第二章 自动控制原理习题集
自动控制原理-第2章习题解答精选全文完整版

第2章 控制系统的数学模型习题及解答2-1 已知质量-弹簧系统如题2-1图所示,图中标明了质量和弹簧的弹性系数。
当外力F (t )作用时,系统产生运动,如果在不计摩擦的情况下,以质量m 2的位移y (t )为输出,外力F (t )为输入,试列写系统的运动方程。
解: 设 质量m 1的位移量为x (t ),根据牛顿第二定律有y k y x k dt yd m 21222-)(−= ①)(1221y x k F dtxd m −−= ②①式可以写作y k k x k dtyd m )(211222+−= ③由①式也可以得到y k dtyd m y x k 22221)(+=− ④③式两端同时求二阶导数,可得2221221442)(dty d k k dt x d k dt yd m +−= ⑤将②、③式代入⑤式中,整理可得F m k y m k k dty d m k m k m m dt y d m 1112122122121442)(=−++++ 2-2 求题2-2图中由质量-弹簧-阻尼器组成的机械系统,建立系统的运动方程。
其中,x (t )为基底相对于惯性空间的位移,y (t )为质量相对于惯性空间的位移。
z (t )= y (t )- x (t )为基底和质量之间的相对位移,z (t )由记录得到, x (t )和z (t )分别为输入量和输出量。
解:应用牛顿第二定律可得dtt dz f kz dt y d m )(22−−= 将z (t )= y (t )- x (t )代入上式,整理可得2222dtx d m kz dt dz f dt z d m −=++题2-2图题2-1图解:(a )引入中间变量u c (t)表示电容器两端的电压。
根据基尔霍夫电流定律有o c c u R u R dt du C2111=+ 根据基尔霍夫电压定律有o i c u u u −=联立消去中间变量,可得描述输入量u i (t )和输出量u o (t )之间关系的微分方程为i i o o u R dt du C u R R R R dt du C121211+=++ (b )引入回路电流i (t )和电容器两端的电压u c (t)作为中间变量,根据基尔霍夫电压定律有i o u u i R =+1 另有电容元件的元件约束关系方程dtdu Ci c =和i R u u o c 2−=联立求解,消去中间变量可得i i o o u R dt du C u R R R R dt du C121211+=++(c )设电容器C 2两端的电压为u c 2(t),根据基尔霍夫电流定律有dtduC u u R dt u u d C c o i o i 2211)(1)(=−+− ①求导可得22221221)(1)(dtu d C dt u u d R dt u u d C c o i o i =−+− ② 另有输出支路电压方程o c c u u dtdu C R =+2222 等式两边求导有dtdu dt du dt u d C R oc c =+222222 ③将①、②代入③式,整理可得i ii ooo u C R dt du C R C R C R dt u d C R u C R dt du C R C R C R C R dt u d C R 2121221121221212122112121122+++=++++2-4 试求题2-4图所示有源RC 电路的微分方程,其中u i (t )为输入量,u o (t )为输出量。
自动控制原理习题及其解答 第二章

自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。
(2)由牛顿定律写原始方程。
h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。
(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。
(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。
自动控制原理(胡寿松)课后习题答案详解

N
G3
G2
1+G1G2H1
-
- C
再进一步化简得:
1+G1G2H1
G1
G2
20
胡寿松自动控制原理习题解答第二章
N
-
G3
G2
C
1+G1G2H1
-
1+G1G2H1
G1
G2
再进一步化简得:
N G2G3-1-G1G2H1 1+G1G2H1
G2
C
G2+G1 (1+G1G2H1)
所以: C(s) =
G2 (G2G3 − 1 − G1G2 H1 )
