华师大版数学八年级下册第20章达标检测试题及答案

合集下载

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套

最新华师大版八年级数学下册单元测试题及答案全套第16章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.使分式2x -1有意义的x 的取值范围是( )A .x ≠0B .x >1C .x <1D .x ≠1 2.计算3x -2x 的结果是( )A.6x 2B.6xC.52xD.1x3.一种微粒的半径是0.000041米,0.000041这个数用科学记数法可表示为( )A .41×10-6B .4.1×10-5C .0.41×10-4D .4.1×10-44.如果把2y2x -3y 中的x 和y 都扩大5倍,那么分式的值( )A .扩大5倍B .不变C .缩小为原来的15 D .扩大4倍5.分式方程1x =2x -2的解为( )A .x =2B .x =-2C .x =-23D .x =236.已知a =⎝⎛⎭⎫12-2,b =-⎪⎪⎪⎪-12,c =(-2)3,则a ,b ,c 的大小关系是( ) A .b <a <c B .b <c <aC .c <b <aD .a <c <b7.化简a 2-4a 2+2a +1÷a 2-4a +4(a +1)2-2a -2的结果为( ) A.a +2a -2 B.a -4a -2 C.a a -2D .a 8.若关于x 的分式方程2x -a x -2=12的解为非负数,则a 的取值范围是( )A .a ≥1B .a >1C .a ≥1且a ≠4D .a >1且a ≠49.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时.由题意列出方程,其中正确的是( )A.110x +2=100x B.110x =100x +2C.110x -2=100x D.110x =100x -210.关于x 的分式方程5x =ax -5有解,则字母a 的取值范围是( )A .a =5或a =0B .a ≠0C .a ≠5D .a ≠5且a ≠0二、填空题(每小题3分,共24分) 11.当x =________时,分式x -13x +2的值为0.12.当a =2016时,分式a 2-4a -2的值是________.13.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种________公顷.14.当x =________时,分式1-x x +5的值与x -1x -2的值互为相反数. 15.若a 2+5ab -b 2=0,则b a -ab的值为________.16.若关于x 的分式方程x x -3-2=m 2x -3无解,则m =________.17.若x +y =1,且x ≠0,则⎝⎛⎭⎫x +2xy +y 2x ÷x +yx 的值为________.18.已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是________km/h.三、解答题(共66分)19.(每小题4分,共8分)计算:(1)9-4×⎝⎛⎭⎫12-2+|-5|+(π-3)0;(2)⎝⎛⎭⎫1+1a -1÷aa 2-2a +1.20.(每小题6分,共12分)解方程: (1)1-x x -2=1-3x -2;(2)x x -2+2x 2-4=1.21.(每小题6分,共12分)先化简,再求值: (1)a a -b ⎝⎛⎭⎫1b -1a +a -1b ,其中a =2,b =13;(2)先化简:x 2+x x 2-2x +1÷⎝⎛⎭⎫2x -1-1x ,然后再从-2<x ≤2的范围内选取一个合适的x 的整数值代入求值.22.(每小题6分,共12分)按要求完成下列各题.(1)已知实数m ,n 满足关系1m +n +1m -n =nm 2-n 2,求2mn +n 2m 2;(2)如果3(x +1)(x -2)=Ax +B x +1+Cx -2,求A ,B ,C 的值.23.(10分)某商店第一次用600元购进2B 铅笔若干支,第二次又用600元购进该款铅笔,但这次每支铅笔的进价是第一次进价的54倍,购进数量比第一次少了30支.(1)求第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支铅笔售价至少是多少元?24.(12分)有一列按一定顺序和规律排列的数:第一个数是11×2;第二个数是12×3;第三个数是13×4;……对任何正整数n ,第n 个数与第(n +1)个数的和等于2n (n +2).(1)经过探究,我们发现:11×2=11-12,12×3=12-13,13×4=13-14.设这列数的第5个数为a ,那么a >15-16,a =15-16,a <15-16,哪个正确?请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明“第n 个数与第(n +1)个数的和等于2n (n +2)”;(3)设M 表示112,122,132,…,120162,这2016个数的和,即M =112+122+132+…+120162,求证:20162017<M <40312016.参考答案与解析1.D 2.D 3.B 4.B 5.B 6.C 7.C 8.C 9.A10.D 解析:原分式方程可化为(5-a )x =25,即x =255-a .∵原分式方程有解,∴x ≠5,∴255-a≠5,即a ≠0,又当5-a =0时整式方程无解,则a ≠5.综上所述,a ≠5且a ≠0.11.1 12.2018 13.aAm (m -a )14.1 15.5 16.±3 17.118.80 解析:设这辆汽车原来的速度是x km/h ,由题意列方程得160x -0.4=160x (1+25%),解得x =80.经检验,x =80是原方程的解,所以这辆汽车原来的速度是80km/h.19.解:(1)原式=3-4×4+5+1=-7.(4分)(2)原式=a a -1÷a (a -1)2=a a -1·(a -1)2a =a -1.(8分)20.解:(1)方程两边同乘以x -2,得1-x =x -2-3.解得x =3.(4分)检验:当x =3时,x -2≠0,故原分式方程的解是x =3.(6分)2)(x +2)≠0,故原分式方程的解是x =-3.(12分)21.解:(1)原式=a a -b ·a -b ab+a -1b =1b +a -1b =a b .(4分)当a =2,b =13时,原式=213=6.(6分)(2)原式=x (x +1)(x -1)2÷2x -(x -1)x (x -1)=x (x +1)(x -1)2·x (x -1)x +1=x2x -1.(9分)其中⎩⎪⎨⎪⎧(x -1)2≠0,(x -1)x ≠0,x +1≠0,即x ≠-1,0,1.又∵-2<x ≤2且x 为整数,∴x =2.(10分)当x =2时,原式=222-1=4.(12分)22.解:(1)由1m +n +1m -n =2m m 2-n 2=nm 2-n 2可得n =2m (3分),将n =2m 代入2mn +n 2m 2=2m ·2m +(2m )2m 2=8.(6分)(2)Ax +B x +1+C x -2=(Ax +B )(x -2)+C (x +1)(x +1)(x -2)=Ax 2+(B +C -2A )x +C -2B (x +1)(x -2)=3(x +1)(x -2)(9分),∴⎩⎪⎨⎪⎧A =0,B +C -2A =0,C -2B =3,∴⎩⎪⎨⎪⎧A =0,B =-1,(12分)C =1.23.解:(1)设第一次每支铅笔进价为x 元,根据题意列方程得600x -60054x =30,解得x =4.(3分)经检验:x =4是原分式方程的解.(4分)答:第一次每支铅笔的进价为4元.(5分)(2)设每支铅笔售价为y 元,第一次每支铅笔的进价为4元,则第二次每支铅笔的进价为4×54=5元.(6分)根据题意列不等式为6004·(y -4)+6005·(y -5)≥420,解得y ≥6.(9分)答:每支铅笔售价至少是6元.(10分) 24.(1)解:a =15×6=15-16正确.(2分)(2)解:第n 个数为1n (n +1)(3分),∵第(n +1)个数为1(n +1)(n +2),∴1n (n +1)+1(n +1)(n +2)=1n +1(1n +1n +2)=1n +1·n +2+n n (n +2)=1n +1·2(n +1)n (n +2)=2n (n +2),即第n 个数与第(n+1)个数的和等于2n (n +2).(5分)(3)证明:∵1-12=11×2<112=1,12-13=12×3<122<11×2=1-12,13-14=13×4<132<12×3=12-13,…,12015-12016=12015×2016<120152<12014×2015=12014-12016,12016-12017=12016×2017<120162<1=1-1,(7分)∴1-1<12+12+12+…+12+12<2-1,(9分)即2016<12+122+132+…+120152+120162<40312016,(11分)∴20162017<M <40312016.(12分)第17章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.在函数y =2x -4中,自变量x 的取值范围是( ) A .x >2 B .x ≤2 C .x ≥2 D .x ≠22.在平面直角坐标系中,点P (-2,-3)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知甲、乙两地相距20千米,汽车从甲地匀速行驶到乙地,则汽车行驶时间t (单位:小时)关于行驶速度v (单位:千米/时)的函数关系式是( )A .t =20vB .t =20vC .t =v 20D .t =10v4.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x 的关系的大致图象是( )5.下面四条直线,其中直线上每个点的坐标都是二元一次方程x -2y =2的解的是( )6.反比例函数y =6x 的图象上有两点(-2,y 1),(1,y 2),那么y 1与y 2的关系为( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能确定7.在平面直角坐标系中,把直线y =x 向左平移一个单位长度后,所得直线的解析式为( ) A .y =x +1 B .y =x -1 C .y =x D .y =x -28.当a ≠0时,函数y =ax +1与函数y =ax在同一坐标系中的图象可能是( )9.如图,直线y =mx 与双曲线y =kx 交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为点M ,连接BM ,若S △ABM =2,则k 的值为( )A .-2B .2C .4D .-4第9题图第10题图10.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s (单位:米)与他所用的时间t (单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分;④小刚上课迟到了1分钟.其中正确的个数是( )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.若y =(a +3)x +a 2-9是正比例函数,则a =________.12.已知一次函数y =(1+m )x +m -2,若y 随x 的增大而增大,则m 的取值范围是________. 13.已知点A (x ,1)与点B (2,y )关于y 轴对称,则(x +y )2016的值为________.14.已知点(3,5)在直线y =ax +b (a ,b 为常数,且a ≠0)上,则ab -5的值为________.15.如图,一个正比例函数的图象与一次函数y =-x +1的图象相交于点P ,则这个正比例函数的表达式是________________________________________________________________________.第15题图第16题图16.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =-4x 和y =2x 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC ,BC ,则△ABC 的面积为________.17.直线y =kx (k >0)与双曲线y =2x 交于A 、B 两点.若A 、B 两点的坐标分别为A (x 1,y 1)、B (x 2,y 2),则x 1y 2+x 2y 1的值为________.与时间x (min)的函数关系如图所示.已知药物燃烧阶段,y 与x 成正比例,燃完后y 与x 成反比例.现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.当每立方米空气中含药量低于1.6mg 时,对人体无毒害.那么从消毒开始,经过________min 后学生才可进入教室.三、解答题(共66分)19.(8分)已知一次函数y =2x +4.(1)在如图所示的平面直角坐标系中,画出函数的图象;(2)求图象与x 轴的交点A 的坐标,与y 轴的交点B 的坐标; (3)在(2)的条件下,求出△AOB 的面积;(4)利用图象直接写出当y <0时,x 的取值范围.20.(10分)如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x ,y 的方程组⎩⎪⎨⎪⎧y =x +1,y =mx +n ,请直接写出它的解;(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.21.(10分)已知反比例函数y =kx (k 为常数,k ≠0)的图象经过点A (2,3).(1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.22.(12分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=mx (m ≠0)的图象交于点A (-1,6),B (a ,-2).(1)求一次函数与反比例函数的解析式;(2)根据图象直接写出y 1>y 2时,x 的取值范围.23.(12分)在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x ,购票款为y ):方案一:提供8000元赞助后,每张票的票价为50元; 方案二:票价按图中的折线OAB 所表示的函数关系确定.(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少? (2)求方案二中y 与x 的函数关系式;(3)至少买多少张票时选择方案一比较合算?24.(14分)快、慢两车分别从相距180千米的甲、乙两地同时出发,沿同一路线匀速行驶,相向而行,快车到达乙地停留一段时间后,按原路原速返回甲地.慢车到达甲地比快车到达甲地早12小时,慢车速度是快车速度的一半,快、慢两车到达甲地后停止行驶,两车距各自出发地的路程y (千米)与所用时间x (小时)的函数图象如图所示,请结合图象信息解答下列问题:(1)请直接写出快、慢两车的速度;(2)求快车返回过程中y (千米)与x (小时)的函数关系式; (3)两车出发后经过多长时间相距90千米的路程?参考答案与解析1.C 2.C 3.B 4.B 5.C 6.C 7.A 8.A 9.A10.B 解析:∵小刚从家出发7分钟时与家的距离是1200米,即小刚从家出发7分钟时距离学校3500-1200=2300(m),∴公交车的速度为2300-30012-7=400米/分,故①正确;由①知公交车速度为400米/分,∴公交车行驶的时间为3100-300400=7(分钟),12-7=5(分钟),∴小刚从家出发5分钟时乘上公交车,故②正确;∵从上公交车到他到达学校共用10分钟,∴小刚从下公交车后跑向学校的速度是30010-7=100米/分,故③正确;∵小刚从下车至到达学校所用时间为5+10-12=3(分钟).而小刚下车时发现还有4分钟上课,∴小刚上课提前1分钟,故④错误.故选B.11.3 12.m >-1 13.1 14.-1315.y =-2x16.3 解析:设P (0,b ),∵直线AB ∥x 轴,∴A ,B 两点的纵坐标都为b .∵点A 在反比例函数y =-4x 的图象上,∴当y =b 时,x =-4b ,即A 点坐标为⎝⎛⎭⎫-4b ,b .又∵点B 在反比例函数y =2x 的图象上,∴当y =b 时,x =2b ,即B 点坐标为⎝⎛⎭⎫2b ,b ,∴AB =2b -⎝⎛⎭⎫-4b =6b ,∴S △ABC =12·AB ·OP =12·6b·b =3.17.-418.50 解析:设药物燃烧后y 与x 之间的函数解析式为y =k 2x ,把点(10,8)代入y =k 2x ,得8=k 210,解得k 2=80,∴y 关于x 的函数式为y =80x ;当y =1.6时,1.6=80x ,解得x =50,∴50分钟后学生才可进入教室.19.解:(1)当x =0时,y =4,当y =0时,x =-2,则图象如图所示.(2分)(2)由(1)可知A (-2,0),B (0,4).(4分) (3)S △AOB =12×2×4=4.(6分)(4)x <-2.(8分)20.解:(1)∵点P 在直线l 1上,∴b =1+1=2.(2分)(2)⎩⎪⎨⎪⎧x =1,y =2.(4分) (3)直线y =nx +m 也经过点P .(6分)理由如下:∵直线y =mx +n 经过点P (1,2),∴2=m +n .当x =1时,y =n +m =2,即直线l 3也经过点P .(10分)21.解:(1)∵y =k x 的图象经过点A (2,3),∴3=k 2,解得k =6,∴y =6x.(2分)(2)当x =-1时,y =6-1=-6;当x =3时,y =63=2,∴点B 不在此函数的图象上,点C 在此函数的图象上.(6分)(3)∵当x =-3时,y =-2;当x =-1时,y =-6.(8分)又由k >0知,在x <0时,y 随x 的增大而减小, ∴y 的取值范围是-6<y <-2.(10分)22.解:(1)把点A (-1,6)代入反比例函数y 2=m x (m ≠0),得m =-1×6=-6,∴y 2=-6x .(3分)将B (a ,-2)代入y 2=-6x ,得-2=-6a,解得a =3,∴B (3,-2).(5分)将A (-1,6),B (3,-2)代入一次函数y 1=kx +b ,得⎩⎪⎨⎪⎧-k +b =6,3k +b =-2,解得⎩⎪⎨⎪⎧k =-2,b =4.∴y 1=-2x +4.(8分)(2)由函数图象可得:当y 1>y 2时,x <-1或0<x <3.(12分)23.解:(1)按方案一应付购票款8000+120×50=14000元,(1分)按方案二应付购票款13200元.(2分)(2)设直线OA 的解析式为y =k 1x ,由图可知其过点A (100,12000),则100k 1=12000,k 1=120.∴直线OA 的解析式为y =120x .(4分)设直线AB 的解析式为y =k 2x +b ,由图可知其过点A (100,12000),B (120,13200),可得⎩⎪⎨⎪⎧100k 2+b =12000,120k 2+b =13200,解得⎩⎪⎨⎪⎧k 2=60,b =6000,∴直线AB 的解析式为y =60x +6000,(7分)∴y =⎩⎪⎨⎪⎧120x (0≤x ≤100),60x +6000(x ≥100).(8分)(3)设至少买x 张票时选择方案一比较合算.由题意可知60x +6000>8000+50x ,解得x >200.∴至少买201张票时选择方案一比较合算.(12分)24.解:(1)慢车速度为180÷⎝⎛⎭⎫72-12=60(千米/时),(1分)快车速度为60×2=120(千米/时).(2分) (2)快车停留的时间为72-180120×2=12(小时),12+180120=2(小时),即C (2,180).(3分)设CD 的解析式为y=kx +b ,则将C (2,180),D ⎝⎛⎭⎫72,0代入,得⎩⎪⎨⎪⎧180=2k +b ,0=72k +b ,解得⎩⎪⎨⎪⎧k =-120,b =420,∴快车返回过程中y (千米)与x (小时)的函数关系式为y =-120x +420⎝⎛⎭⎫2≤x ≤72.(7分) (3)相遇之前:120x +60x +90=180,解得x =12;(9分)相遇之后:120x +60x -90=180,解得x =32;(11分)快车从甲地到乙地需要180÷120=32(小时),快车返回之后:60x =90+120⎝⎛⎭⎫x -12-32,解得x =52.(13分)综上所述,两车出发后经过12或32或52小时,相距90千米的路程.(14分)第18章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分) 1.已知▱ABCD 的周长为32,AB =4,则BC 的长为( ) A .4 B .12 C .24 D .282.如图,在▱ABCD 中,若∠A =2∠B ,则∠D 的度数是( ) A .50° B .60° C .70° D .80°第2题图第3题图3.如图,▱ABCD 的对角线AC ,BD 相交于点O ,下列结论正确的是( ) A .S ▱ABCD =4S △AOB B .AC =BDC .AC ⊥BD D .▱ABCD 是轴对称图形4.在下列图形的性质中,平行四边形不一定具有的是( ) A .对角相等 B .对角互补C .对边相等D .对角线互相平分5.在平面直角坐标系中,有A (0,1),B (-1,0),C (1,0)三点,若点D 与A ,B ,C 三点构成平行四边形,则点D 的坐标不可能是( )A .(0,-1)B .(-2,1)C .(-2,-1)D .(2,1)6.如图,已知四边形ABCD的面积为8cm2,AB∥CD,AB=CD,E是AB的中点,那么△AEC的面积是()A.4cm2B.3cm2C.2cm2D.1cm2第6题图第7题图7.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DFC.AD=2BF D.BE=2CF8.如图,在▱ABCD中,BE平分∠ABC交AD于点E,CF平分∠BCD交AD于点F,AB=3,AD=5,则EF的长为()A.1 B.1.5 C.2 D.2.5第8题图第9题图第10题图9.如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F,则△EDF 与△BCF的周长之比是()A.1∶2 B.1∶3 C.1∶4 D.1∶510.如图,以▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是()A.120°B.135°C.150°D.45°二、填空题(每小题3分,共24分)11.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.12.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足为E,F,若∠EAF=59°,则∠B=________度.第12题图第13题图第14题图13.如图,在△ABC中,AB=AC=5,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF 为平行四边形,DE=2,则AD=________.14.