实验1 激光-光纤偶合效率测试数据处理与分析

合集下载

激光光束分析实验报告讲解

激光光束分析实验报告讲解

激光光束分析实验报告讲解一、引言激光技术作为一门先进的光学技术,在多个领域发挥了重要作用。

然而,激光光束的质量往往对于激光技术的应用起到至关重要的作用。

因此,分析和评估激光光束的质量是非常必要的。

本实验旨在通过激光光束分析仪对激光光束进行质量的分析和测量。

二、实验方法1.实验仪器及材料:本实验使用的主要仪器设备为激光光束分析仪,样品为激光发生器输出的光束。

2.实验步骤:(1)打开激光光束分析仪电源,进行预热,使其工作稳定;(2)将激光发生器的输出光束对准激光光束分析仪的输入接口;(3)通过调节仪器上的参数,如位置、角度等,使得光束在仪器内部的光学系统中传播;(4)观察并记录仪器显示屏上的结果,包括光斑直径、横向和纵向耦合效率等。

三、实验结果与分析本实验记录了多组光斑直径和横向耦合效率的数据,并进行了分析。

1.光斑直径光斑直径是评估激光光束空间质量的重要参数之一、通过激光光束分析仪测量得到的光斑直径数据如下表所示:实验次数,光斑直径(mm)---------,---------------1,2.032,2.113,2.054,2.085,2.01计算得到的平均光斑直径为2.05mm,标准差为0.039mm。

可以看出,激光光束的空间质量较好,并且稳定性较高。

2.横向耦合效率横向耦合效率是评估激光光束质量的又一个关键指标。

通过激光光束分析仪测量得到的横向耦合效率数据如下表所示:实验次数,横向耦合效率---------,--------------1,80%2,83%3,81%4,79%5,82%计算得到的平均横向耦合效率为81%,标准差为1.16%。

可以看出,激光光束的横向耦合效率较高,并且稳定性较好。

四、实验结论与讨论通过本次激光光束分析实验,得到了激光光束的光斑直径和横向耦合效率的数据,并进行了分析。

结果表明,激光光束的空间质量较好,并且横向耦合效率较高。

这对于激光技术的应用具有重要的意义。

然而,本实验数据的采集样本较小,为了更准确地评估激光光束的质量,可以增加样本数量,并进行更详细的数据分析。

近代物理实验实验报告

近代物理实验实验报告

一、实验名称:光纤通讯实验二、实验目的:1. 了解光纤的基本原理和特性;2. 掌握光纤耦合效率的测量方法;3. 探究光纤数值孔径对通信系统性能的影响;4. 分析光纤通信在实际应用中的优势。

三、实验原理:光纤是一种利用光的全反射原理传输光信号的介质。

本实验通过测量光纤耦合效率、数值孔径等参数,分析光纤通信系统的性能。

四、实验仪器:1. 光纤耦合器;2. 光功率计;3. 光纤测试平台;4. 光纤光源;5. 光纤跳线。

五、实验步骤:1. 将光纤光源连接到光纤耦合器的一端,将光纤跳线连接到另一端;2. 将光纤耦合器连接到光纤测试平台上;3. 使用光功率计测量光源输出光功率;4. 将光纤跳线连接到光纤测试平台上的光纤耦合器另一端,测量输入光功率;5. 计算光纤耦合效率;6. 改变光纤跳线的长度,重复步骤4和5,分析数值孔径对通信系统性能的影响。

六、实验结果与分析:1. 光纤耦合效率:根据实验数据,计算得到光纤耦合效率为95.3%。

说明本实验所使用的光纤耦合器性能良好,能够有效地将光信号传输到另一端。

2. 数值孔径:通过改变光纤跳线长度,观察光纤耦合效率的变化。

当光纤跳线长度较短时,耦合效率较高;当光纤跳线长度较长时,耦合效率逐渐降低。

这表明光纤数值孔径对通信系统性能有较大影响。

3. 光纤通信优势:与传统的铜缆通信相比,光纤通信具有以下优势:a. 抗干扰能力强:光纤通信不受电磁干扰,信号传输稳定可靠;b. 传输速度快:光纤通信的传输速度可以达到数十Gbps,满足高速数据传输需求;c. 通信容量大:光纤通信具有较大的通信容量,可满足大量用户同时通信的需求;d. 通信距离远:光纤通信可以实现长距离传输,满足远距离通信需求。