10 6s + 10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
E(s) =
10
=
10
R(s) 1 + G(s)H (s) 1 + 20 10
6s + 10 20s + 5
=
(6s
200(20s + 5) + 10)(20s + 5) +
200
=
200(20s + 5) 120s 2 + 230s + 250
Z2
=
R2
+
1 C2s
=
1 C2s
(R2C2s + 1) =
1 C2
s
(T2
s
+ 1)
所以: U 0 (s) = Z 2 =
1 C2
s
(T2
s
+
1)
第二章-自动控制原理习题集

2-1a 试证明图2-1(a)所示电气网络与图2-1(b)所示的机械系统具有相同的传递函数。
2-2a 试分别写出图2-2中各有源网络的传递函数U c (s)/U r (s)。
解: 图2-2(a )所示的有源网络传递函数U c (s)/U r (s)可以求得为,2111121212/11*1//1)()(R R cs R R csR csR R cs R z z s U s U r c +=+=== 图2-2(b )示的有源网络传递函数U c (s)/U r (s)可以求得为,1/1*1//1)()(21212212+=+==cs R R R R R cs R csR R cs s U s U r c 图2-2(c )所示的有源网络传递函数U c (s)/U r (s)可以求得为,csR cs R R R cs s U s U r c 111211)()(+=+= (a) (c)(b) 图2-2 (a ) 图2-1(b )2-7c 设系统处于静止状态,当输入单位阶跃函数时其输出响应为2()1t t y t e e --=-+ t>0试求该系统的传递函数。
解 由题意可知:系统的初始条件为零,r(t)=1(t)于是R(s)= L[1(t )]=1/s 。
对上述响应表达式的两边取拉氏变换,则有211142()21(2)(1)s s Y s s s s s s s ++=-+=++++ 令Y (s )=G(s)R(s)=G(s)/s,由上式便可求得系统的传递函数为2()42()()(2)(1)Y s s s G s R s s s s ++==++ 讨论 传递函数是线性定常单变量系统常用的输入输出模型,是经典控制理论的重要基础。
求取传递函数的常用方法有下列四种:(1)根据系统的工作原理绘制结构图(或信号流图)来求取。
(2)由系统的微分方程(或微分方程组)通过拉氏变换来导出。
(3)根据系统响应表达式来推导,如本例;(4)由系统的状态空间表达式转换而得。
自动控制原理第二章习题答案详解

习题习题2-1 列写如图所示系统的微分方程习题2-1附图习题2-2 试建立如图所示有源RC网络的动态方程习题2-2附图习题2-3 求如图所示电路的传递函数, 并指明有哪些典型环节组成(a)(b)(c)习题2-3附图习题2-4 简化如图所示方块图, 并求出系统传递函数习题2-4附图习题2-5 绘制如下方块图的等效信号流图, 并求传递函数图(a)图(b)习题2-5附图习题2-6 系统微分方程组如下, 试建立对应信号流图, 并求传递函数。
),(d )(d )(),(d )(d ),()()()(),()(),(d )(d )(),()()(54435553422311121t y tt y T t x k t x k tt x t y k t x t x t x t x k t x t x k tt x t x t y t r t x +==--==+=-=τ习题2-7 利用梅逊公式直接求传递函数。
习题2-7附图习题2-8 求如图所示闭环传递函数, 并求(b)中)(s H x 的表达式, 使其与(a)等效。
图(a )图(b)习题2-8附图习题2-9 求如下各图的传递函数(a)(b)(c)习题2-9附图习题2-10 已知某些系统信号流图如图所示, 求对应方块图(a )(b)(c)(d)习题2-10附图习题答案习题2-1答案:解:设外加转矩M 为输入量,转角θ为输出量,转动惯量J 代表惯性负载,根据牛顿定律可得:θθθ1122d d d d k t f M tJ --=式中,1,1,k f 分别为粘性阻尼系数和扭转弹性系数,整理得:M k t f tJ =++θθθ1122d d d d习题2-2答案:解: 设r u 为输入量,c u 为输出量,,,,21i i i 为中间变量,根据运算放大器原理可得:1221d d R u i R u i t u c i r c c ===消去中间变量可得: r c c u R Ru t u C R 122d d -=+ 习题2-3答案: 解: (a)11111111221212211121121120++=+++=+++=+++=Ts Ts s R R R C R s C R R sC R sC R sC sC R R sC R u u i β其中:221121,R R R C R T +==β, 一阶微分环节,惯性环节.