如图,4×4的方格中每个小正方形的边长都是1,若四边形ABDC的面积记作S1,四边形ECDF 的面积记作S2,则S1与S2大小关系是__________.15.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成________个平行四边形.第15题图第16题图16.如图,四边形ABCD中,AD∥BC,作AE∥DC交BC于E.△ABE的周长是25cm,四边形ABCD 的周长是37cm,那么AD=________cm.17.如图,点A 是反比例函数y =-6x (x <0)的图象上的一点,过点A 作▱ABCD ,使点B ,C 在x 轴上,点D 在y 轴上,则▱ABCD 的面积为________.第17题图第18题图18.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是________[提示:直角三角形中,斜边上的中线等于斜边的一半].①∠DCF =12∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .三、解答题(共66分)19.(8分)如图,四边形ABCD 是平行四边形,AE 平分∠BAD ,交DC 的延长线于点E .求证:DA =DE .20.(10分)如图,四边形ABCD 是平行四边形,延长BA 至点E ,使AE +CD =AD ,连接CE . 求证:CE 平分∠BCD .21.(10分)如图,在直角三角形ABC 中,∠ACB =90°,AC =BC =10,将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1.(1)线段A 1C 1的长度是________,∠CBA 1的度数是________; (2)连接CC 1,求证:四边形CBA 1C 1是平行四边形.22.(12分)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC.(1)求证:四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.23.(12分)如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE =DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.24.(14分)在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.(1)当点D在边BC上时,如图①,求证:DE+DF=AC;(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明;(3)若AC=6,DE=4,则DF=________.参考答案与解析1.B 2.B 3.A 4.B 5.C 6.C 7.D 8.A 9.A10.B 解析: ∵四边形ABCD 是平行四边形,∴AD =BC ,∠BAD =∠BCD ,∠BAD +∠ADC =180°.∵AD =DE =CE ,∴AD =DE =CE =BC ,∴∠DAE =∠AED ,∠CBE =∠CEB .∵∠DEC =90°,∴∠EDC =∠ECD =45°.设∠DAE =∠AED =x ,∠CBE =∠CEB =y ,∴∠ADE =180°-2x ,∠BCE =180°-2y .∴∠ADC =∠ADE +∠EDC =180°-2x +45°=225°-2x ,∠BCD =∠BCE +∠ECD =225°-2y ,∴∠BAD =180°-(225°-2x )=2x -45°,∴2x -45°=225°-2y ,∴x +y =135°,∴∠AEB =360°-∠AED -∠CEB -∠DEC =360°-135°-90°=135°.故选B.11.45° 12.59 13.7 14.S 1=S 2 15.4 16.617.6 解析:如图,连接OA ,CA ,则S △OAD =12|k |=12×6=3.∵四边形ABCD 为平行四边形,∴BC ∥AD ,∴S △CAD =S △OAD =3,∴S ▱ABCD =2S △CAD =6.18.①②④ 解析:①∵F 是AD 的中点,∴AF =FD .∵在▱ABCD 中,AD =2AB ,∴AF =FD =CD ,∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠FCB ,∴∠DCF =∠FCB ,∴∠DCF =12∠BCD ,故①正确;②延长EF 交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF .∵F 为AD 的中点,∴AF =DF .在△AEF 和△DMF 中,⎩⎪⎨⎪⎧∠A =∠MDF ,AF =DF ,∠AFE =∠DFM ,∴△AEF ≌△DMF ,∴FE =FM ,∠AEF=∠M .∵CE ⊥AB ,∴∠AEC =90°.∵AB ∥CD ,∴∠ECD =90°.∵FM =EF ,∴FC =EF ,故②正确;③∵EF=FM ,∴S △EFC =S △CFM .∵MC >BE ,∴S △BEC <2S △EFC ,故③错误;④设∠FEC =x ,则∠FCE =x ,∴∠DCF =∠DFC =90°-x ,∴∠EFC =180°-2x ,∴∠EFD =90°-x +180°-2x =270°-3x .∵∠AEF =90°-x ,∴∠DFE =3∠AEF ,故④正确.故答案为①②④.19.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,(2分)∴∠E =∠BAE .(4分)∵AE 平分∠BAD , ∴∠BAE =∠DAE ,(6分)∴∠E =∠DAE ,∴DA =DE .(8分) 20.证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,AD =BC ,∴∠E =∠DCE .(3分)∵AE +CD =AD ,∴AE +AB =BC ,∴BE =BC ,∴∠E =∠BCE ,(6分)∴∠DCE =∠BCE ,即CE 平分∠BCD .(10分)21.(1)10 135°(4分)(2)证明:∵∠A 1C 1B =∠C 1BC =90°,∴A 1C 1∥BC .(6分)∵A 1C 1=AC =BC ,∴四边形CBA 1C 1是平行四边形.(10分)22.(1)证明:∵BD 垂直平分AC ,∴∠BCD =∠BAD .∵∠BCD =∠ADF ,∴∠BAD =∠ADF ,∴AB ∥DF .(3分)∵AF ⊥AC ,BD ⊥AC ,∴∠F AE =∠DEC =90°,∴AF ∥BD ,∴四边形ABDF 是平行四边形.(5分)(2)解:∵四边形ABDF 是平行四边形,∴AB =DF =5,BD =AF =5.设BE =x ,则DE =BD -BE =5-x .(8分)在△ABD 中,∵AE ⊥BD ,∴AD 2-DE 2=AB 2-BE 2,∴36-(5-x )2=25-x 2,解得x =1.4,即BE =1.4,(11分)∴AE =AB 2-BE 2=4.8,∴AC =2AE =9.6.(12分)23.(1)证明:∵四边形ABCD 是平行四边形,∴DC ∥AB ,∴∠OBE =∠ODF .(1分)在△OBE 与△ODF中,⎩⎪⎨⎪⎧∠BOE =∠DOF ,∠OBE =∠ODF ,BE =DF ,∴△OBE ≌△ODF ,(4分)∴BO =DO .(5分)(2)解:∵EF ⊥AB ,AB ∥DC ,∴∠GFD =∠GEA =90°.∵∠A =45°,∴∠G =∠A =45°,∴AE =GE .(7分)∵BD ⊥AD ,∴∠ADB =∠GDO =90°,∴∠GOD =∠G =45°,∴DG =DO ,∴OF =FG =1.(9分)由(1)可知,OE =OF =1,(10分)∴GE =OE +OF +FG =3,∴AE =3.(12分)24.(1)证明:∵DF ∥AC ,DE ∥AB ,∴四边形AFDE 是平行四边形,∴AF =DE .(2分)∵DF ∥AC ,∴∠FDB =∠C .(3分)又∵AB =AC ,∴∠B =∠C ,∴∠FDB =∠B ,∴DF =BF .(6分)∴DE +DF =AF +BF =AB =AC .(7分)(2)图②中:AC +DF =DE .(9分)图③中:AC +DE =DF .(11分) (3)2或10(14分)第19章检测卷时间:120分钟 满分:120分班级:__________ 姓名:__________ 得分:__________一、选择题(每小题3分,共30分)1.矩形具有而菱形不具有的性质是( ) A .两组对边分别平行 B .对角线相等 C .对角线互相平分 D .两组对角分别相等2.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB ,CD 于E ,F ,那么阴影部分的面积是矩形ABCD 面积的( )A.15B.14C.13D.310第2题图第3题图 3.如图,在菱形ABCD 中,AC ,BD 是对角线,若∠BAC =50°,则∠ABC 等于( ) A .40° B .50° C .80° D .100°4.正方形ABCD 的面积为36,则对角线AC 的长为( )A .6B .6 2C .9D .9 2 5.下列命题中,真命题是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D .对角线互相垂直平分的四边形是正方形6.四边形ABCD 的对角线AC =BD ,AC ⊥BD ,分别过A ,B ,C ,D 作对角线的平行线,所成的四边形EFMN 是( )A .正方形B .菱形C .矩形D .任意四边形7.如图,菱形ABCD 中,∠A =60°,周长是16,则菱形的面积是( ) A .16 B .16 2 C .16 3 D .8 3第7题图第9题图第10题图8.在▱ABCD 中,AB =3,BC =4,当▱ABCD 的面积最大时,下列结论正确的有( ) ①AC =5;②∠A +∠C =180°;③AC ⊥BD ;④AC =BD . A .①②③ B .①②④ C .②③④ D .①③④9.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC ,若AC =4,则四边形CODE 的周长为( )A .4B .6C .8D .1010.如图,在△ABC 中,点D ,E ,F 分别在边BC ,AB ,CA 上,且DE ∥CA ,DF ∥AB .下列四种说法:①四边形AEDF 是平行四边形;②如果∠BAC =90°,那么四边形AEDF 是矩形;③如果AD 平分∠BAC ,那么四边形AEDF 是菱形;④如果AD ⊥BC 且AB =AC ,那么四边形AEDF 是菱形.其中,正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分)11.顺次连接矩形四边中点所形成的四边形是________.12.如图,延长正方形ABCD 的边BC 至E ,使CE =AC ,则∠AFC =________.第12题图第14题图13.已知▱ABCD 的对角线AC ,BD 相交于点O ,请你添加一个适当的条件____________使其成为一个菱形(只添加一个即可).14.如图,一个平行四边形的活动框架,对角线是两根橡皮筋.若改变框架的形状,则∠α也随之变化,两条对角线长度也在发生改变.当∠α为________度时,两条对角线长度相等.15.如图,菱形ABCD 的边长为2,∠ABC =45°,则点D 的坐标为____________.第15题图第16题图 16.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,D 为斜边AB 上一点,以CD ,CB 为边作平行四边形CDEB ,当AD =________时,平行四边形CDEB 为菱形.17.如图,已知双曲线y =kx (x >0)经过矩形OABC 边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为6,则k =________.第17题图第18题图18.如图,矩形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD 于点F.若AB=6,BC=10,则FD的长为________.三、解答题(共66分)19.(10分)如图,在四边形ABCD中,AD∥BC,AM⊥BC,垂足为M,AN⊥DC,垂足为N,若∠BAD =∠BCD,AM=AN,求证:四边形ABCD是菱形.20.(10分)如图,已知BD是矩形ABCD的对角线.(1)用直尺和圆规作线段BD的垂直平分线,分别交AD,BC于点E,F(保留作图痕迹,不写作法和证明);(2)连接BE,DF,问四边形BEDF是什么四边形?请说明理由.21.(10分)如图,点E是正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE,CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.22.(12分)如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.23.(12分)如图,在菱形ABCD中,AB=4,点E为BC的中点,AE⊥BC,AF⊥CD于点F,CG∥AE,CG交AF于点H,交AD于点G.(1)求菱形ABCD的面积;(2)求∠CHA的度数.24.(12分)如图,在△ABC 中,D 是BC 边上的一点,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连接BF .(提示:在直角三角形中,斜边的中线等于斜边的一半)(1)试判断线段BD 与CD 的大小关系;(2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论;(3)若△ABC 为直角三角形,且∠BAC =90°时,判断四边形AFBD 的形状,并说明理由.参考答案与解析1.B 2.B 3.C 4.B 5.C 6.A 7.D 8.B 9.C10.D 解析:∵DE ∥CA ,DF ∥AB ,∴四边形AEDF 是平行四边形,故①正确;若∠BAC =90°,则平行四边形AEDF 为矩形,故②正确;若AD 平分∠BAC ,∴∠EAD =∠F AD .∵DE ∥CA ,∴∠EDA =∠F AD ,∴∠EAD =∠EDA ,∴AE =DE ,∴平行四边形AEDF 为菱形,故③正确;若AB =AC ,AD ⊥BC ,∴AD 平分∠BAC ,同理可得平行四边形AEDF 为菱形,故④正确,则其中正确的个数有4个.故选D.11.菱形 12.112.5° 13.AC ⊥BD (答案不唯一)14.90 15.(2+2,2) 16.7517.6 解析:设F ⎝⎛⎭⎫a ,k a ,则B ⎝⎛⎭⎫a ,2k a ,因为S 矩形ABCO =S △OCE +S △AOF +S 四边形OEBF ,所以12k +12k +6=a ·2ka,解得k =6.18.256 解析:连接EF ,∵E 是AD 的中点,∴AE =DE .∵△ABE 沿BE 折叠后得到△GBE ,∴AE =EG ,BG =AB =6,∴ED =EG .∵在矩形ABCD 中,∠A =∠D =90°,∴∠EGF =90°.在Rt △EDF 和Rt △EGF 中,⎩⎪⎨⎪⎧ED =EG ,EF =EF ,∴Rt △EDF ≌Rt △EGF (HL),∴DF =FG .设DF =x ,则BF =BG +GF =6+x ,CF =CD -DF =6-x .在Rt △BCF 中,BC 2+CF 2=BF 2,即102+(6-x )2=(6+x )2,解得x =25.即DF =25.19.证明:∵AD ∥BC ,∴∠BAD +∠B =180°.(1分) ∵∠BAD =∠BCD ,∴∠B +∠BCD =180°,∴AB ∥CD ,(3分)∴四边形ABCD 为平行四边形,(4分) ∴∠B =∠D .∵AM ⊥BC ,AN ⊥CD ,∴∠AMB =∠AND =90°.(6分)在△ABM 与△ADN 中, ⎩⎪⎨⎪⎧∠AMB =∠AND ,∠B =∠D ,AM =AN ,∴△ABM ≌△ADN ,(9分) ∴AB =AD ,∴四边形ABCD 是菱形.(10分) 20.解:(1)如图所示,EF 为所求直线.(4分) (2)四边形BEDF 为菱形.(5分)理由如下:∵EF 垂直平分BD ,∴BF =DF ,BE =DE ,∠DEF =∠BEF .(6分)∵四边形ABCD 为矩形,∴AD ∥BC ,(7分)∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF .∵BF =DF ,∴BE =ED =DF =BF ,(9分)∴四边形BEDF 为菱形.(10分)21.(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°.(1分)∵△EBF 是等腰直角三角形,其中∠EBF =90°,∴BE =BF ,∠EBC +∠FBC =90°.(2分)又∵∠ABF +∠FBC =90°,∴∠ABF =∠CBE .(3分)在△ABF 和△CBE 中,有⎩⎪⎨⎪⎧AB =CB ,∠ABF =∠CBE ,BF =BE ,∴△ABF ≌△CBE (SAS).(5分)(2)解:△CEF 是直角三角形.(6分)理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180°-∠BFE =135°.又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,(8分)∴∠CEF =∠CEB -∠FEB =135°-45°=90°,(9分)∴△CEF 是直角三角形.(10分)22.(1)证明:∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC , ∴∠BAD =∠DAC .(1分)∵AE 平分∠CAM ,∴∠CAE =∠EAM ,∴∠DAE =∠DAC +∠CAE =12(∠BAC +∠CAM )=90°.(4分)∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,(5分)∴四边形ADCE 为矩形.(6分)(2)解:当△ABC 满足∠BAC =90°时,四边形ADCE 为正方形.(8分)证明如下∵∠BAC =90°,∴∠DAC =∠DCA =45°,∴AD =CD .(10分)又∵四边形ADCE 为矩形,∴四边形ADCE 为正方形.(12分)23.解:(1)连接AC ,BD ,并且AC 和BD 相交于点O .∵AE ⊥BC 且E 为BC 的中点,∴AC =AB .∵四边形ABCD 为菱形,∴AB =BC =AD =DC ,AC ⊥BD ∴△ABC 和△ADC 都是正三角形,∴AB =AC =4.(3分)∴AO =12AC =2,∴BO =AB 2-AO 2=23,∴BD =43,∴菱形ABCD 的面积是12AC ·BD =8 3.(7分)(2)∵△ADC 是正三角形,AF ⊥CD ,∴∠DAF =30°.∵CG ∥AE ,BC ∥AD ,AE ⊥BC ,∴四边形AECG 为矩形,(10分)∴∠AGH =90°,∴∠AHC =∠DAF +∠AGH =120°.(12分)24.解:(1)BD =CD .∵AF ∥BC ,∴∠F AE =∠CDE .∵点E 是AD 的中点,∴AE =DE .(2分)在△AEF 和△DEC 中, ⎨⎪⎧∠F AE =∠CDE ,AE =DE ,∴△AEF ≌△DEC (ASA),(3分)∴AF =CD .∵AF =BD ,∴BD =CD .(4分)(2)四边形AFBD是矩形.(5分)证明如下:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.(6分)∵AB=AC,BD=CD,∴AD⊥BC,(7分)∴∠ADB=90°,∴四边形AFBD是矩形.(8分)(3)四边形AFBD为菱形,(9分)理由如下:∵∠BAC=90°,BD=CD,∴BD=AD.(10分)同(2)可得四边形AFBD是平行四边形,∴四边形AFBD是菱形.(12分)第20章检测卷时间:120分钟满分:120分班级:__________姓名:__________得分:__________一、选择题(每小题3分,共30分)1.一组数据6,3,9,4,3,5,12的中位数是()A.3 B.4 C.5 D.62.明明班里有10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)如下:10,12,13.5,40.8,19.3,20.8,25,16,30,30.这10名同学平均捐款() A.25 B.23.9 C.19.04 D.21.743.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的众数是()A.95 B.90 C.85 D.804.某校七年级有13名同学参加百米跑竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的() A.中位数B.众数C.平均数D.最大值与最小值的差5.甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:由上可知射击成绩最稳定的是()A.甲B.乙C.丙D.丁6.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.57.我市欲从某师范院校招聘一名“特岗教师”,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表:根据录用程序,作为人民教师面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,将录取()8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小9.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数B.方差C.中位数D.众数10.图①、图②分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a、b,中位数分别为c、d,则下列关于a、b、c、d的大小关系,正确的是()A.a>b,c>d B.a>b,c<dC.a<b,c>d D.a<b,c<d二、填空题(每小题4分,共32分)11.2016年南京3月份某周7天的最低气温分别是-1℃,2℃,3℃,2℃,0℃,-1℃,2℃,则这7天最低气温的众数是________℃.12则该校女子排球队队员的平均年龄为________岁.13.某学习小组在“世界读书日”统计了本组5名同学在上学期阅读课外书籍的册数,数据是18,x,15,16,13,若这组数据的平均数为16,则这组数据的中位数是________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.一组正整数2,3,4,x是从小到大排列的,已知这组数据的中位数和平均数相等,那么x的值是5.16.小明和小华做投掷飞镖游戏各5次,两人成绩(单位:环)如图所示,根据图中的信息可以确定成绩更稳定的是________(填“小明”或“小华”).17.为实现“畅通重庆”,加强交通管理,严防“交通事故”,一名警察在高速公路上随机观察6辆车的。

