p n m a+++=≠--=且p n m ,,不共面.若a ∥b ,求y x ,的值.解: a ∥b ,,且,,0a b aλ=∴≠即.42328)1(p n m p y n m x λλλ--=+++又p n m,,不共面,.8,13,422831=-=∴-=-=+∴y x yx 点评:空间向量在运算时,注意到如何实施空间向量共线定理。

题型3:空间向量的坐标例5.(1)已知两个非零向量=(a 1,a 2,a 3),=(b 1,b 2,b 3),它们平行的充要条件是( ) A. a :|a |=b :|b | B.a 1·b 1=a 2·b 2=a 3·b 3 C.a 1b 1+a 2b 2+a 3b 3=0 D.存在非零实数k ,使=k(2)已知向量a =(2,4,x ),b =(2,y ,2),若|a |=6,a ⊥b ,则x+y 的值是( ) A. -3或1 B.3或-1 C. -3 D.1 (3)下列各组向量共面的是( ) A. a =(1,2,3),b =(3,0,2),c =(4,2,5) B. =(1,0,0),=(0,1,0),=(0,0,1) C. =(1,1,0),=(1,0,1),=(0,1,1) D. a =(1,1,1),b =(1,1,0),c =(1,0,1) 解析:(1)D ;点拨:由共线向量定线易知; (2)A 点拨:由题知⎪⎩⎪⎨⎧=++=++024*******x y x ⇒⎩⎨⎧-==3,4y x 或⎩⎨⎧=-=.1,4y x ;(3)A 点拨:由共面向量基本定理可得。

相关文档
最新文档