(b)21121212111221122011//1R R s C R R R s C R R R sC R R R sC R R u u i+++=++=+= 11111111212121221121111++=+∙++∙+=+++=Ts Ts s C R R R R s C R R R R R R s C R R s C R αα其中 α=+=21211,R R R T C R , 一阶微分环节,惯性环节.(c)s C R s C R s C R s C R s C R sC R R sC sC R u u i 21221122112211220)1)(1()1)(1(1//11+++++=+++= 由微分环节,二阶振荡环节组成。
自动控制原理第2章练习题

第二章 控制系统的数学模型习题及答案2-1 试建立图2-27所示各系统的微分方程。
其中外力)(t F ,位移)(t x 和电压)(t u r 为输入量;位移)(t y 和电压)(t u c 为输出量;k (弹性系数),f (阻尼系数),R (电阻),C (电容)和m (质量)均为常数。
解(a )以平衡状态为基点,对质块m 进行受力分析(不再考虑重力影响),如图解2-1(a)所示。
根据牛顿定理可写出22)()(dty d m dt dy f t ky t F =-- 整理得)(1)()()(22t F m t y m k dt t dy m f dt t y d =++(b )如图解2-1(b)所示,取A,B 两点分别进行受力分析。
对A 点有 )()(111dtdydt dx f x x k -=- (1) 对B 点有 y k dtdydt dx f 21)(=- (2) 联立式(1)、(2)可得:dtdx k k k y k k f k k dt dy2112121)(+=++(c) 应用复数阻抗概念可写出)()(11)(11s U s I cs R cs R s U c r ++= (3) 2)()(R s Uc s I = (4) 联立式(3)、(4),可解得: CsR R R R Cs R R s U s U r c 212112)1()()(+++=微分方程为: r r c c u CR dt du u R CR R R dt du 121211+=++(d) 由图解2-1(d )可写出[]Css I s I s I R s U c R R r 1)()()()(++= (5) )()(1)(s RI s RI Css I c R c -= (6) []Css I s I R s I s U c R c c 1)()()()(++= (7)联立式(5)、(6)、(7),消去中间变量)(s I C 和)(s I R ,可得:1312)()(222222++++=RCs s C R RCs s C R s U s U r c 微分方程为 r r r c c c u RC dt du CR dt du u R C dt du CR dt du 222222221213++=++2-2 试证明图2-28中所示的力学系统(a)和电路系统(b)是相似系统(即有相同形式的数学模型)。
自控原理习题解答(第二章)
[答2 ( 31 ) 1 ) ] (t) x(t) (t) Tx T sx(s) x (s) 1 1 1 T x (s) 1 T s 1 s T 1 t 1 T 1 1 T x ( t ) L x (s) L e 1 s T T
答2 4(c)
e y (s) e x (s) C2 1 1 I(s) R 1 R2 C1s C 2s R 2 C 1 C 2 s 2 C 1s 1 R 2 C1 C 2 s C1 2 (R1 R 2 )C1C 2 s C 2 s C1s (R1 R 2 )C1C 2 s C 2 C1 R 2 C1 C 2 s C1 (R1 R 2 )C1C 2 s C 2 C1 (R1 R 2 )C1C 2 s C 2 C1 R 2 C1 C 2 C1 s K d Td s C 2 C1 C 2 C1 K (R1 R 2 )C1C 2 s (R1 R 2 )C1C 2 s Td s 1 T s 1 1 1 C 2 C1 C 2 C1 为实际微分环节 惯性环节 1 I(s) (R 2 ) C 2s