华东师大版八年级数学下册第20章数据的整理与初步处理20.1平均数学案

华东师大版八年级数学下册第20章数据的整理与初步处理20.1平均数学案

第20章数据的整理与初步处理20.1 平均数1.平均数的意义2.用计算器求平均数1.如果数据2,3,x,4的平均数是3,那么x等于( ).A.2B.3C.3.5D.42.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).A.41度B.42度C.45.5度D.46度3.用计算器计算13.49,13.55,14.07,13.51,13.84,13.98的平均数为( ) A.13.61 B.13.74 C.13.53 D.14.004.小明记录了今年一月份某五天的最低温度(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A.1℃B.2℃C.0℃D.-1℃【变式题】小红记录了一周中连续5天的最低气温,并整理成下表.由于一个数据不小心被墨迹污染,请你算一算这个数据是( )星期一二三四五平均气温最低气温(℃) 16 18 19 18 18.2A.21B.18.2C.19D.205.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).A.-1B.3C.5D.96..某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ).A.3B.-3C.3.5D.-3.57.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.8.用计算器求下面各组数据的平均数(结果保留整数).(1)11,12,13,14,15,16,17,18,19;(2)1799,1803,1818,1817,1796,1798,1801,1796,1788.9.一组数据7,a,8,b,10,c,6的平均数为4.(1)求a,b,c的平均数;(2)求2a+1,2b+1,2c+1的平均数.10.甲、乙两台机床同时加工直径为100毫米的零件,为了检验产品的质量,从产品中各随机抽出10件进行测量,测得数据(单位:毫米)如下:甲:99,98,101,102,100,99,100,101,98,105;乙:98,96,99,100,99,103,103,99,103,99.用计算器计算甲、乙机床加工的零件直径的平均数,并说明哪个机床加工的零件更符合要求.3.加权平均数1.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ).A.23.7吨B.21.6吨C.20吨D.5.416吨2.m个x1,n个x2和r个x3,由这些数据组成一组数据的平均数是( ).A.332 1xxx++B.3rnm++C.33 21rx nxmx++D.rnm rxnx mx++++3213.在今年的助残募捐活动中,我市某中学九年级(1)班的同学组织献爱心捐款活动,班长根据第一组12名同学的捐款情况绘制成如图所示的条形统计图.根据图中提供的信息,第一组同学捐款金额的平均数是( )A.20元B.15元C.12元D.10元4.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.5.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.6.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大.7.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=________.8.某市广播电视局欲招聘播音员一名,对A、B两名候选人进行了两项测试,两人的两项测试成绩如下表所示.根据实际需要,广播电视局将面试、综合知识测试的得分按3:2的比例计算两人的总成绩,那么______(填A或B)将被录用.测试成绩测试项目A B面试90 95综合知识测试85 809.某次射击训练中,一小组的成绩如下表所示:环数/环 6 7 8 9人数/人 1 3 2若该小组的平均成绩为7.7环,则成绩为8环的人数是______.10.学校广播站要招聘一名播音员,考察形象、知识面、普通话三个项目,按形象占10%,知识面占40%,普通话占50%计算加权平均数,作为最后评定的总成绩.李文和孔明两位同学的各项成绩如下表:项目形象知识面普通话选手李文70 80 88孔明80 75 x(1)计算李文同学的总成绩;(2)若孔明同学要在总成绩上超过李文同学,则他的普通话成绩x应超过多少分?11.某瓜农采用大棚栽培技术种植了一亩良种西瓜,约有800个,在西瓜上市前,该瓜农随机摘下10个西瓜,称重如下:质量(千克) 6.3 6.5 7 7.5 7.7 8.0数量(个) 1 2 3 2 1 1(1)计算这10个西瓜的平均质量;(2)估计这块地共产西瓜多少千克.12.某中学生为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.请根据以上信息,解答下列问题:(1)将统计图补充完整;(2)若该校共有1800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.13.某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.图1 图2 根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.。

华师大版初中数学八年级下册单元测试第20章

华师大版初中数学八年级下册单元测试第20章

F B ED C AH FE D C B A华东师大版数学八年级(下)第20章 平行四边形的判定测试(答卷时刻:50分钟,全卷总分值:100分)姓名 得分一、认认真真选,沉着应战!(每题3分,共36分) 1.以下条件能判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边平行,一组对角互补C .一组对边平行,一组对角相等D .两条对角线相互垂直 2.用两个边长均为a 的等边三角形纸片拼成的四边形是( )A .等腰梯形B .矩形C .正方形D .菱形 3.以下说法中,不正确的选项是( )A .既是矩形,又是菱形的四边形是正方形B .正方形是对角线相等的菱形C .正方形是对角线相互垂直的矩形D .正方形是对角线相互平分的平行四边形 4.以下命题中正确的选项是( )A .对角线相等的四边形是矩形B .对角线相互平分的四边形是平行四边形C .对角线相互垂直的四边形是菱形D .对角线相互垂直且相等的四边形是正方形 5.在以下性质中:①对角线相互平分;②对边相等;③对角线相互垂直且相等;④对角 相等.矩形和菱形都具有的性质是( )A .①②③B .①②④C .①③D .③④6. 正方形具有菱形不必然具有的性质是 ( )(A )对角线相互垂直 (B )对角线相互平分 (C )对角线相等 (D )对角线平分一组对角7. 如图(1),EF 过矩形ABCD 对角线的交点O ,且别离交AB 、CD 于E 、F ,那么阴影部份的面积是矩形ABCD 的面积的( ) (A )51 (B )41 (C )31 (D )103(1) (2) (3) 8.在梯形ABCD 中,AD ∥BC ,那么:::A B C D ∠∠∠∠能够等于( )(A )4:5:6:3 (B )6:5:4:3 (C )6:4:5:3 (D )3:4:5:6 9.如图(2),平行四边形ABCD 中,DE ⊥AB 于E ,DF ⊥BC 于F ,假设ABCD 的周长为DAC B48,DE =5,DF =10,那么ABCD 的面积等于( )(A ) (B )80 (C )75 (D )10. A 、B 、C 、D 在同一平面内,从①AB ∥CD; ②AB=CD; ③BC ∥AD; ④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )(A )3种 (B )4种 (C )5种 (D )6种11.如图(3),D 、E 、F 别离是三角形ABC 各边的中点,AH 是高,若是5ED cm =,那么HF 的长为( )(A )5cm (B )6cm (C )4cm (D )不能确信 12.四边形ABCD 中,∠A ,∠B ,∠C ,∠D 的度数比是1:2:2:3,那么那个四边形是( )A .平行四边形B .等腰梯形C .菱形D .直角梯形 二、仔认真细填,记录自信!(每题3分,共15分)13.如图8所示,将矩形ABCD 沿直线AE 折叠,极点D 恰好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,那么图中阴影部份的面积为______cm 2.图8 图914.如图9所示,假设将四根木条钉成的矩形木框变形为平行四边形木框ABCD 的形状,•并使其面积为矩形木框的一半,•那么那个平行四边形木框的最小的一个内角为________. 15.一个四边形四条边按序是a 、b 、c 、d ,且bd ac d c b a 222222+=+++,那么那个四边形是_______________.16. 梯形的上底长为6cm ,过上底的一极点引一腰的平行线,与下底相交,所组成的三角形周长为21cm ,那么梯形的周长为_________cm 。

达标测试华东师大版八年级数学下册第二十章数据的整理与初步处理达标测试试题(含详细解析)

达标测试华东师大版八年级数学下册第二十章数据的整理与初步处理达标测试试题(含详细解析)