七、实验总结:通过本次光纤通讯实验,我们了解了光纤的基本原理和特性,掌握了光纤耦合效率的测量方法,分析了数值孔径对通信系统性能的影响。

同时,我们也认识到光纤通信在实际应用中的优势,为今后从事相关领域的研究和工作奠定了基础。

实验十一光纤耦合器的原理及性能测试

实验十一光纤耦合器的原理及性能测试

实验十一光纤耦合器的原理及性能测试光纤耦合器是一种用于将光信号从一个光纤传输到另一个光纤的设备。

它通常由光源、光纤、光学元件和检测器组成。

光纤耦合器的原理是利用光学元件将光信号从一个光纤耦合到另一个光纤中,同时保持信号的传输和质量。

光纤耦合器的主要性能指标包括插损、回波损耗、偏振相关性和耦合效率。

插损是指从输入光纤到输出光纤间能量的损失程度。

回波损耗是指在耦合过程中返回到光源的光信号损失的量。

偏振相关性是指光信号在耦合过程中发生的偏振旋转程度。

耦合效率是指被输入光纤耦合到输出光纤中的光信号的比例。

为了测试光纤耦合器的性能,可以采用以下方法:1.插入损耗的测试:将光纤耦合器与光学光源和光学检测器连接起来,测量输入和输出光功率的差异。

通过比较输入和输出光功率的差值,可以计算出耦合器的插损。

2.回波损耗的测试:将光纤耦合器的输入端连接到光源,输出端连接到光学检测器,并将光学反射镜连接到输出端。

测量从光源输入到输出端的光功率损失,以确定回波损耗。

3.偏振相关性的测试:将光纤耦合器的输入端连接到偏振光源,输出端连接到光学检测器,并通过改变输入端的偏振方向来测量输出端的光功率变化。

通过测量光功率的变化,可以确定光纤耦合器的偏振相关性。

4.耦合效率的测试:将光纤耦合器的输入端连接到光学光源,输出端连接到光学检测器,并将光纤耦合器连接到光纤,并测量输入光功率和输出光功率。

通过比较输入和输出光功率,可以计算出耦合效率。

此外,还可以通过使用OTDR(光时域反射仪)等仪器来测量光纤的损耗和传输性能。

通过TOF(飞行时间)测量等方法,可以实现对光纤传输的延迟和带宽的测量。

总之,了解光纤耦合器的原理以及性能测试的方法对于光纤通信系统中的光信号传输至关重要。

通过对光纤耦合器的性能进行测试,可以确保光信号在传输过程中的稳定性和最佳质量。

激光二极管与单模光纤的耦合效率研究

激光二极管与单模光纤的耦合效率研究
第3 O卷第 1 8期
Vo _0 No 1 l3 .8
企 业 技 术 开 发
T CHNOL E OGI AL DEVE OP C L MENT OF E E RIE NT RP S
2 1 年 9月 01
S p.011 e 2
激光 二极 管与单模 光纤 的耦合 效率研 究
耵Ex )2,d y/ l,E(y x ,E(y x l[ (y * ,d y (y * )d 盯E x)l ) d x x () 3
有效地预测实验结果 ,对实现光信号 的有效耦合将起决 定性 的作用 。关于激光二极管 与光纤 的耦合特性人们做 过很多相关 的研究。 文章 以重叠面积积分计算方法为基础 ,运用 高斯光 束变换的 A C B D定律 ,来研究带尾纤光源与光纤 之间的 耦合效率问题 。依据高斯光束特性 以及实际耦合过程 中 存在 的偏移情况 ,给出激光光源与光纤之间的耦合效率 的计算式和模拟结果。
当高斯光束在均匀介质 中传播时 ,其场分布可表示
为:
E( ,,) ( 0 x {i z -( ) xyz =1 E p -[ 一 z + ) e 0 k q ] () ) z () 2
2 z q( J
式 中, z为附加相移 ,。 ( ) ∞ 为光腰半径。
2 耦合效率
陈 芳 ’杨 成 林 2 ,
(. 1四川师范大学 成都学 院 , 四川 成都 6 14 ; 17 5 2电子科技大学 自动化工程学 院, . 四川 成都 6 13 ) 17 1
摘 要 : 章 在 重 叠 面积 积 分 计 算 方 法 基 础 上 来研 究光 源与 光 纤 之 间 的耦 合 效 率 问题 。依 据 高斯 光 束 特 性 以 文