X(s) G1 G1 H3 H2 H1
-
Y(s) G2
G3
G4 X(s)
G1
-
-
G2 H3
-
Y(s) G3 G4
-
H2
G4 H3
1 2e 2t e t cos 3t 3s2 2s 8 8 A s 1 2 s(s 2)(s 2s 4) s 0 2 4 3s2 2s 8 B (s 2) 2 2 s(s 2)(s 2s 4) s 2
第2章-自动控制原理习题答案
习题2-1 试证明图2-1(a)的电网络与(b)的机械系统有相同的数学模型。
1C 1f 1(a)电网络(b)机械系统图2-1解:对于电网络系统有:电路中的总电流:dtu u d C R u u i o i o i )(11-+-=对o u :)()()(1211121222o i o i o i o i to u u C C R t u u C dt u u d C R R u u R idt C i R u -+-+-+-=+=⎰综上得:dtdu C R u R tC C C R R dt du C R u R t C C C R R i i o o 1211211212112112)()1(+++=++++对机械系统:并联部分受力:dtx x d f x x k F )()(211211-+-= 对串联部分的位移:)()()()(21212121212121212x x f f t x x f k dt x x d k f x x k k x -+-+-+-=整理得:dtdx k f x f f t f k k k dt dx k f x f f t f k k k 12122121212211212121)()1(+++=++++所以,两系统具有相同的数学模型2-5求图2-2中RC 电路和运算放大器的传递函数c ()/()i U s U s 。
1R1R(a) RC 电路 (b) RC 电路1R(c) RC 电路 (d) 运算放大器图2-2解:21212)()()R sCR R R R s u s u a r c ++=οο1)()()()()()()3122112322121121211231212112++++++++=S R C R C R C S R R C C R R C C SR C R C S R R C C R R C C s u s u b rc οο2121212)()()()R R S CR CR R R CS R s u s u c r c +++=οο21212112)()()()S LCR R R S CR R LR R LS s u s u d r c ++++=οο2-6求图2-3所示系统的传递函数C(s)/D(s)和E(s)/D(s)。
自动控制原理第二章课后习题答案(免费)
自动控制原理第二章课后习题答案(免费)离散系统作业注明:*为选做题2-1 试求下列函数的Z 变换 (1)()E z L =();n e t a = 解:01()[()]1k k k z E z L e t a z z z aa∞-=====--∑ (2) ();at e t e -= 解:12211()[()][]1...1atakT k aT aT aTaT k z E z L e t L ee z e z e z z e e z∞----------=====+++==--∑2-2 试求下列函数的终值:(1)112();(1)Tz E z z --=-解: 11111()(1)()1lim lim lim t z z Tz f t z E z z---→∞→→=-==∞- (2)2()(0.8)(0.1)z E z z z =--。
解:211(1)()(1)()0(0.8)(0.1)lim lim limt z z z z f t z E z z z →∞→→-=-==-- 2-3* 已知()(())E z L e t =,试证明下列关系成立:(1)[()][];n z L a e t E a =证明:0()()nn E z e nT z∞-==∑00()()()()[()]n n n n n n z z E e nT e nT a z L a e t a a ∞∞--=====∑∑ (2)()[()];dE z L te t TzT dz=-为采样周期。
证明:11100[()]()()()()()()()()()nn n n n n n n n n L te t nT e nT zTz ne nT z dE z de nT z dz dz e nT n zne nT z ∞∞---==∞-=∞∞----======-=-∑∑∑∑∑所以:()[()]dE z L te t Tzdz=- 2-4 试求下图闭环离散系统的脉冲传递函数()z Φ或输出z 变换()C z 。