八年级数学下册第二十章数据的整理与初步处理达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某校航模兴趣小组共有50位同学,他们的年龄分布如表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A.平均数、众数B.众数、中位数C.平均数、方差D.中位数、方差W X Y Z四款新型手机,公司为了了解各款手机的性能,随机抽取2、某手机公司新推出了10,10,10,10了每款手机各50台进行测试,以下是四款手机的性能得分(满分100分,分数越高,性能越好)的平均分和方差,则这四款新型手机中性能好且稳定的是()A .10WB .10XC .10YD .10Z3、某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95,90,88,则小彤这学期的体育成绩为( )A .89B .90C .91D .924、甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的平均数恰好等于90分,则这组数据的中位数是( )A .100分B .95分C .90分D .85分5、在春季运动会中,有9名学生参加100米比赛,并且他们的最终成绩各不相同,若一名学生想知道自己能否进入前5名,除了要了解自己的成绩外,还要了解这9名学生成绩的( )A .众数B .中位数C .平均数D .方差6、一组数据:1,3,3,4,5,它们的极差是( )A .2B .3C .4D .57、如果在一组数据中23,25,28,22出现的次数依次为2,5,3,4,并且没有其他的数据,则这组数据的众数是( )A .5B .4.5C .25D .248、一组数据:2,0,4,-2,这组数据的方差是( )A .0B .1C .5D .209、小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( )A.平均数B.中位数C.众数D.方差10、小明在七年级第二学期的数学成绩如下表.如果按如图所示的权重计算总评得分,那么小明该学期的总评得分为()A.86分B.87分C.88分D.89分第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、一组数据18,22,15,13,x,7,它的中位数是16,则x的值是_______.2、______的计算要用到所有的数据,它能够充分利用数据提供的信息.但它受极端值的影响较大,任何一个数据的变动都会相应引起平均数的变动.______是当一组数据中某一数据多次重复出现时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势;缺点:是当众数有多个且众数的频数相对较小时可靠性小,局限性大._______的计算很少,仅与数据的排列位置有关,不易受极端值影响,中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.3、一组数据4,3,6,x的平均数是4,则这组数据的方差是_________.4、某广告公司欲招聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试.他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4: 3:1 的比例确定各人的测试成绩,此时谁将被录用?当一组数据中各个数据重要程度不同时,加权平均数能更好地反映这组数据的平均水平.权反映数据的重要程度,数据权的改变一般会影响这组数据的平均水平.解:(1)A的平均成绩为1(725088)70(). 3++=分B的平均成绩为1(857445) 68(). 3++=分C的平均成绩为1(677067)68(). 3++=分因此候选人______将被录用.(2)根据题意,三人的测试成绩如下:A的测试成绩为72450388165.75431⨯+⨯+⨯=++(分)B的测试成绩为85474345175.875431⨯+⨯+⨯=++(分)C的测试成绩为67470367168.125431⨯+⨯+⨯=++(分)因此候选人_____将被录用.5、将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是______,则称处于中间位置的数为这组数据的中位数;如果数据的个数是偶数,则称中间两个数据的__________为这组数据的中位数.6、(1)中位数是一个位置代表值(中间数),它是_______的.(2)如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平,不受极端值的影响.(3)如果已知一组数据的中位数,那么可以知道,各占一半,反映一组数据的中间水平.(4)中位数的单位与原数据的单位_______.7、利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要,根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的4,3,1分别称为创新、综合知识和语言三项成绩的_____,相应的平均数65.75,75.875,68.125分别称为A ,B ,C 的创新、综合知识和语言三项成绩的_____.8、已知一组数据1,2,3,.n 它们的平均数是2,则n =______,这一组数据的方差为______.9、若n 个数x 1,x 2,…,xn 的权分别是w 1,w 2,…,wn ,则_______叫做这n 个数的加权平均数.10、若一组数据1x ,2x ,…n x 的平均数是2,方差是1.则132x +,232x +,…32n x +的平均数是_______,方差是_______.三、解答题(5小题,每小题6分,共计30分)1、某校举办弘扬中华传统知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位同学在预赛中各项成绩如表图:(1)表中a 的值为_________;b 的值为_________.(2)把图中的统计图补充完整;(3)若演讲内容、语言表达、形象风度、现场效果四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.2、下图反映了九年级两个班的体育成绩.(1)不用计算,根据条形统计图,你能判断哪个班学生的体育成绩好一些吗?(2)你能从图中观察出各班学生体育成绩等级的“众数”吗?(3)依次将不及格、及格、中、良好、优秀记为55分,65分,75分,85分,95分,先分别估算一下两个班学生体育成绩的平均值,再算一算,看看你估计的结果怎么样.(4)九年级(1)班学生体育成绩的平均数、中位数和众数有什么关系?你能说说其中的理由吗?3、2021年4月13日,日本政府召开内阁会议正式决定,将福岛第一核电站超过100万公吨的核污水经过滤并稀释后排入大海,这一决定遭到包括福岛民众、日本渔民乃至国际社会的谴责和质疑.鉴于此次事件的恶劣影响,某校为了强化学生的环保意识,校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,复赛成绩如图所示.根据以上信息解答下列问题:(1)高中代表队五名学生复赛成绩的中位数为分;(2)分别计算初中代表队、高中代表队学生复赛成绩的平均数;(3)已知高中代表队学生复赛成绩的方差为20,请计算初中代表队学生复赛成绩的方差,并结合两队成绩的平均数和方差分析哪个队的复赛成绩较好.4、根据下列统计图,写出相应分数的平均数、众数和中位数.(1)(2)5、甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写表格;(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?-参考答案-一、单选题1、B【解析】【分析】根据众数、中位数的定义进行判断即可.【详解】解:一共有50人,中位数是从小到大排列后处在第25、26位两个数的平均数,而13岁的有5人,14岁的有23人,因此从小到大排列后,处在第25、26位两个数都是14岁,因此中位数是14岁,不会受15岁,16岁人数的影响;因为14岁有23人,而13岁的有5人,15岁、16岁共有22人,因此众数是14岁;故选:B .【点睛】此题考查应用统计量解决实际问题,正确掌握众数的定义,中位数的定义是解题的关键.2、D【解析】【分析】先根据平均成绩选出10,10X Z ,然后根据方差的意义求出10Z【详解】解:根据平均数高,平均成绩好得出10,10X Z 的性能好,根据方差越小,数据波动越小可得出10Z 的性能好,故选:D【点睛】本题主要考查了平均数和方差,熟练掌握平均数和方差的意义是解答本题的关键3、B【解析】【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.4、C【解析】【分析】由题意平均数是90,构建方程即可求出x的值,然后根据中位数的定义求解即可.【详解】解:∵这组数据的平均数数是90,∴14(90+90+x+80)=90,解得x=100.这组数据为:80,90,90,100,∴中位数为90.故选:C.【点睛】本题考查了求一组数据的平均数和中位数,掌握求解方法是解题的关键.5、B【解析】【分析】根据众数、中位数、平均数及方差的意义知,只要知道了中位数即可知道自己能否进入前5名.【详解】众数表示一组数据中出现次数最多的数,知道众数无法知道自己能否进入前5名;平均数表示的是一组数据的平均水平,方差反映的是一组数据的波动程度,它们都不能知道自己能否进入前5名,只有中位数,才能知道自己能否进入前5名,9名学生中,成绩按高低排列第5位学生的成绩是中位数,若该学生的成绩等于或高于中位数,则进入前5名,否则没有.故选:B【点睛】本题考查了众数、中位数、平均数及方差这四个统计量,前三个反映的是数据的平均水平,后一个反映的是数据的波动程度,理解这四个概念是关键.6、C【解析】【分析】根据极差的定义,即一组数据中最大数与最小数之差计算即可;【详解】-=;极差是514故选C.【点睛】本题主要考查了极差的计算,准确计算是解题的关键.7、C【解析】【分析】根据众数的的定义:一组数据中,出现次数最多的那个数称为众数,即可得出答案.【详解】解:由题意可知:25出现了5次,出现次数最多,所以众数为25.故选:C .【点睛】本题主要是考查了众数的定义,熟练掌握众数的定义,是解决该题的关键.8、C【解析】【分析】先计算平均数,进而根据方差公式进行计算即可,方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.2222121[()()()]n s x x x x x x n=-+-++-… 【详解】 解:∵()1204214x =⨯++-= ∴22222()()(1[21014121))4(]s =-+-+-+--=5 故选C【点睛】本题考查了求方差,掌握方差公式是解题的关键.9、B【分析】根据中位数的定义解答即可.【详解】解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响.故选:B.【点睛】本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.10、B【解析】【分析】根据加权平均数的公式计算即可.【详解】解:小明该学期的总评得分=9010%9030%8560%9275187⨯+⨯+⨯=++=分.故选项B.【点睛】本题考查加权平均数,掌握加权平均数公式是解题关键.二、填空题1、17【解析】略2、平均数众数中位数略3、32【解析】【分析】先根据平均数的定义求出x 的值,再利用方差的定义列式计算即可.【详解】解:因为数据4,3,6,x 的平均数是4, 可得:43644x +++=, 解得:x =3, 方差为:22221(44)(34)(64)(34)4⎡⎤-+-+-+-⎣⎦=32, 故答案为:32. 【点睛】本题主要考查方差及算术平均数,解题的关键是掌握方差和平均数的定义.4、 A B【解析】略5、 奇数 平均数【解析】略6、 唯一 一致略7、 权 加权平均数【解析】略8、 2, 12##0.5【解析】【分析】先根据平均数的定义确定出n 的值,再根据方差的计算公式计算即可.【详解】 解:数据 123n ,,,的平均数是2, 12342n ∴+++÷=(),2n ∴=,∴这组数据的方差是:2222111222322242⎡⎤-+-+-+-=⎣⎦()()()(), 故答案为:2,12.【点睛】此题考查了平均数和方差的定义,平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.9、112212n n n x w x w x w w w w ++⋅⋅⋅+++⋅⋅⋅+ 【解析】【分析】根据加权平均数的计算方法求解即可得.【详解】解:根据题意可得: 加权平均数为:112212n n nx w x w x w w w w +++++, 故答案为:112212n n nx w x w x w w w w +++++. 【点睛】 题目主要考查加权平均数的计算方法,熟练掌握其方法是解题关键.10、 8 9【解析】【分析】根据平均数和方差的性质及计算公式直接求解可得.【详解】解:∵数据x 1,x 2,…xn 的平均数是2,∴数据3x 1+2,3x 2+2,…+3xn +2的平均数是3×2+2=8;∵数据x 1,x 2,…xn 的方差为1,∴数据3x 1,3x 2,3x 3,……,3xn 的方差是1×32=9,∴数据3x 1+2,3x 2+2,…+3xn +2的方差是9.故答案为:8、9.【点睛】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.三、解答题1、(1)a=90 ,b=90 ;(2)见解析;(3)推荐甲同学,理由见解析【解析】【分析】(1)根据平均数的计算方法求得a、b的值;(2)由(1)求得的结果补全统计图即可;(3)四项得分按30%、50%、10%、10%的权重比例计算两人的最终得分,比较结果即可.【详解】解:(1)甲同学的成绩的平均分95908590904a+++==,乙同学的成绩的平均分:908595904b+++=,解得:b=90;故答案为:90,90(2)由(1)求得乙同学的形象风度为90分,如图所示:(3)推荐甲同学,理由如下:由题意得,甲同学的成绩:950.3900.5850.1900.1⨯+⨯+⨯+⨯28.5458.5991=+++=(分)乙同学的成绩:900.3850.5900.1950.1⨯+⨯+⨯+⨯2742.599.588=+++=(分)故甲同学的成绩比乙同学好,应该选甲.【点睛】本题考查的是统计表,条形统计图,平均数和加权平均数.条形统计图能清楚地表示出每个项目的数据,掌握加权平均数的计算方法是解题的关键.2、(1)九年级(2)班学生的体育成绩好一些;(2)均为“中”;(3)九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;(4)三者相等,理由见解析【解析】【分析】(1)根据条形图判断即可;(2)根据众数的定义结合条形统计图即可判断;(3)先估计,再根据加权平均数计算即可;(4)根据条形统计图结合三者的定义解答即可.【详解】(1)九年级(2)班学生的体育成绩好一些.因为两班成绩等级中为“中”和“及格”的学生数分别相等,而九年级(2)班成绩等级为“优秀”和“良好”的学生数比九年级(1)班多,“不及格”的学生数比九年级(1)班少;(2)两个班级学生成绩等级的“众数”均为“中”;(3)估计九年级(1)班的平均成绩为75分,九年级(2)班的平均成绩为78分;九年级(1)班的平均成绩为(5×55+10×65+75×20+10×85+5×95)÷50=75分,九年级(2)班的平均成绩为(1×55+65×10+75×20+85×11+95×8)÷50=78分;和估计的结果相等;(4)三者相等,这可以从“对称”的角度理解.当然,平均数、中位数、众数相等,相应的统计图未必都是“对称”的【点睛】本题考查了从统计图获取信息的能力,条形图能清楚地表示出每个项目的具体数目,同时要掌握平均数的计算方法、理解众数、中位数的意义.3、(1)95;(2)高中代表队的平均数为95分,初中代表队的平均数为90分;(3)初中代表队学生复赛成绩的方差为40,高中代表队成绩较好.【解析】【分析】(1)根据中位数的定义求解即可;(2)根据平均数的定义求解即可;(3)根据方差的定义求出初中代表队学生复赛成绩的方差,然后根据平均数和方差越小越稳定判断即可.【详解】解:(1)五个人的成绩从小到大排列为:90,90,95,100,100,一共有5个数,第3个数为中位数,∴中位数是95;(2)高中代表队的平均数=()909095100100595++++÷=(分),初中代表队的平均数=()80909090100590++++÷=(分);(3)初中代表队学生复赛成绩的方差=()()()()()222221809090909090909010090405⎡⎤⨯-+-+-+-+-=⎣⎦, ∵95>90,20<40,∴高中代表队成绩较好.【点睛】此题考查了平均数,中位数和方差及其意义,解题的关键是熟练掌握平均数,中位数和方差的求解方法.4、(1)平均数为3分,众数为3分,中位数为3分;(2)平均数为3.42分,众数为3分,中位数为3分【解析】【分析】(1)从条形统计图中得出相应的信息,然后根据算数平均数(总分数除以总人数)、众数(出现次数最多得数)、中位数(排序后中间两个数得平均数)的算法直接进行计算即可;(2)从扇形统计图中读取相关的信息,然后根据加权平均数、中位数、众数的计算方法计算即可.【详解】解:(1)平均分数为:021*******3272110⨯+⨯+⨯+⨯=+++,从图中可得:有21人得3分,众数为3分,共有40人,将分数从小到大排序后,第20和21位都是3分,∴中位数为3分,∴平均分数为3分,众数为3分,中位数为3分;(2)平均分数为:13%24%351%432%510% 3.42⨯+⨯+⨯+⨯+⨯=,扇形统计图中3分占比51%,大于其他分数的占比,众数为3分;中位数在51%的比例中,中位数为3分;∴平均分数为3.42分,众数为3分,中位数为3分.【点睛】题目主要考查算数平均数、加权平均数、众数、中位数的计算方法,根据图象得出相应的信息进行计算是解题关键.5、(1)见解析;(2)见解析【解析】【分析】(1)根据众数、平均数和中位数的定义求解:(2)方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=15(5+9+7+10+9)=8,把这些数从小到大排列5,7,9,9,10,则乙的中位数为9.故填表如下:故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛.【点睛】本题考查了平均数,中位数,众数和方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数;方差是用来衡量一组数据波动大小的量.。