实验1-1光纤数值孔径(NA)性质和测量实验

实验1-1光纤数值孔径(NA)性质和测量实验

实验1-1 光纤数值孔径(NA )性质和测量实验一、 实验目的1、 熟悉光纤数值孔径的定义和物理意义2、 掌握测量光纤数值孔径的基本方法二、 实验原理和设备光纤数值孔径(NA )是光纤能接收光辐射角度范围的参数,同时它也是表征光纤和光源、光检测器及其它光纤耦合时的耦合效率的重要参数。

图一示出了阶梯多模光纤可接收的光锥范围。

因此光纤数值孔径就代表光纤能传输光能的大小,光纤的NA 大,传输能量本领大。

NA 的定义式是0sin NA n θ==式中0n 为光纤周围介质的折射率,θ为最大接受角。

1n 和2n 分别为光纤纤芯和包层的折射率。

光纤在均匀光场下,其远场功率角分布与理论数值孔径m NA 有如下关系:NA m Sin *=καθ其中θ是远场辐射角,Ka 是比例因子,由下式给出:[])0(/)(2/1P P g θκα-=式中P (0)与P (θ)分别为θ=0和θ=θ处远场辐射功率,g 为光纤折射率分布参数。

计算结果表明,若取P (θ)/P (0)=5%,在g ≥2时Ka 的值大于0.975。

因此可将对应于P (θ)曲线上光功率下降到中心值5%处的角度θe ,其正弦值定义为光纤的数值孔径,并称之为有效数值孔径: e eff NA θsin =本实验正是根据上述原理和光路可逆原理来进行的。

三、实验装置He-Ne 激光器、读数旋转台、塑料光纤、光纤微调架、毫米尺、白屏、短波长光功率计四、实验步骤方法一: 1、He-Ne激光器和光功率计的电源,调整实验系统;a.调整He-Ne激光管,使激光束平行于实验平台面;b.调整旋转台,使He-Ne激光束通过旋转轴线(读数旋转台轴线与光纤所在面交点已在旋转台上标出);c.取待测光纤,一端经旋转台上的光纤微调架与激光束耦合,另一端与光探测器相连;d.仔细调节光纤微调架,使光纤端面准确位于旋转台的旋转轴心线上...................,并辅助调节旋转台使光纤的输出功率最大。

关于光纤耦合的实习报告

关于光纤耦合的实习报告

实习报告实习内容:光纤耦合实习时间:xxxx年xx月xx日至xxxx年xx月xx日实习单位:xxxx科技有限公司一、实习背景及目的在我国科技事业的高速发展下,光纤通信技术得到了广泛应用。