自动控制原理课后答案,第二章(西南科技大学)
思考题:双RC网络 课题练习:2-9 作业题: 2-2、2-4、2-5、2-7、2-11、2-14 精讲例题:2-12
思考题:求双 RC 网络图的微分方程、传递函数来自解:ui i1R1 u
u 1
C1
iC dt
R1
R2
i1
ic i2
ui
C1 u C2
uo
uo
1 C2
dt
R
R2C
2
d
2uC (t dt2
)
3RC
duC (t dt
)
uC
(t)
R
2C
2
d
2ur (t dt2
)
2RC
dur (t dt
)
ur
(t
)
(d) 解:列微分方程组得
ur
(t)
uc
(t)
1 C
i1dt
ur (t) uc (t) (i2 i1)R
i1 C
i2
RR
ur
C ic
uc
(d)
uc
(t
)
i1R
1 C
icdt
ic i1 i2
微分方程为:
R 2C 2
d
2uc (t) dt2
3RC
duc (t) dt
uc (t)
R2C
2
d
2ur (t) dt2
2RC
dur (t) dt
ur
(t)
2-4 若某系统的单位阶跃响应为c(t)=1-2e-2t+e-t, 试求 系统的传递函数和脉冲响应。
1 G1G2 G1G2G3 (1
1
)
1 G1G2 G1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-1a 试证明图2-1(a)所示电气网络与图2-1(b)所示的机械系统具有相同的传递函数。
2-2a 试分别写出图2-2中各有源网络的传递函数U c (s)/U r (s)。
解: 图2-2(a )所示的有源网络传递函数U c (s)/U r (s)可以求得为,
2
111
121
21
2/11*1//1)
()(R R cs R R cs R cs R R cs R z z s U s U r c +=
+=
=
=
图2-2(b )示的有源网络传递函数U c (s)/U r (s)可以求得为,
1
/1*1
//1
)
()(2121
221
2+=+==cs R R R R R cs R cs R R cs
s U s U r c
图2-2(c )所示的有源网络传递函数U c (s)/U r (s)可以求得为,
cs
R cs R R R cs s U s U r c 111
211
)
()(+=
+=
2-7c 设系统处于静止状态,当输入单位阶跃函数时其输出响应为
2()1t
t
y t e
e
--=-+ t>0
试求该系统的传递函数。
解 由题意可知:系统的初始条件为零,r(t)=1(t)于是R(s)= L[1(t )]=1/s 。
对上述响应表达式的两边取拉氏变换,则有
2
11142()2
1
(2)(1)
s s Y s s s s s s s ++=
-
+
=
++++
令Y (s )=G(s)R(s)=G(s)/s,由上式便可求得系统的传递函数为
2
()42()()
(2)(1)
Y s s s G s R s s s s ++=
=
++
讨论 传递函数是线性定常单变量系统常用的输入输出模型,是经典控制理论的重要基础。
求取传递函数的常用方法有下列四种:(1)根据系统的工作原理绘制结构图(或信号流图)来求取。
(2)由系统的微分方程(或微分方程组)通过拉氏变换来导出。
(3)根据系统响应表达式来推导,如本例;(4)由系统的状态空间表达式转换而得。
2-8a 系统的结构图如图2-10所示,试求该系统的输入输出传递函数。
说明 由结构图求系统的传递函数既可通过结构图化简也可以用梅森公式来计算,所得结果(即传递函数)是唯一的,但是结构图等效变换的方案则不是唯一的。
而且等效性只保证总的输入输出关系(即传递函数)不变,而结构图内部则不等效,本题就是对此的一个实例说明。
解 (1) 结构图化简方案1
将G 3环节输出端的引出点前移并合并局部反馈环节,如图2-11(a)所示;然后进行串联和反馈的等效变换,如图2-11(b)和(c)所示;由图2-11 (c)通过并联的等效变换,则可求得系统的传递函数为
123
422233122
()()
1G G G Y s G R s G H G G H G G H =+
++-
(4)应用梅森公式求解
为了便于观察,先把结构图改画 成信号流图。
改画过程如下:将结构图 2-10上用符号“。
”标出各信号在信号 流图上设置相应的节点,则可将结构图
改画成图2-14所示的信号流图。
由图可知:它有3
12
2L G H =- 2122L G G H = 3231L G G H =-