华师大版八年级数学下册:第20章《数据的整理与初步处理》章末检测(2)及答案

华师大版八年级数学下册:第20章《数据的整理与初步处理》章末检测(2)及答案

第二十章数据的整理与初步处理章末测试(二)总分120分120分钟农安县合隆中学徐亚惠一.选择题(共8小题,每题3分)1.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲B.乙C.丙D.丁2.为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A.平均数B.众数 C.最高分数 D.中位数3.某次乐器比赛共有11名选手参加且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则下列描述选手比赛成绩的统计量中,只需要知道()A.方差 B.平均数C.众数 D.中位数4.某班在“五一”假期中准备组织全班同学进行郊游,班长对同学们所能承受的郊游费用作了民意调查,并根据钱数决定到哪里郊游,在所调查的数据中,最值得关注的是()A.中位数B.平均数C.众数 D.加权平均数5.小明五次数学考试成绩分别为:86分,78分,80分,85分,92分,张老师想了解小明数学学习的稳定情况,则张老师最应该关注小明数学成绩的()A.平均数B.众数 C.方差 D.中位数6.某班17名同学参加了数学竞赛的预赛,预赛成绩各不相同,现要从中选出9名同学参加决赛,小明已经知道了自已的成绩,他想知道自已能否进入决赛,还需要知道这17名同学成绩的()A.平均分B.众数 C.中位数D.方差7.在某一个月内,数学老师对本校九年级学生进行了4次周检测,若想了解学生的成绩是否稳定,需知道每个学生这4次测试成绩的()A.平均数B.众数 C.中位数D.方差8.下列统计量中,表示一组数据波动情况的量是()A.平均数B.中位数3分C.众数 D.标准差二.填空题(共6小题,每题3分)9.数据﹣2,﹣1,0,1,2的方差是_________.10.一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为_________.11.一组数据1,4,2,5,3的中位数是_________.12.小洪和小斌两人参加体育项目训练,近期5次测试成绩如图所示.根据分析,你认为他们中成绩较为稳定的是_________.13.一组数据4,0,1,﹣2,2的标准差是_________.14.在某次数学测验中,随机抽取了10份试卷,其成绩如下85,81,89,81,72,82,77,81,79,83.则这组数据的众数、平均数与中位数分别为_________,_________,_________.三.解答题(共10小题)15.(6分)甲、乙两人5次射击命中的环数如下:序号 1 2 3 4 5甲7 9 8 6 10乙7 8 9 8 8(1)求两人5次射击命中环数的平均数及方差s 甲2、s乙2;(2)根据以上计算评价甲乙二人谁的成绩更稳定.16(6分).九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是_________分,乙队成绩的众数是_________分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是_________队.17.(6分)甲、乙两支篮球队进行了5场选拔赛,比赛成绩绘制成图①、图②.(1)在图②中画出折线统计图表示乙队这5场比赛成绩的变化情况;(2)分别求甲、乙两队这5场比赛成绩的平均数和方差;(3)根据计算结果和折线统计图,你认为哪支球队参赛更能取得好成绩?18.(8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.小明的正确计算:甲=(9+4+7+4+6)=6.s2甲=[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2]=3.6.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 m 7(1)求m的值和乙的方差;(2)请你从平均数和方差的角度分析,谁将被选中.19(8分).为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7;(1)将下表填写完整:平均数极差方差甲_________ 3 1.2乙8 _________ 3.2(2)根据以上信息,若你是教练,选择谁参加射击比赛,理由是什么?(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会_________.(填变大或变小或不变)20.(8分)一组数据﹣1,0,1,2,3,x的平均数是1,求这组数据的方差.21.(8分)某次数学竞赛,初三(8)班10名参赛同学的成绩(单位:分)分别为:85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的极差和方差.22(8分).某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?23(10分).描述一组数据的离散程度,我们可以用“极差”、“方差”、“平均差”[平均差公式为],现有甲、乙两个样本,甲:13,11,15,10,16;乙:11,16,6,13,19(1)分别计算甲、乙两个样本的“平均差”,并根据计算结果判断哪个样本波动较大.(2)分别计算甲、乙两个样本的“方差”,并根据计算结果判断哪个样本波动较大.(3)以上的两种方法判断的结果是否一致?24(10分).在2008北京奥林匹克运动会的射击项目选拔赛中,甲、乙两名运动员的射击成绩如下(单位:环):甲10 10.1 9.6 9.8 10.2 8.8 10.4 9.8 10.1 9.2乙9.7 10.1 10 9.9 8.9 9.6 9.6 10.3 10.2 9.7(1)两名运动员射击成绩的平均数分别是多少?(2)哪位运动员的发挥比较稳定?(参考数据:0.22+0.32+0.22+0.42+12+0.62+0.32+0.62=2.14,0.12+0.32+0.22+0.12+0.92+0.22+0.22+0.52+0.42+0.12=1.46)第二十章数据的整理与初步处理章末测试(二)参考答案与试题解析一.选择题(共8小题)1.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲2=0.58,S乙2=0.52,S丙2=0.56,S丁2=0.48,则成绩最稳定的是()A.甲B.乙C.丙D.丁考点:方差.专题:计算题.分析:根据给出的各人方差可以判断谁的成绩最稳定.解答:解:甲、乙、丙、丁四人射击成绩的平均数均是9.2环,甲的方差是0.58,乙的方差是0.52,丙的方差0.56,丁的方差0.48,其中丁的方差最小,所以成绩最稳定的是丁.故选D.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.为迎接北京奥运会,有十五位同学参加奥运知识竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛()A.平均数B.众数C.最高分数D.中位数考点:统计量的选择.分析:15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有15个人,且他们的分数互不相同,取8位同学,第8的成绩就是中位数,所以要判断是否进入前8名,只要比较自己的分数和中位数的大小即可.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用3.某次乐器比赛共有11名选手参加且他们的得分都互不相同.现在知道这次比赛按选手得分由高到低顺序设置了6个获奖名额.若已知某位选手参加这次比赛的得分,要判断他能否获奖,则下列描述选手比赛成绩的统计量中,只需要知道()A.方差B.平均数C.众数D.中位数考点:统计量的选择.专题:应用题.分析:由于比赛设置了6个获奖名额,共有11名选手参加,故应根据中位数的意义分析.解答:解:因为6位获奖者的分数肯定是11名参赛选手中最高的,而且11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.某班在“五一”假期中准备组织全班同学进行郊游,班长对同学们所能承受的郊游费用作了民意调查,并根据钱数决定到哪里郊游,在所调查的数据中,最值得关注的是()A.中位数B.平均数C.众数D.加权平均数考点:统计量的选择.分析:班长最值得关注的应该是同学们所能承受的郊游费用中哪一种情况的人数最多,即众数.解答:解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.小明五次数学考试成绩分别为:86分,78分,80分,85分,92分,张老师想了解小明数学学习的稳定情况,则张老师最应该关注小明数学成绩的()A.平均数B.众数C.方差D.中位数考点:统计量的选择.分析:张老师想了解小明数学学习的稳定情况,则应当考虑方差.根据方差的意义:方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.解答:解:A、平均数是概括一组数据的一种常用指标,反映了这组数据中各数据的平均大小.B、众数出现的次数最多,一组数据可以有不止一个众数.C、方差是反映数据波动大小的离散程度的,是反映一组数据波动大小,稳定程度的量.D、中位数是概括一组数据的另一种指标,将一组数据按由小到大的顺序排列,中位数的左边和右边恰有一样多的数据.故选C.点评:解答此题,要掌握平均数、众数、方差、中位数的概念.6.某班17名同学参加了数学竞赛的预赛,预赛成绩各不相同,现要从中选出9名同学参加决赛,小明已经知道了自已的成绩,他想知道自已能否进入决赛,还需要知道这17名同学成绩的()A.平均分B.众数C.中位数D.方差考点:统计量的选择.专题:压轴题.分析:17人成绩的中位数是第9名的成绩.参赛选手要想知道自己是否能进入前9名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解答:解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前9名,故应知道自已的成绩和中位数.故选C.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.在某一个月内,数学老师对本校九年级学生进行了4次周检测,若想了解学生的成绩是否稳定,需知道每个学生这4次测试成绩的()A.平均数B.众数C.中位数D.方差考点:统计量的选择;方差.分析:方差体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.若想了解他们的成绩是否稳定,老师需知道每个人5次测试成绩的方差.解答:解:由于方差反映数据的波动大小,故想了解他们的成绩是否稳定,老师需知道每个人5次测试成绩的方差.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.8.下列统计量中,表示一组数据波动情况的量是()A.平均数B.中位数C.众数D.标准差考点:统计量的选择.分析:根据方差和标准差的意义:体现数据的稳定性,集中程度;方差越小,数据越稳定.解答:解:由于方差和标准差反映数据的波动情况.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二.填空题(共6小题)9.数据﹣2,﹣1,0,1,2的方差是2.考点:方差.专题:计算题.分析:先算出这组数据的平均数,再根据方差的公式计算,方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].解答:解:数据﹣2,﹣1,0,1,2的平均数==0,方差S2=[(﹣2﹣0)2+(﹣1﹣0)2+(0﹣0)2+(1﹣0)2+(2﹣0)2]=2.故答案为:2.点评:本题考查方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2.10.一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为2.考点:方差.专题:阅读型.分析:先求出数据的平均数,再根据方差的公式求方差.解答:解:数据8,6,10,7,9,的平均数=(8+6+10+7+9)=8,方差=[(8﹣8)2+(6﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=2.故填2.点评:本题考查了方差的定义.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.一组数据1,4,2,5,3的中位数是3.考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.解答:解:将数据从小到大排列,可得1,2,3,4,5;第3个数为3,故这5个数的中位数是3.故填3.点评:本题考查中位数的求法:先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.12.小洪和小斌两人参加体育项目训练,近期5次测试成绩如图所示.根据分析,你认为他们中成绩较为稳定的是小洪.考点:方差.专题:压轴题.分析:观察图象可得:小洪的成绩较集中,波动较小,即方差较小.故小洪的成绩较为稳定.解答:解:由于从图中看出小洪的成绩波动较小,所以小洪的成绩稳定.故填小洪.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.一组数据4,0,1,﹣2,2的标准差是2.考点:标准差.分析:先算出平均数,再根据方差公式计算方差,求出其算术平方根即为标准差.解答:解:数据4,0,1,﹣2,2的平均数为=[4+0+1﹣2+2]=1方差为S2=[(4﹣1)2+(0﹣1)2+(1﹣1)2+(﹣2﹣1)2+(2﹣1)2]=4∴标准差为2.故填2.点评:计算标准差需要先算出方差,计算方差的步骤是:(1)计算数据的平均数;(2)计算偏差,即每个数据与平均数的差;(3)计算偏差的平方和;(4)偏差的平方和除以数据个数.标准差即方差的算术平方根,注意标准差和方差一样都是非负数.14.在某次数学测验中,随机抽取了10份试卷,其成绩如下85,81,89,81,72,82,77,81,79,83.则这组数据的众数、平均数与中位数分别为81,81,81.考点:算术平均数;中位数.分析:先把这组数据按从小到大的顺序排列,再分别求出众数、中位数,平均数即可.解答:解:首先把这组数据按从小到大的顺序排列为72、77、79、81、81、81、82、83、85、89,根据众数是出现次数最多的数可知众数是81,中位数是第5和第6个数的平均数即81,平均数=(72+77+79+81×3+82+83+85+89)=81.故填81,81,81.点评:本题考查的是平均数、众数和中位数的概念.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.三.解答题(共10小题)15.甲、乙两人5次射击命中的环数如下:序号 1 2 3 4 5甲7 9 8 6 10乙7 8 9 8 8(1)求两人5次射击命中环数的平均数及方差s 甲2、s乙2;(2)根据以上计算评价甲乙二人谁的成绩更稳定.考点:方差.分析:根据平均数的公式:平均数=所有数之和再除以数的个数;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.解答:解:(1),(1分),(2分),(4分);(6分)(2)∵S2乙<S2甲.∴乙的成绩更稳定(8分)点评:本题考查平均数、方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数反映了一组数据的集中程度,求平均数的方法是所有数之和再除以数的个数;方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.16.九(2)班组织了一次朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表(单位:分):甲7 8 9 7 10 10 9 10 10 10乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队成绩的平均数和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是乙队.考点:方差;加权平均数.分析:(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.解答:解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:(10×4+8×2+7+9×3)=9,则方差是:[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.点评:本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.甲、乙两支篮球队进行了5场选拔赛,比赛成绩绘制成图①、图②.(1)在图②中画出折线统计图表示乙队这5场比赛成绩的变化情况;(2)分别求甲、乙两队这5场比赛成绩的平均数和方差;(3)根据计算结果和折线统计图,你认为哪支球队参赛更能取得好成绩?考点:方差;条形统计图;折线统计图;算术平均数.专题:图表型.分析:(1)根据条形统计图提供的数据画图即可;(2)根据平均数和方差的计算公式列式计算即可;(3)根据甲、乙两队这5场比赛成绩的平均数和方差的结果,在平均数相同的情况下,选出方差较小的即可.解答:解:(1)根据题意如图:(2)甲==90(分).\overline{x}乙==90(分).s甲2==41.2.s乙2==111.6.(3)两队比赛的平均数相同,说明两队的实力大体相当;从方差来看,甲队的方差较小,说明甲队的比赛成绩更稳定,因此甲队参赛更能取得好成绩.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.18.某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小明已根据成绩表算出了甲成绩的平均数和方差,请你完成下面两个问题.小明的正确计算:甲=(9+4+7+4+6)=6.s2甲=[(9﹣6)2+(4﹣6)2+(7﹣6)2+(4﹣6)2+(6﹣6)2]=3.6.甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 m 7(1)求m的值和乙的方差;(2)请你从平均数和方差的角度分析,谁将被选中.考点:方差;算术平均数.分析:(1)利用表格中数据进而求出m的值,再利用方差公式求出即可;(2)利用方差以及平均数的意义分析得出即可.解答:解:(1)∵乙=(7+5+7+m+7)=6,∴m=4,S2乙=[(7﹣6)2+(5﹣6)2﹣(7﹣6)2+(4﹣6)2+(7﹣6)2=1.6;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.点评:此题主要考查了方差以及算术平均数求法等知识,正确记忆方差公式是解题关键.19.为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如下:甲:8,7,10,7,8;乙:9,5,10,9,7;(1)将下表填写完整:平均数极差方差甲8 3 1.2乙8 5 3.2(2)根据以上信息,若你是教练,选择谁参加射击比赛,理由是什么?(3)若乙再射击一次,命中8环,则乙这六次射击成绩的方差会变小.(填变大或变小或不变)考点:方差;算术平均数;极差.专题:图表型.分析:(1)根据平均数的计算公式代值计算求出甲的平均数,再根据极差的定义用最大值减去最小值求出乙的极差;(2)根据甲乙的平均数、方差、极差,在平均数相同的情况下,选择方差、极差较小的即可;(3)根据方差公式求出乙六次的方差,再进行比较即可.解答:解:(1)甲的平均数是:(8+7+10+7+8)÷5=8;乙的极差是10﹣5=5;故答案为:8,5;(2)选择甲参加射击比赛,理由如下:因为甲、乙两人射击成绩的平均数相同都是8环,但甲射击成绩的方差、极差小于乙,因此甲的射击成绩更稳定,所以,选择甲参加射击比赛.(3)∵前5次乙的方差是3.2,乙再射击一次,命中8环,∴乙这六次射击成绩的方差是×[3.2×5+(8﹣8)2]=,∵<3.2,∴乙这六次射击成绩的方差会变小;故答案为:变小.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.20.一组数据﹣1,0,1,2,3,x的平均数是1,求这组数据的方差.考点:方差;算术平均数.专题:计算题.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵﹣1,0,1,2,3,x的平均数是1,∴x=1,∴s2=[(1+1)2+(1﹣0)2+(1﹣1)2+(1﹣2)2+(1﹣3)2+(1﹣3)2]=×18=3则这组数据的方差为3.点评:本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.21.某次数学竞赛,初三(8)班10名参赛同学的成绩(单位:分)分别为:85,88,95,124,x,y,85,72,88,109.若这10名同学成绩的唯一众数为85分,平均成绩为90分,试求这10名同学成绩的极差和方差.考点:方差;众数;极差.分析:本题根据这10名同学成绩的唯一众数为85分,求出x、y中至少有一数为85,再根据平均成绩为90分,求出x、y根据极差的公式:极差=最大值﹣最小值,找出所求数据中最大的值,最小值,再代入公式求值;方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算.解答:解:∵这10名同学成绩的唯一众数为85分∴x、y中至少有一数为85假设x为85又∵平均成绩为90分∴85+88+95+124+85+y+85+72+88+109)=90可得另一数为69.∴这10名同学的成绩的极差为124﹣69=55∴10名同学的成绩的方差为S2=[(85﹣90)2+(88﹣90)2+(95﹣90)2+(124﹣90)2+(85﹣90)2+(69﹣90)2+(85﹣90)2+(72﹣90)2+(88﹣90)2+(109﹣90)2]=239点评:本题主要考查了众数、平均数、方差、极差的有关概念,求极差的方法是用一组数据中的最大值减去最小值;方差是各数据与其平均值的差的平方的平均数,它是测算数据离散程度的最重要的方法.22.某中学开展“我的中国梦”演讲比赛活动,九(1)、九(2)班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如下图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级5名选手的复赛成绩波动小?。