光纤耦合作为光纤通信系统中的关键部分,其性能的好坏直接影响到整个系统的传输效率。

为了更好地了解光纤耦合的原理及其在实际应用中的性能表现,我选择了xxxx科技有限公司进行为期一个月的实习,主要学习光纤耦合的相关知识和实践操作。

二、实习内容及过程1. 光纤耦合基本原理实习期间,我首先了解了光纤耦合的基本原理。

光纤耦合是指将两个或多个光纤的光能量相互转移的过程。

其原理主要是利用光纤的模场直径、折射率、耦合长度等参数,使得光能量在光纤之间实现高效转移。

光纤耦合的方式有多种,如光纤端面耦合、光纤锥形耦合、光纤光栅耦合等。

2. 光纤耦合器件的制作与测试在实习过程中,我参与了光纤耦合器件的制作与测试。

首先,我学习了光纤耦合器件的制作工艺,包括光纤切割、光纤熔接、光纤耦合器的设计与制作等。

在制作过程中,我深刻体会到了光纤耦合技术在实际操作中的细节问题,如光纤的切割角度、耦合长度、耦合效率等。

接下来,我参与了光纤耦合器件的性能测试。

测试过程中,我们使用光学仪器测量了光纤耦合的插入损耗、回波损耗、耦合效率等参数。

通过测试结果,我们分析了光纤耦合器件的性能优劣,并为优化设计提供了依据。

3. 光纤耦合在实际应用中的性能表现在实习期间,我还学习了光纤耦合在实际应用中的性能表现。

光纤耦合在光通信系统、光纤传感器、光纤激光器等领域具有重要作用。

通过对实际应用场景的了解,我认识到光纤耦合性能的优劣直接影响到整个系统的性能表现。

例如,在光通信系统中,光纤耦合的插入损耗越小,系统的传输效率越高;在光纤传感器中,光纤耦合的灵敏度越高,传感器的检测精度越高。

三、实习收获及体会通过这次实习,我对光纤耦合的基本原理、制作工艺及其在实际应用中的性能表现有了更深入的了解。

空间激光与单模光纤和光子晶体光纤的耦合效率

空间激光与单模光纤和光子晶体光纤的耦合效率

空间激光与单模光纤和光子晶体光纤的耦合效率陈雪坤;张璐;吴志勇【摘要】为了设计最优光纤耦合系统,利用高斯模场近似单模阶跃光纤的模场和大模面积光子晶体光纤的模场,推导出了理想情况下空间激光与这两种光纤的耦合效率解析表达式以及光纤端面相对于耦合系统存在横向偏移和端面倾斜时的耦合效率解析表达式.基于上述理论表达式计算了空间激光与光纤的耦合效率,并通过实验验证了此理论表达式的有效性.理论计算和实验均证实了单模阶跃光纤对于横向偏移更敏感,当横向偏移量等于单模光纤的纤芯半径时所对应的耦合效率只有20.25%,为理论最大值的1/4;而大模面积光子晶体光纤对于端面倾斜更加敏感,当端面倾斜2°时对应的耦合效率只有40.5%,为理论最大值的1/2.所提出理论表达式和实验方法完全可以为设计光纤耦合系统提供准确的参数.【期刊名称】《中国光学》【年(卷),期】2013(006)002【总页数】8页(P208-215)【关键词】单模光纤;光子晶体光纤;空间激光;光纤耦合;耦合效率;横向偏移;端面倾斜【作者】陈雪坤;张璐;吴志勇【作者单位】中国科学院长春光学精密机械与物理研究所,吉林长春130033;中国科学院大学,北京100049;中国科学院长春光学精密机械与物理研究所,吉林长春130033;中国科学院大学,北京100049;中国科学院长春光学精密机械与物理研究所,吉林长春130033【正文语种】中文【中图分类】TN25;TN249空间光与光纤的耦合技术是激光雷达系统、自由空间光通信系统和恒星干涉仪系统中的关键和难点技术。

在这些系统中高效率的空间光耦合是实现高性能系统的前提。

空间光与光纤的耦合效率通常受耦合模场不匹配、横向偏移、端面倾斜和系统随机角抖动[1-4]等因素的影响。

对于星际自由空间光通信,激光经过几千公里的传输后其光斑有km量级的直径,而接收光学系统的口径不过cm量级(一般不超过20 cm),因此接收的光波完全可近似为平面波。

光信息专业实验报告:全光纤耦合器件 (4)

光信息专业实验报告:全光纤耦合器件 (4)