没有互不接触的回路,故信号流图的特征式为
123222311221()1L L L G H G G H G G H ∆=-++=++-
从输入到输出的前向通道有2条,它们的增益及相应得余因子式分别为
1123P G G G = 11∆= 24P G = 2∆=∆
于是根据梅森公式,则可求得该系统的传递函数为
2
123
41
22233122
()1
()
1i i i G G G Y s P G R s G H G G H G G H ==
∆=+
∆
++-∑
所得结果与结构图化简的结构相同。
讨论 (1)结构图简化虽然方案较多,但所得的结果(即传递函数)是唯一的。
化简的基本思路是:解除交叉,由里往外逐步地化简;相邻的相加点之间或相邻的引出点之间可互换位置,但是相邻的相加点与引出点之间一般不能简单地互换位置,若需要互换则必须保证其输入输出关系的等效性;对于多输入或多输出的复杂线性系统,则应用叠加原理以简化求传递函数的复杂性。
(2)对于复杂的结构图,应用梅森公式可不必进行繁杂的结构图化简工作。
为了便于观察往往先将结构图改画成信号流图。
应用梅森公式解题的关键是要细心观察,把所有的各种类型的回路,通向通道增益及其余因子式,一个不漏且一个也不多的找出来,谨防粗心出错。
2-9a 试化简图2-15所示的系统结构图,求传递函数,并试用梅逊公式求解。
解:1 将G 4前输出移到G 4后输出消 除交叉,得到多回路结构的等效框 图如图2-16所示:
34534
1G G G G G =
+
25234
63344233
25
4
11G G G G G G H G G H G G H G G G =
=+++
161234
723442331232
16
4
11G G G G G G G H G G H G G H G G G H G G G =
=
++++
2 由内到外进行反馈连接的等效变换,直到变换为一个等效方框,即得到所求的传递函数。
71234
71
344233123212341
()()()
11G G G G G C s G s R s G H G G H G G H G G G H G G G G H =
=
=
-+++-
3 试用梅逊公式求解
将系统结构图转换成信号流图 如图2-17所示: 一条前向通路
11234P G G G G = 11∆=
回路有四个:
L 1=344G G H -;L 2=233G G H -; L 3=1232G G G H -;L 4=12341G G G G H
1232233344123411G G G H G G H G G H G G G G H ∆=+++-
则用梅逊公式可求得系统传递函数
1234
11123223334412341
()1()
1G G G G C s P R s G G G H G G H G G H G G G G H =∆=
∆+++-
2-10a 系统的信号流图如图2-18所示,试求
C(S)/R(S)
解: 1211234215i L G G H G G G G H G G =----∑
1214212412()()i
j
L L
G G H G H G G G H H =--=∑
11234P G G G G = 11∆=
2145P G G G = 21∆=
36P G = 3421G H ∆=+
12112342151241211i i j L L L G G H G G G G H G G G G G H H ∆=-+=+++++∑∑
1234145642121123421512412
(1)
()()
1i
i
P G G G G G G G G G H C s R s G G H G G G G H G G G G G H H ∆
+++=
=
∆
+++++∑
2-12b 已知系统结构如图2-22所示。
1)求传递函数C(S)/R(S)和C(S)/N(S)。
2)若要消除干扰对输出的影响 (即 C(S)/N(S)=0),问0()G s =?
解: 1)令 N (S )=0,求
123
2
123
()()
K K K C s R s TS S K K K =
++
令R (S )=0,求
()()
C s N s 先作等效变换框图,如图2-23所示,
012
3
4301243
012123
()
()()1()
(1)11
G K K K K K G K K K S C s S TS K G K K N s S TS K K K TS S
--+=
=+++
+ 2)要使
()0()
C s N s =,则须30124()0K G K K K S -=
求得4012
()K S G s K K =。