第20章 数据的整理与初步处理 华东师大版数学八年级下册综合检测(含解析)

第20章 数据的整理与初步处理 华东师大版数学八年级下册综合检测(含解析)

第20章数据的整理与初步处理综合检测满分100分,限时60分钟一、选择题(每小题3分,共30分)1.(2022山东聊城实验中学期末)一组数据:-3,-2,1,4,5,这组数据的平均数是( ) A.-1 B.0C.1D.22.【跨学科·体育】(2022黑龙江鹤岗中考)学校举办跳绳比赛,九年级(2)班参加比赛的6名同学每分钟跳绳的次数分别是172,169,180,182,175,176,这6个数据的中位数是( )A.181B.175C.176D.175.53.(2022吉林长春汽开区期中)某市评选优秀班主任,从“事迹材料”“班会设计”“演讲”“答辩”四个方面考核,各项成绩满分均为100分,所占权重分别为20%,20%,30%,30%,某位候选人的各项得分(单位:分)依次为90,85,92,86,则该候选人的综合得分为( ) A.92.6 B.88.4C.88.6D.84.84.(2022吉林长春农安一中月考)下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲B.乙C.丙D.丁5.(2022湖北武汉武昌期末)5名同学周末户外运动时间的统计结果如表,说法正确的是( )户外运动时间(小时)33.544.5人数1121A.中位数是2小时,平均数是3.75小时B.中位数是4小时,平均数是3.75小时C.众数是4小时,平均数是3.8小时D.众数是2小时,平均数是3.8小时6.某校将举办小合唱比赛,七个参赛小组的人数如下:5,5,6,7,x,7,8.已知这组数据的平均数是6,则这组数据的中位数是( ) A.5 B.5.5C.6D.77.(2022吉林长春八十七中月考)某玩具厂质检员对A,B,C,D,E这5个玩具进行称重,实际质量(单位:克)分别为90,87,92,92,91.在统计时,不小心将B玩具的质量写成了90克,则计算结果不受影响的是( ) A.平均数 B.众数 C.中位数 D.方差8.【新素材·航天】(2022辽宁大连庄河期末)2022年6月5日,神舟十四号载人飞船在酒泉卫星发射中心成功发射,为了弘扬航天精神,激发初中生的爱国热情,某校开展航天知识竞赛,30名参赛同学的得分情况如下表所示:成绩(分)84889296100人数249105则这30名参赛同学成绩的众数是( )A.88B.92C.96D.1009.(2022福建泉州泉港期末)淘气统计一组数据142,140,143,136,149,139,得到它们的方差为s2.奇思将这组数据中的每一个数都减去140,得到一组新数据2,0,3,-4,9,-1,计算得出这组新数据的方差为s21.则s2与s21的关系为( )A.s20>s21B.s20<s21C.s20=s21D.s20+s21=110.(2022河南安阳期末)x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,则x1,x2,…,x66的平均数为( )A.m+nB.m+n2C.10m+33n43D.10m+23n33二、填空题(每小题3分,共18分)11.【跨学科·英语】【新独家原创】“新冠病毒”的英语单词“Novel coronavirus”中共有16个字母,其中n、o、v、e、l、c、r、a、i、u、s出现的次数分别是2、3、2、1、1、1、2、1、1、1、1,这组数据的众数是 .12.如果一组数据5、8、a、7、4的平均数是a,那么这组数据的方差为 .13.(2022福建厦门六中期中)已知一组数据7、a、6、5、5、7的众数为7,则这组数据的中位数是 .14.(2022湖南长沙麓山国际实验学校期中)某商场试销一种新款衬衫,一周内的销售情况如表所示:型号(厘米)383940414243数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是 .(填“平均数”“中位数”或“众数”)15.某中学组织全校师生参加诗词大赛,25名参赛同学的得分情况如图所示,这些成绩的中位数是 ,众数是 .16.某汽车制造商对新投入市场的两款汽车进行了调查,这两款汽车的各项得分如表所示:汽车型号安全性能省油效能外观吸引力内部配备A3123B3222(得分说明:3分——极佳,2分——良好,1分——尚可接受)技术员将安全性能、省油效能、外观吸引力、内部配备这四项指标的占比分别设为30%,20%,x%,y%(注:每一项的占比大于0,各项占比的和为100%),并由此计算两款汽车的综合得分.(1)当x=25时,B型汽车的综合得分为 ;(2)若技术员要设计一种四项指标的占比方案,使得A型汽车的综合得分高于B型汽车的综合得分,则x的取值范围是 .三、解答题(共52分)17.(7分)某校为了培养学生学习数学的兴趣,举办“我爱数学”比赛,现有甲、乙、丙三个小组进入决赛.评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:比赛成绩/分比赛项目甲乙丙研究报告908379小组展示857982答辩748491(1)如果根据三个方面的平均成绩确定名次,那么哪个小组会获得此次比赛的冠军?(2)如果将研究报告、小组展示、答辩三项得分按4∶3∶3的比例确定各小组的成绩,此时哪个小组会获得此次比赛的冠军?18.(2022浙江嘉兴期末)(8分)甲、乙两人加工同一种直径为10.0 mm 的零件,现从他们加工好的零件中各抽取5个,量得它们的直径如下(单位:mm):甲:10.0,10.3,9.7,10.1,9.9;乙:9.9,10.1,10.0,9.8,10.2.(1)求甲被抽取的5个零件直径的方差.(2)已知乙被抽取的5个零件直径的方差是0.02(mm2),则从抽取的零件来看,甲、乙两人中谁的加工质量较好?请简述理由.19.(8分)车间有20名工人,某天他们生产的零件个数统计如下表:生产零件个数1011121315161920工人人数24632111 (1)直接写出这一天20名工人生产零件个数的众数为 ,中位数为 .(2)求这一天20名工人生产零件的平均个数.(3)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施,并将每天每名工人生产零件的个数定额为13个,你认为合理吗?为什么?如果不合理,请你制订一个较为合理的“定额”,并说明理由.20.【主题教育·革命文化】(2022福建泉州科技中学期中)(9分)某中学开展“唱红歌”比赛活动,九年级(1)(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.班级平均数(分)中位数(分)众数(分)九(1)班 85 九(2)班85 100(1)根据图示填写表格;(2)结合两班复赛成绩的平均数和中位数,分析哪个班的复赛成绩较好;(3)计算九(2)班复赛成绩的方差.21.【主题教育·革命文化】(2022山东聊城中考)(10分)为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制订了取整数的计分方式,满分10分.竞赛成绩如图所示.众数中位数方差八年级竞赛成绩781.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明.(2)请根据图表中的信息,回答下列问题.①表中的a= ,b= ;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩为10分的获一等奖,9分的获二等奖,8分的获三等奖,则哪个年级的获奖率较高?22.(2022河南安阳滑县期末)(10分)某校在2022年4月23日举办了“以声献礼世界读书日,好书分享”演讲比赛活动,满分10分,成绩达到6分为合格,达到9分为优秀.这次比赛中,甲、乙两组分别有10名学生参赛,他们成绩分布的统计图如下.(1)直接写出下列成绩统计分析表中a 、b 的值.平均分中位数方差合格率优秀率甲组a 7.52.4180%20%乙组7b3.890%30%(2)小明同学说:“这次比赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小明是哪个组的学生.(3)乙组同学说他们组的合格率、优秀率均高于甲组,所以他们组的成绩好于甲组.但甲组同学不同意乙组同学的说法,认为他们组的成绩要好于乙组.请你至少写出两条支持甲组同学观点的理由.答案全解全析1.C 根据题意得,这组数据的平均数是―3―2+1+4+55=1.故选C. 2.D 将这组数据按从小到大的顺序排列为169,172,175,176,180,182,中位数=175+1762=175.5,故选D.3.B 该候选人的综合得分为90×20%+85×20%+92×30%+86×30%= 88.4,故选B.4.A ∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一个参加比赛,∵s2甲<s2丙,∴选择甲参赛.5.C 户外运动4小时的最多,有2人,所以众数为4小时,共5名同学,将户外运动时间按从小到大的顺序排列后,位于第3个的是4小时,所以中位数为4小时,平均数为3+3.5+4+4+4.55=3.8(小时),故选C.6.C ∵5,5,6,7,x,7,8的平均数是6,∴(5+5+6+7+x+7+8)÷7=6,解得x=4,将这组数据按从小到大的顺序排列为4,5,5,6,7,7,8,第4个数是6,则这组数据的中位数是6,故选C.7.C 90,87,92,92,91这组数据的中位数是91,B玩具的质量写成了90克,不影响数据的中位数,故选C.8.C 数据96出现了10次,出现的次数最多,则众数是96.故选C.9.C 一组数据中的每一个数据都加上(或都减去)同一个常数后,其平均数都加上(或都减去)这一个常数,方差不变,∴s20=s21.故选C.10.D ∵x1,x2,…,x20的平均数为m,x21,x22,…,x66的平均数为n,∴x 1,x 2,…,x 20的和为20m ,x 21,x 22,…,x 66的和为46n ,∴x 1,x 2,…,x 66的平均数为20m +46n 66=10m +23n 33.故选D.11.答案 1解析 这组数据中,数据1出现了7次,出现的次数最多,故这组数据的众数是1.12.答案 2解析 根据题意知5+8+a +7+45=a ,解得a =6,所以这组数据为5、8、6、7、4,则这组数据的方差为15×[(5-6)2+(8-6)2+(6-6)2+(7-6)2+(4-6)2]=2.13.答案 6.5解析 ∵一组数据7、a 、6、5、5、7的众数为7,∴a =7,则这组数据按照从小到大的顺序排列为5,5,6,7,7,7,∴这组数据的中位数为6+72=6.5.14.答案 众数解析 对商场经理来说,最有意义的是销售数量最多的衬衫的型号,即众数.15.答案 96分;98分解析 共有25个数据,按从小到大的顺序排列后最中间的数为第13个数,是96,所以中位数是96分;数据98出现了9次,出现的次数最多,所以众数是98分.16.答案 (1)2.3 (2)0<x <30解析 (1)当x =25时,y =100-30-20-25=25,则B 型汽车的综合得分为3×30%+2×20%+2×25%+2×25%=2.3.(2)A型汽车的综合得分为3×30%+1×20%+2×x%+3×y%=1.1+0.02x+ 0.03y,B型汽车的综合得分为3×30%+2×20%+2×x%+2×y%=1.3+ 0.02x+0.02y,要使A型汽车的综合得分高于B型汽车的综合得分,则1.1+0.02x+0.03y>1.3+0.02x+0.02y,∴y>20,∴x的取值范围是0<x<30.17.解析 (1)x甲=13×(90+85+74)=83(分),x乙=13×(83+79+84)=82(分),x丙=13×(79+82+91)=84(分),由于丙小组的平均成绩最高,所以丙小组会获得此次比赛的冠军.(2)根据题意,三个小组的比赛成绩如下:甲小组的比赛成绩为90×4+85×3+74×34+3+3=83.7(分),乙小组的比赛成绩为83×4+79×3+84×34+3+3=82.1(分),丙小组的比赛成绩为79×4+82×3+91×34+3+3=83.5(分),此时甲小组的成绩最高,所以甲小组会获得此次比赛的冠军.18.解析 (1)x甲=15×(10.0+10.3+9.7+10.1+9.9)=10.0(mm),s2甲=15×[(10.0-10.0)2+(10.3-10.0)2+(9.7-10.0)2+(10.1-10.0)2+(9.9-10.0)2]=0.04(mm2).(2)乙的加工质量较好.理由如下:s2甲=0.04(mm2),s2乙=0.02(mm2),s2甲>s2乙,∴乙的方差比甲的方差小,又x甲=x乙=10 mm,∴乙的加工质量较好.19.解析 (1)12;12.(2)1×(10×2+11×4+12×6+13×3+15×2+16×1+19×1+20×1)=13.20答:这一天20名工人生产零件的平均个数为13.(3)不合理.理由:当定额为13个时,仅有8人达标,5人获奖,不利于提高工人的积极性.当定额为12个时,有14人达标,8人获奖,不利于提高大多数工人的积极性.当定额为11个时,有18人达标,14人获奖,有利于提高大多数工人的积极性.因此,定额为11个时,有利于提高大多数工人的积极性.20.解析 (1)填表如下:班级平均数(分)中位数(分)众数(分)九(1)858585九(2)8580100 (2)九(1)班的平均数和九(2)班的平均数相同,九(1)班的中位数比九(2)班的高,所以九(1)班的复赛成绩较好.(3)九(2)班复赛成绩的方差是1×[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160(分2).521.解析 (1)由题意得,八年级竞赛成绩的平均数是(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级竞赛成绩的平均数是(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判断哪个年级的成绩比较好.(2)①九年级竞赛成绩中,8分出现的次数最多,故众数是8分,故a=8,九年级竞赛成绩的方差为1×[8×(6-8)2+9×(7-8)2+14×(8-8)2+13×(9-8)2+6×(10-8)2]=1.56,故b=1.56, 50故答案为8;1.56.②从众数角度看,八年级竞赛成绩的众数为7分,九年级竞赛成绩的众数为8分,所以应该给九年级颁奖;从方差角度看,八年级竞赛成绩的方差为1.88,九年级竞赛成绩的方差为1.56,因为两个年级的平均数相同,九年级的竞赛成绩的波动较小,所以应该给九年级颁奖.综上所述,应该给九年级颁奖.(3)八年级的获奖率为(10+7+11)÷50×100%=56%,九年级的获奖率为(14+13+6)÷50×100%=66%,∵66%>56%,∴九年级的获奖率较高.22.解析 (1)甲组学生成绩的平均分为5×2+6+7×2+8×3+9+1010=7.3(分).根据扇形统计图,乙组学生得6分的人数为4,得7分的人数为1,得8分的人数为1,得9分的人数为2,得10分的人数为1,得3分的人数为1,可将乙组学生成绩按从小到大的顺序排列为=6.5(分).∴3,6,6,6,6,7,8,9,9,10,∴乙组学生成绩的中位数是6+72a=7.3,b=6.5.(2)甲组成绩的中位数为7.5(分),乙组成绩的中位数为6.5(分),而小明的成绩(7分)位于小组中游略偏上,所以小明是乙组的学生.(3)①甲组的平均分高于乙组,即甲组的总体平均水平更高;②甲组的方差比乙组小,即甲组的成绩比乙组的成绩更稳定.(答案不唯一)。