光信息专业实验报告:全光纤耦合器件一、实验目的和内容1、了解全光纤耦合器件的工作原理和制作工艺,即熔融拉锥技术。

2、认识全光纤耦合器件的基本技术参量的实际意义,学会测量插入损耗、附加损耗、分光比、偏正相关损耗等。

3、分析测量误差的来源。

二、实验基本原理在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。

采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。

考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期内完成耦合。

合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。

熔融拉锥机的控制原理模块图如图1所示。

熔融拉锥型光纤耦合器工作原理示意图如图2所示。

图1 熔融拉锥机系统控制示意图图2 熔融拉锥型光纤耦合器工作原理示意图1、单模耦合器HE信号。

图3是单模光纤耦合器的迅衰场耦在单模光纤中传导模是两个正交的基模11合示意图。

但传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。

实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V 值重新增大,光功率被两根纤芯以特定比例“捕获”。

设初始条件为:,0)0(,1)0(21==P P 且两光纤有相同的传输常数21ββ=,则可由理论上导出输出功率为),(sin ),(cos 2423CL P CL P ==其中C 为耦合系数,有耦合区结构决定;L 为耦合区有效相互作用长度。

图3 单模光纤耦合器的迅衰场耦合示意图通过对拉伸程度和熔融程度的细致控制,合理调整参数,就可以获得不同分光比的光耦合器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
激光-光纤耦合效率测量数据处理与分析
1、数据处理与分析
表1 激光-光纤耦合效率测量数据表
532=532nmnm单模:=540nm;多模:;入射光:

项目
1

()PmW

2
(m)PW

1

2
100%PP

单模光纤 0.329 1.702 22.27%
多模光纤 1.203 1.702 70.68%

分析:由表1 激光-光纤耦合效率测量数据表可知,实验所测得的单
模光纤耦合效率约为22.27%;而多模光纤耦合效率约为
70.68%;很明显,多模光纤耦合效率远远高于单模光纤的耦合
效率。

2、误差分析
本实验误差较大,主要来自于以下几方面:
(1)激光器、显微镜以及光纤不可能百分百的准直,一定会存
在微小的偏差,这会对实验结果产生一定的误差。
(2)光源并没有接触光纤,也就是说光需要在空气中传输一小
段距离才能进入光纤,这会有一定的衰减,这也会造成一定的误差。
(3)由于光纤具有衰减因素,所以光在光纤中传输也会有一定
的衰减,导致所测得的进入光纤的光功率偏小,从而导致耦合效率偏
2

低。
(4)另外,光纤接口,以及弯曲都会影响光纤的耦合效率,从
而导致实验误差。实验中注意到用手稍微抬着光纤接口附近一点,以
及尽量使光纤直,会使光功率变大,这说明光纤弯曲也会导致实验误
差,使实验所测得的耦合效率偏小。

3、实验总结
通过此次实验,我明白了光纤与光源耦合方法的原理及提高耦合
效率的措施;对激光器输出光强度的分布有了深入地学习和了解;对
光纤的模式及基模光强度的分布有了新的认识。同时也学会了如何测
量光纤与光源的耦合效率,知道了影响光纤与光源耦合效率的因素以
及如何提高光纤耦合效率。

4、思考题
(1)分析提高耦合效率的关键途径。
答:①使用多模光纤进行传输;②使用透镜对光源进行聚焦后再
送入光纤;③增大光纤数值孔径;④使用发射面极小的激光光源;
⑤在耦合处尽量使光纤准直。
(2)实验中是否可以更换其它的聚焦透镜,有何依据?
答:实验中不可以更换其它聚焦透镜。原因有二,其一,为了最
有效地把光入射到光纤中去,通常应采用其数值孔径与光纤数值孔径
相同的透镜进行聚光,如果更换就会影响激光与光纤的耦合效率,从
3

而影响实验结果的准确性。其二,更换聚焦透镜就意味着调节好的准
直光路受到破坏,将不能再继续实验,如果要继续实验需要重新对实
验光路进行调整准直,所以实验中不能更换聚焦透镜。
(3)比较激光器耦合进入 532nm 单模、多模光纤的效率差异,解释
为什么?
答:比较可知,实验所测得的单模光纤耦合效率约为22.27%;
而多模光纤耦合效率约为70.68%;很明显,多模光纤耦合效率远远
高于单模光纤的耦合效率。这是因为:①多模光纤的纤芯直径远大于
单模光纤的纤芯直径;②多模光纤的数值孔径也大于单模光纤的数值
孔径;③多模光纤可传输多种模式的光,而单模光纤只能传输一种模
式的光。所以,多模光纤耦合效率远远高于单模光纤的耦合效率。

相关文档
最新文档