+第20+章数据的整理与初步处理基础复习++2023—2024学年华东师大版数学八年级下册+

第20 章数据的整理与初步处理基础复习知识点 1 平均数1. 为了增强学生对新型冠状病毒的认识与防控能力,某学校组织了“抗击疫情,我们在行动”学生手抄报比赛活动.其中八年级五个班收集的作品数量(单位:幅)分别为:42,48,45,46,49,则这组数据的平均数是 ( )A.44B.45C.46D.472. 某快递公司快递员张山某周每日投放快递物品件数为:有4天是30件,有2天是35件,有1天是41件,这周张山日平均投递物品件数为 ( )A.35.3件B.35件C.33件D.30件3. 八年级某班五个合作学习小组的人数如下:5,7,6,x,7.已知这组数据的平均数是6,则x的值为 ( )A.7B.6C.5D.44. 一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,并分别按5:3:2的比例计入总评成绩,小明的三项成绩(单位:分)分别是90、95、90,他的总评成绩是 ( )A.91分B.91.5分C.92分D.92.5分5.如果公司分别赋予面试和笔试7和3的权.根据甲、乙两人的平均成绩,公司将录取 .7. 某班有50名学生,平均身高为166 cm,其中20名女生的平均身高为160 cm,则30名男生的平均身高为cm.8. 某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%(1)这四名候选人面试成绩的平均数为 .(2)现得知候选人丙的综合成绩为87.6分,则表中x的值等于 .(3)求其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名人选.知识点 2数据的集中趋势1. 一般地,将一组数据按由小到大的顺序排列(即使有相等的数据也要全部参加排列),处于正中间位置的一个数据(或中间位置两个数据的平均数)叫做这组数据的中位数.2. 一组数据中出现次数最多的数据称为这组数据的众数,一组数据可以有不止一个众数,也可以没有众数.3. 平均数、中位数和众数的选用:平均数能充分利用各数据的信息,但易受极端值的影响;当一组数据中的个别数据波动较大时,一般用中位数来描述这组数据的集中趋势,但中位数不能充分地利用各数据的信息;当一组数据中某些数据多次重复出现时,众数往往更能反映问题,但当各数据重复出现的次数大致相同时,它往往没有什么特别意义.9. 在一次女子跳水比赛中,八名运动员的年龄(单位:岁)分别为:12,13,13,14,15,13,13,15.这组数据的众数是( )A.12B.13C.14D.1510. 新冠肺炎疫情爆发以来,山西共派出13 批医疗队支援湖北,共计1516人,白衣逆行,千里驰援.如表是山西11A.33人B.86人C.91人D.98人11. 若一组数据:2,2,x,5,7,7的众数为7,则x为 ( )A.2B.5C.6D.712. 通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若每位同学的测试成绩各不相同.则被选中同学的成绩肯定不少于这9位同学测试成绩统计量中的 ( )A.平均数B.众数C.中位数D.加权平均数13.该班此次英语听力口语考试成绩众数比中位数多分.14. 在一次数学答题比赛中,六位同学答对题目的个数分别为:7,5,3,7,5,10,则这组数据的众数是 .15. 为了保障人民群众的身体健康,在预防新型冠状病毒期间,进入超市购物人员都需要测量体温,某8位顾客已知这8位顾客的平均体温为37C.求:(1)表中a的值.(2)这组数据的中位数和众数.16. 某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数.(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标? 请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题,如果目标定得太高,多数营业员完不成任务,会使营业员完不成任务,进而失去信心;如果目标定得太低,不能发挥营业员的潜力。

华师大版初中数学八年级下册第20章检测卷

(1)图①中 m 的值是________; (2)求本次调查获取的样本数据的平均数、众数和中位数.
21.(12 分)甲、乙两名同学进入九年级后,某科 6 次考试成绩如图:
TB:小初高题库
华师大版初中数学
(1)请根据统计图填写下表:
平均数 方差 中位数 众数

75
75

33.3
(2)请你分别从以下两个不同的方面对甲、乙两名同学的 6 次考试成绩进行分析:
A.甲 B.乙 C.丙 D.丁
TB:小初高题库
华师大版初中数学
8.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下: 甲:8,7,9,8,8 乙:7,9,6,9,9 则下列说法中错误的是( ) A.甲、乙得分的平均数都是 8 B.甲得分的众数是 8,乙得分的众数是 9 C.甲得分的中位数是 9,乙得分的中位数是 6 D.甲得分的方差比乙得分的方差小 9.已知 A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是 A 样本数据每个都加 2,则 A,B 两个样本的下列统计量对应相同的是( ) A.平均数 B.方差 C.中位数 D.众数 10.图①、图②分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两 班学生的投进球数的众数分别为 a、b,中位数分别为 c、d,则下列关于 a、b、c、d 的大 小关系, 正确的是( )
华师大版初中数学
华师大版初中数学 重点知识精选
掌握知识点,多做练习题,基础知识很重要! 华师大初中数学 和你一起共同进步学业有成!
TB:小初高题库
华师大版初中数学
第 20 章检测卷
时间:120 分钟 满分:120 分 班级:__________ 姓名:__________ 得分:__________ 一、选择题(每小题 3 分,共 30 分) 1.一组数据 6,3,9,4,3,5,12 的中位数是( ) A.3 B.4 C.5 D.6 2.明明班里有 10 名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的 失 学 儿 童 , 每 人 捐 款 金 额 (单 位 : 元 )如 下 : 10, 12, 13.5, 40.8, 19.3, 20.8, 25, 16, 30,30.这 10 名同学平均捐款( ) A.25 B.23.9 C.19.04 D.21.74 3.在学校演讲比赛中,10 名选手的成绩统计图如图所示,则这 10 名选手成绩的众数 是( )

华师大版八年级下册数学第20章 数据的整理与初步处理含答案

华师大版八年级下册数学第20章数据的整理与初步处理含答案一、单选题(共15题,共计45分)1、2,3,14,16,7,8,10,11,13的中位数是()A.3B.7C. 10D.132、在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:跳高成绩(m) 1.50 1.55 1.60 1.65 1.70 1.75 跳高人数 1 3 2 3 5 1这些运动员跳高成绩的中位数和众数分别是()A.1.65,1.70B.1.70,1.65C.1.70,1.70D.3,53、小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为()A.8,10B.10,9C.8,9D.9,104、某校九年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()方差5、在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,除了知道自己的成绩以外,还需要知道全部成绩的 ( )A.平均数B.众数C.方差D.中位数6、某校九年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10,8,12,15,10,12,11,9,10,13.则这组数据的()A.众数是10.5B.中位数是10C.平均数是11D.极差67、下列判断正确是()A.高铁站对旅客的行李的检查应采取抽样调查B.一组数据5、3、4、5、3的众数是5C.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上D.甲,乙组数据的平均数相同,方差分别是S甲2=4.3,S2=4.1,则乙组数据更稳定乙8、某班在统计全班33人的体重时,算出中位数与平均数都是54kg,但后来发现在计算时,将其中一名学生的体重50kg错写成了5kg,经重新计算后,正确的中位数为a kg,正确的平均数为b kg,那么()A. a<bB. a=bC. a>bD.无法判断9、下列关于统计图的说法中,错误的是()A.条形图能够显示每组中的具体数据B.折线图能够显示数据的变化趋势 C.扇形图能够显示数据的分布情况 D.直方图能够显示数据的分布情况10、通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁11、在数据1,3,5,5中,中位数是()A.3B.4C.5D.712、一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7B.7,6.5C.6.5,7D.5.5,713、某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是()A. B. C. D.14、小华五次跳远的成绩如下(单位:m):3.9,4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是0.4B.众数是3.9C.中位数是3.98D.平均数是3.9815、小明家1至6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是( )A.众数是6吨B.中位数是5吨C.平均数是5吨D.方差是吨二、填空题(共10题,共计30分)16、有一组数据:3,a,4,6,7,它们的平均数是5,则a=________,这组数据的方差是________.17、如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为________.18、超市决定招聘一名广告策划人员,某应聘者三项素质测试的成绩如下表:测试项目创新能力综合知识语言表达测试成绩/分将创新能力,综合知识和语言表达三项测试成绩按的比例计入总成绩,则该应聘者的总成绩是________分.19、我校某班筹备班级元旦晚会,班长对全班同学爱吃哪几种水果作了民意调查,决定最终买什么水果.他最应该关注的是调查数据中的________ .(填平均数或中位数或众数或方差)20、今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数(单位:kg)及方差S2(单位:kg2)如表所示:甲乙丙45 45 42S21.8 2.3 1.8明年准备从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是________.21、甲、乙两人进行射击测试,每人10次,射击成绩的平均数都是8.5环,方差分别是:s甲2=2,s乙2=1.5,则射击成绩较稳定的是________(填“甲”或“乙”).22、面试时,某应聘者的学历、经验和工作态度的得分分别是75分、80分、85分,若依次按照1:2:2的比例确定成绩,则该应聘者的最终成绩是________分.23、一组数据5,5,a, 6,8的平均数=6,则方差S2=________.24、若一组数据x1, x2,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是________,方差是________.25、已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________三、解答题(共6题,共计25分)26、某学生在一学年的6次测验中,语文、数学成绩分别为(单位:分):语文:80,84,88,76,79,85数学:80,75,90,64,88,95试估计该学生是数学成绩稳定还是语文成绩稳定?27、某公司员工的月工资情况统计如下表:员工人数 2 4 8 20 8 4月工资(元)5000 4000 2000 1500 1000 700 (1)分别计算该公司员工月工资的平均数、中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由.28、李大爷几年前承包了甲、乙两片荒山,各栽100棵杨梅树,现已结果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量数如折线统计图所示.(1)分别计算甲、乙两片山上杨梅产量数样本的平均数;(2)试通过计算说明,哪片山上的杨梅产量较稳定?29、甲、乙两名射击选手各自射击十组,按射击的时间顺序把每组射中靶的环数值记录如下表:1 2 3 4 5 6 7 8 9 10 选手组数甲98 90 87 98 99 91 91 96 98 96 乙85 91 89 97 96 97 98 96 98 98(1)根据上表数据,完成下列分析表:平均数众数中位数方差[ 极差甲94.5 96 15.56 12乙94.5 18.65(2)如果要从甲、乙两名选手中选择一个参加比赛,应选哪一个?为什么?30、为了考察甲、乙两种玉米的生长情况,在相同的时间,将它们种在同一块实验田里,经过一段时间后,分别抽取了10株幼苗,测得苗高如下(单位:cm):甲:8,12,8,10,13,7,12,11,10,9;乙:11,9,7,7,12,10,11,12,13,8.(1)分别求出两种玉米的平均高度;(2)哪种玉米的幼苗长得比较整齐?参考答案一、单选题(共15题,共计45分)2、A3、D4、A5、D6、C7、D8、A9、C10、C11、B12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共6题,共计25分)26、27、29、30、。

华师大八年级下第20章数据的整理与初步处理单元试卷含答案

第20章数据的整理与初步处理单元测试卷一、选择题(每题3分,共30分)1.下表是山西省11个地市5月份某日最高气温(℃)的统计结果:太原大同朔州忻州阳泉晋中吕梁长治晋城临汾运城27 27 28 28 27 29 28 28 30 30 31 该日最高气温的众数和中位数分别是( )A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃2.李华根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表中数据一定不发生变化的是( )A.平均数B.众数C.方差D.中位数3.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是=36,=30,则两组成绩的稳定性:( )A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定4.为了解某公司员工的年工资情况,小王随机调查了10名员工,其年工资(单位:万元)如下:3,3,3,4,5,5,6,6,8,20,下列统计量中,能合理反映该公司员工年工资中等水平的是( )A.方差B.众数C.中位数D.平均数5.某班七个合作学习小组的人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是( )A.5B.5.5C.6D.76.有19名同学参加歌咏比赛,成绩互不相同,前10名的同学进入决赛,某同学知道自己的成绩后,要判断自己能否进入决赛,他只需知道这19名同学成绩的( )A.平均数B.中位数C.众数D.方差7.某班期末考试英语的平均成绩为75分,方差为225,如果每名学生都多考5分,下列说法正确的是( )A.平均分不变,方差不变B.平均分变大,方差不变C.平均分不变,方差变大D.平均分变大,方差变大8.10名同学分成甲、乙两队进行篮球比赛,他们的身高(单位:cm)如下表所示:队员1 队员2 队员3 队员4 队员5甲队177 176 175 172 175乙队170 175 173 174 183设甲、乙两队队员身高的平均数分别为,,身高的方差分别为,,则下列关系中完全正确的是( )A.=,>B.=,<C.>,>D.<,<9.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生的参赛成绩统计如图所示.对这10名学生的参赛成绩,下列说法中错误的是( )(提示:极差为最大值与最小值的差)A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分10.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖):甲乙丙丁戊方差平均成绩成绩81 79 ■80 82 ■80那么被遮盖的两个数据依次是( )A.80,2B.80,C.78,2D.78,二、填空题(每题3分,共24分)11.一组正整数2、3、4、x从小到大排列,已知这组数据的中位数和平均数相等,那么x的值是____________.12.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___________岁.13.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是___________小时.14.x1,x2,…,x10的平均数为a,x11,x12,…,x50的平均数为b,则x1,x2,…,x50的平均数为___________.15.有一组数据:3,a,4,6,7,它们的平均数是5,那么这组数据的方差是___________.16.已知2a1+3,2a2+3,2a3+3,2a4+3,…,2a n+3的平均数是13,方差是36,则a1,a2,a3,a4,…,a n的平均数和方差分别是___________、___________.17.跳远运动员李刚对训练效果进行测试,6次跳远的成绩(单位:m)如下:7.6,7.8,7.7,7.8,8.0,7.9.这6次成绩的平均数为7.8 m,方差为.如果李刚再跳两次,成绩分别为7.7 m,7.9 m.则李刚这8次跳远成绩的方差___________ (填“变大”、“不变”或“变小”).18.某次跳绳比赛中,甲、乙两班学生每分钟跳绳的成绩情况如下表:班级参加人数平均数(次) 中位数(次) 方差甲45 135 149 180乙45 135 151 130下列三个结论:①甲班的平均成绩低于乙班的平均成绩;②甲班成绩的波动比乙班成绩的波动大;③甲班成绩优秀人数少于乙班成绩优秀人数(跳绳次数≥150次为优秀).其中正确的结论是___________.(只填序号)三、解答题(23题10分,其余每题9分,共46分)19.学校准备从甲、乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面进行了测试,他们各自的成绩(百分制)如下表:选手表达能力阅读理解综合素质汉字听写甲85 78 85 73乙73 80 82 83(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两位选手的平均成绩,从他们的这一成绩看,应选派谁.20.八(1)班五位同学参加学校举办的数学竞赛,试卷中共有20道题,规定每道题答对得5分,答错扣2分,未答得0分.赛后A、B、C、D、E 五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数(道) 答错题数(道) 未答题数(道)A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A、B、C、D四位同学成绩的平均分;(2)最后获知:A、B、C、D、E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学答对的题数和答错的题数;②经计算,A、B、C、D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出是哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).21.某厂生产A,B两种产品.其单价随市场变化而进行相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线统计图:A,B产品单价变化统计表第一次第二次第三次A产品单价(元) 6 5.2 6.5B产品单价(元) 3.5 4 3并求得A产品三次单价的平均数和方差如下:=5.9(元);==.(1)补全图中B产品单价变化的折线统计图.B产品第三次的单价比上一次的单价降低了_____________%;(2)求B产品三次单价的方差,并比较哪种产品的单价波动小:(3)该厂决定第四次调价,A产品的单价仍为6.5元,B产品的单价比3元上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1.求m的值.22.在八次数学测试中,甲、乙两人的成绩(单位:分)如下:甲:89,93,88,91,94,90,88,87; 乙:92,90,85,93,95,86,87,92.请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人成绩的极差,并说明谁的成绩变化范围大(极差:最大值与最小值的差);(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;(4)根据中位数来判断两人的成绩谁优谁次;(5)根据方差来判断两人的成绩谁更稳定.23.为了了解学生关注热点新闻的情况,“两会”期间,小明对本班全体同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班女生人数是__________人,女生收看“两会”新闻次数的中位数是_________次;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班男生对“两会”新闻的“关注指数”比女生低5%,试求该班男生有多少人;(3)为进一步分析该班男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如下表).统计量平均数(次) 中位数(次) 众数(次) 方差该班男生 3 3 4 2根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班男、女生收看“两会”新闻次数的波动大小.参考答案一、1.【答案】B解:28 ℃出现了4次,出现的次数最多,所以众数为28℃,将这组数由小到大排列为:27 ℃,27 ℃,27 ℃,28 ℃,28 ℃,28 ℃,28 ℃,29 ℃,30 ℃,30℃,31 ℃,所以,中位数为28 ℃,选B.2.【答案】D3.【答案】B解:方差小的比较稳定,故选B.4.【答案】C5.【答案】C解:∵4、5、5、x、6、7、8的平均数是6,∴(4+5+5+x+6+7+8)÷7=6,解得:x=7.将这组数据从小到大排列为4、5、5、6、7、7、8,最中间的数是6,则这组数据的中位数是6.故选C.6.【答案】B7.【答案】B解:每名学生都多考5分,则平均分增加5分,但方差不变.故选B.8.【答案】B9.【答案】C解:根据折线图可得下表:人数 1 2 5 2成绩(分) 80 85 90 95由上表可知,成绩的众数是90分,中位数是90分,平均数是×(80+85×2+90×5+95×2)=89(分),极差是95-80=15(分).由此可见,本题中说法错误的是C.10.【答案】C解:根据题意得:丙的成绩为80×5-(81+79+80+82)=78,方差为[(81-80)2+(79-80)2+(78-80)2+(80-80)2+(82-80)2]÷5=2.二、11.【答案】5解:∵这组数据的中位数和平均数相等,∴(3+4)÷2=(2+3+4+x)÷4,解得:x=5.故答案为:5.12.【答案】15解:40名同学中,按照年龄大小排列,处于第20与21位上的年龄分别是15岁、15岁,这两数的平均数还是15岁,故这个班同学年龄的中位数是15岁.13.【答案】114.【答案】解:本题中共有50个数据,x1,x2,…,x10的平均数为a,则它们的和为10a;x11,x12,…,x50的平均数为b,则它们的和为40b,所以x1,x2,…,x50的平均数为=.15.【答案】216.【答案】5;9解:∵2a1+3,2a2+3,2a3+3,2a4+3,…,2a n+3的平均数是13,方差是36,∴2a1,2a2,2a3,2a4,…,2a n的平均数是10,方差是36,∴a1,a2,a3,a4,…,a n的平均数是5,方差是9.17.【答案】变小解:∵李刚再跳两次后,这组数据的平均数是=7.8,∴这8次跳远成绩的方差是: [(7.6-7.8)2+(7.8-7.8)2+2×(7.7-7.8)2+(7.8-7.8)2+(8.0-7.8)2+2×(7.9-7.8)2]÷8=,∵<,∴方差变小.18.【答案】②③解:两个班的平均成绩均为135次,故①错误;方差表示数据的波动大小,甲班的方差大于乙班的方差,说明甲班成绩的波动比乙班成绩的波动大,故②正确;中位数是数据按大小排列后,中间的一个数或中间两数的平均数,甲班成绩的中位数小于150次,乙班成绩的中位数大于150次,且甲、乙两班参加人数相同,说明甲班成绩优秀人数少于乙班成绩优秀人数,故③正确.故答案为②③.三、19.解:(1)乙的平均成绩为:=79.5.∵80.25>79.5,∴应选派甲.(2)甲的平均成绩为:=79.5.乙的平均成绩为:=80.4∵79.5<80.4,∴应选派乙.20.解:(1)= 82.5(分).所以A、B、C、D四位同学成绩的平均分是82.5分.(2)①设E同学答对x道题,答错y道题.由题意,得解得所以E同学答对12道题,答错1道题.②C同学记错了;他实际答对14道题,答错3道题,未答3道题.21.解:(1)如图所示.25(2)=(3.5+4+3)=3.5(元),==.∵<,∴B产品的单价波动小.(3)第四次调价后,对于A产品,这四次单价的中位数为=(元);对于B产品,∵m>0,∴第四次单价大于3元.又∵×2-1=>,∴第四次单价小于4元.∴×2-1=,∴m=25.22.解:(1)甲成绩的极差为:94-87=7(分),乙成绩的极差为:95-85=10(分),∴乙的成绩变化范围大.(2)甲成绩的平均数为:(89+93+88+91+94+90+88+87)÷8=90(分),乙成绩的平均数为:(92+90+85+93+95+86+87+92)÷8=90(分),∴从平均数的角度看,两人的成绩一样好.(3)甲成绩的众数为88分,乙成绩的众数为92分,∴从众数的角度看,乙的成绩较优.(4)甲成绩的中位数为89.5分,乙成绩的中位数为91分,∴从中位数的角度看,乙的成绩较优.(5)甲成绩的方差为:[(89-90)2+(93-90)2+(88-90)2+(91-90)2+(94-90)2+(90-90)2+(88-9 0)2+(87-90)2]÷8=5.5,乙成绩的方差为:[(92-90)2+(90-90)2+(85-90)2+(93-90)2+(95-90)2+(86-90)2+(87-90)2+(92-90)2]÷8=11.5,∴甲的成绩更稳定.23.解:(1)20;3(2)由题意得,该班女生对“两会”新闻的“关注指数”为×100%=65%,所以该班男生对“两会”新闻的“关注指数”为65%-5%=60%.设该班男生有x人,则60%x=x-(1+3+6),解得:x=25.所以该班男生有25人.(3)该班女生收看“两会”新闻次数的平均数为=3(次),该班女生收看“两会”新闻次数的方差为:=.因为2>,所以该班男生比女生收看“两会”新闻次数的波动大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.某校组织了“讲文明、守秩序、迎南博”知识竞赛活动,从中抽取了7名同学的参赛成绩如下(单位:分):80,90,70,100,60,80,80.则这组数据的中位数和众数分别是() A.90,80 B.70,80 C.80,80 D.100,802.制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子),得知所需鞋号和人数如下:并求出鞋号的中位数是24 cm,众数是25 cm,平均数约是24 cm,下列说法正确的是()A.因为所需鞋号为27 cm的人数太少,所以鞋号为27 cm的鞋可以不生产B.因为平均数约是24 cm,所以这批男皮鞋可以一律按24 cm的鞋生产C.因为中位数是24 cm,所以24 cm的鞋的生产量应占首位D.因为众数是25 cm,所以25 cm的鞋的生产量应占首位3.某市统计部门公布的2016年6~10月份本市居民消费价格指数(CPI)的同比增长率分别为2.3%,2.3%,2%,1.6%,1.6%,业内人士评论说:“这五个月的本市居民消费价格指数同比增长率之间相当平稳”,从统计角度看,“增长率之间相当平稳”反映的统计量是()A.方差B.平均数C.众数D.中位数4.期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数5.10名工人某天生产同一种零件,个数分别是45,50,50,75,20,30,50,80,20,30,设这些零件数的平均数为a,众数为b,中位数为c,那么()A.a<b<c B.b<c<a C.a<c<b D.b<a<c6.济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是()A.13岁,14岁B.14岁,14岁C.14岁,13岁D.14岁,15岁7.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的()A.平均数B.众数C.中位数D.方差8.某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是()A.甲B.乙C.丙D.丁9.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=1310.五名学生投篮球,规定每人投20次,统计他们每人投中的次数,得到五个数据.若这五个数据的中位数是6,唯一众数是7,则他们投中次数的总和可能是() A.20 B.28 C.30 D.31二、填空题(每题3分,共30分)11.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为最后得分,则这名歌手的最后得分约为________.(结果保留一位小数)12.小明有五位好友,他们的年龄(单位:岁)分别是15,15,16,17,17,其方差是0.8,则三年后这五位好友年龄的方差是________.13.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并将测试得分按1∶4∶3的比确定测试总分.已知某位候选人的三项得分分别为88,72,50,则这位候选人的测试总分为________.14.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是________.15.某中学初三(1)班的一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男、女生的人数之比为________.(第16题)16.为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是________小时.17.两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________.18.2014年8月26日,第二届青奥会在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11,0.03,0.05,0.02.则当天这四位运动员“110米跨栏”的训练成绩最稳定的是________.(第19题)19.为了了解贯彻执行国家提倡的“阳光体育运动”的情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为________.20.如果一组数据从小到大依次排列为x1,x2,x3,x4,x5,且x1,x2,x3的平均数为25,x3,x4,x5的平均数为35,x1,x2,x3,x4,x5的平均数是30,那么这组数据的中位数为________.三、解答题(22题10分,23题14分,其余每题12分,共60分)21.“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款.某市某中学九年级(1)班的全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示.(1)求该班的总人数;(2)将条形统计图补充完整,并写出捐款金额的众数;(3)该班平均每人捐款多少元?22.某市为了了解高峰时段16路公交车从总站乘该路车出行的人数情况,随机抽查了10个班次乘该路车的人数,结果如下:14,23,16,25,23,28,26,27,23,25.(1)这组数据的众数为________,中位数为________;(2)计算这10个班次乘该路车人数的平均数;(3)如果16路公交车在高峰时段从总站共出车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?23.某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):次数,1,2,3,4,5,6甲,79,78,84,81,83,75乙,83,77,80,85,80,75利用表中数据,解答下列问题:(1)计算甲、乙测验成绩的平均数.(2)写出甲、乙测验成绩的中位数.(3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)(4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.24.某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图、趣题巧解、数学应用、魔方复原,每个项目的得分都按一定百分比折算后计入总分.下表为甲、乙、丙三位同学的得分情况(单位:分):(1)比赛后,甲猜测七巧板拼图、趣题巧解、数学应用、魔方复原这四项的得分分别按10%、40%、20%、30%折算计入总分,根据猜测,求出甲的总分.(2)本次大赛组委会最后决定,总分在80分以上(包括80分)的学生获一等奖.现获悉乙、丙的总分分别是70分、80分,甲的七巧板拼图、魔方复原两项的得分折算后的分数和是20分,甲能否获得这次比赛的一等奖?25.中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3 000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(第25题)请根据所给信息,解答下列问题:(1)a=________,b=________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3 000名学生中成绩为“优”等的大约有多少人?答案一、1.C 点拨:这组数据中80出现了3次,出现的次数最多,所以这组数据的众数是80.把这组数据按照从小到大的顺序排列为60,70,80,80,80,90,100,排在中间的数据是80,所以这组数据的中位数是80.故选C .2.D 点拨:A .所需27 cm 的鞋的人数太少,27 cm 的鞋可以少生产,不是不生产,所以错误.B .因为平均数约是24 cm ,所以这批男皮鞋可以一律按24 cm 的鞋生产,不符合实际情况,所以错误.C .哪个号的鞋的生产量占首位,要看需要的人数是否占首位,与中位数无关,所以错误.D .因为众数是25 cm ,所以25 cm 的鞋的生产量应占首位,哪个号的鞋的生产量占首位,要看需要的人数是否占首位,所以取决于众数,所以正确.故选D .3.A4.D 点拨:根据众数与中位数的定义可知,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,排在最中间的那个数(或排在最中间的两个数的平均数).小明和小英的话能反映出的统计量分别是众数、中位数.5.C 6.B 7.C 8.B9.A 点拨:本题考查中位数和平均数,难度中等.由于计算时,将14岁写成了15岁,故重新计算的平均数应小于原来计算的平均数,而中位数不变,故选A .10.B 点拨:由“五个数据的中位数是6,唯一众数是7”,可知其中三个数据分别是6,7,7,这三个数据的和是20.两个较小的数据一定是不大于5的非负数,且不相等,故这五个数据的总和一定大于等于21且小于等于29.故选B .二、11.9.4 12.0.8 13.65.75 14.2.8 15.3∶2 16.117.6 点拨:根据平均数的概念可得方程组⎩⎪⎨⎪⎧3+a +2b +5=6×4,a +6+b =6×3,解得⎩⎪⎨⎪⎧a =8,b =4,故这两组数据分别为3,8,8,5与8,6,4,合并成一组数据并从小到大排列可得3,4,5,6,8,8,8,最中间的数是6,故这组数据的中位数是6.18.丁 点拨:方差是用来衡量一组数据波动程度大小的量,方差越大,表明这组数据越分散,即波动越大,数据越不稳定;反之,方差越小,表明这组数据越集中,即波动越小,数据越稳定.因为0.02<0.03<0.05<0.11,所以丁的训练成绩最稳定.19.17小时 20.30三、21.解:(1)14÷28%=50(人).答:该班的总人数为50人.(2)捐款10元的人数为50-9-14-7-4=16(人), 补全条形统计图如图所示;捐款金额的众数是10元.(3)150×(5×9+10×16+15×14+20×7+25×4)=150×655=13.1(元),因此,该班平均每人捐款13.1元.点拨:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.(第21题)22.解:(1)23;24(2)110×(14+16+23+23+23+25+25+26+27+28)=23(人). 故这10个班次乘该路车人数的平均数是23人. (3)60×23=1 380(人).所以估计在高峰时段从总站乘该路车出行的乘客共有1 380人. 23.解:(1)x 甲=79+78+84+81+83+756=80(分),x 乙=83+77+80+85+80+756=80(分).(2)甲、乙测验成绩的中位数都是80分.(3)s 甲2=16[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,s 乙2=16[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.(4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.24.解:(1)甲的总分:66×10%+89×40%+86×20%+68×30%=79.8(分). (2)设趣题巧解所占的百分比为x ,数学应用所占的百分比为y ,由题意,得⎩⎪⎨⎪⎧20+60x +80y =70,20+80x +90y =80,解得⎩⎪⎨⎪⎧x =30%,y =40%.甲的总分为20+89×30%+86×40%=81.1(分). 因为81.1>80,所以甲能获得这次比赛的一等奖. 25.解:(1)60;0.15 (2)略. (3)80≤x <90(4)3 000×0.4=1 200(人),即该校参加这次比赛的3 000名学生中成绩为“优”等的大约有1 200人.。

相关文档
最新文档