(全国通用版)新2020-2020高中数学 第二章 函数 2.1.4 函数的奇偶性 2.1.5 用计算机作函数的图象(选学)练

合集下载

新教材高中数学第二章函数4函数的奇偶性与简单的幂函数 简单幂函数的图象和性质课件北师大版必修第一册

新教材高中数学第二章函数4函数的奇偶性与简单的幂函数 简单幂函数的图象和性质课件北师大版必修第一册

必备知识•探新知 关键能力•攻重难 课堂检测•固双基
必备知识•探新知
基础知识
知识点1 幂函数的概念 一般地,形如_____y_=__x_α_(α_为__常__数__)___的函数,即底数是自变量、指数
是常数的函数称为幂函数. 思考1:幂函数的解析式有什么特征? 提示:①系数为1;②底数x为自变量;③幂指数为常数.
y=x2 __偶___函数
_[_0_,+__∞__)
y=x3 _奇___函数 ___R___
y=1x
1
y=x2
__奇___函数
_非__奇__非__偶__ 函数

_[_0_,_+__∞_)__
减区间

__(-__∞__,0_)_

_(-__∞__,0_)_,_(0_, +__∞__) ____

定点
___(_1_,_1_) ___
思考2:在区间(0,+∞)上,幂函数有怎样的单调性? 提示:幂函数在区间(0,+∞)上,当α>0,y=xα是增函数;当α<0时,y =xα是减函数.
基础自测
1.下列函数为幂函数的是
( D)
A.y=2x4
B.y=2x3-1
C.y=2x
D.y=x2
[解析] y=2x4 中,x4 的系数为 2,故 A 不是幂函数;y=2x3-1 不
第二章 函 数
§4 函数的奇偶性与简单的幂函数 4.2 简单幂函数的图象和性质
【素养目标】 1.通过具体实例,理解幂的概念.(数学抽象) 2.会画简单幂函数的图象,并能根据图象得出这些函数的性质.(直 观想象) 3.理解常见幂函数的基本性质.(逻辑推理)
【学法解读】 以五种常见的幂函数为载体,学生应自己动手在同一个平面直角坐标 系下画出这五种幂函数的图象,通过观察比较研究其图象和性质,进而研 究一般幂函数的图象和性质.

鲁科版高中数学人教版目录

鲁科版高中数学人教版目录

高中数学目录必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。

高中数学 必修1 第二章 基本初等函数(Ⅰ) 2.1.1(一)

高中数学 必修1 第二章 基本初等函数(Ⅰ)  2.1.1(一)

本课结束
n
(2)( a)n= a (n∈N*,且 n>1); 的奇数);
n
a a≥0 (4) an=|a|= (n 为大于 1 的偶数). -a a<0
n
题型探究
类型一 根式的意义
例 1 求使等式 a-3a2-9=(3-a) a+3成立的实数 a 的取值范围.
n 为偶数时,a≥0, n
而 a 为任意实数 an均有意义,且 an=|a|.
跟踪训练2 求下列各式的值:
(1) -2 ;
7
7

4
7
-27=-2.
(2) 3a-34(a≤1); 解
3
4
3a-34=|3a-3|=3|a-1|=3-3a.
4
(3) a + 1-a4.
3

3
∴( x-1) + x2-4x+43
4
4
6
=x-1+ x-26
=x-1-(x-2) =1.
6
解析
答案
当堂训练
1.已知x5=6,则x等于
A. 6 C.- 6
5

B. 6 D.± 6
5
5
1
2
3
4
5
答案
2.m是实数,则下列式子中可能没有意义的是
A. m2
4
B. m D. -m
5
3

C. m
6
原式=-(x-1)-(x+3)=-2x-2;
当1≤x<3时,原式=(x-1)-(x+3)=-4.
-2x-2,-3<x<1, ∴原式= -4,1≤x<3.
解答
引申探究
例3中,若将“-3<x<3”变为“x≤-3”,则结果又是什么?

高中数学教材人教B版目录(详细版).doc

高中数学教材人教B版目录(详细版).doc

数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)

数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

高中数学教案电子版通用

高中数学教案电子版通用一、教学内容本节课选自高中数学教材《必修3》第二章“函数”的2.1节“函数的概念与表示方法”。

具体内容包括函数的定义、函数的表示方法(列表法、解析法、图象法)、函数的几种特性(单调性、奇偶性、周期性)以及实际应用。

二、教学目标1. 理解函数的概念,掌握函数的三种表示方法。

2. 能够运用函数的性质分析实际问题,解决简单的数学问题。

3. 培养学生的抽象思维能力,提高数学素养。

三、教学难点与重点重点:函数的概念、表示方法及性质。

难点:函数性质的判断和应用。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:直尺、圆规、函数计算器。

五、教学过程1. 实践情景引入(5分钟)利用多媒体展示实际生活中的函数实例,如气温变化、股票走势等,引导学生观察、分析这些现象中的数量关系。

2. 知识讲解(15分钟)(1)讲解函数的定义,让学生理解函数的含义。

(2)介绍函数的表示方法,通过示例让学生掌握列表法、解析法、图象法。

(3)分析函数的性质,如单调性、奇偶性、周期性等。

3. 例题讲解(10分钟)结合教材例题,详细讲解如何利用函数的性质解决实际问题,强调解题思路和方法。

4. 随堂练习(10分钟)出示两道练习题,让学生独立完成,巩固所学知识。

5. 课堂小结(5分钟)6. 互动环节(5分钟)学生提问、解答疑惑,教师给予解答,加强师生互动。

六、板书设计1. 黑板左侧:函数的定义、表示方法、性质。

2. 黑板右侧:例题解析、随堂练习。

七、作业设计1. 作业题目:(1)根据函数的定义,找出生活中一个符合函数关系的例子,并说明理由。

(2)已知函数f(x) = 2x + 3,求f(1)、f(1)的值。

(3)判断函数f(x) = |x|的奇偶性,并说明理由。

2. 答案:(1)答案不唯一,合理即可。

(2)f(1) = 5,f(1) = 1。

(3)f(x) = |x|是偶函数,因为f(x) = f(x)。

八、课后反思及拓展延伸1. 反思:本节课学生对函数的概念和表示方法的掌握情况较好,但部分学生对函数性质的判断和应用仍存在困难,需要在今后的教学中加强巩固。

高考数学第2章函数、导数及其应用第3讲函数的奇偶性与周期性创高三全册数学


12/8/2021
第十九页,共七十四页。
解析 答案
4.设函数 f(x)=cosπ2-xπ2+x+e2x+e2的最大值为 M,最小值为 N,则(M
+N-1)2020 的值为( )
A.1
B.2
C.22020
D.32020
解析 由已知 x∈R,f(x)=cosπ2-xπ2+x+e2x+e2=sinπx+xx2+2+ee22+2ex=
12/8/2021
第二页,共七十四页。
1
PART ONE
基础知识过关(guò〃guān)
12/8/2021
第三页,共七十四页。
1.函数的奇偶性
奇偶性
定义
图象特点
一般地,如果对于函数f(x)的定义域内 偶函数 任意一个x,都有 01 f(-x)=f(x) ,那 关于 02 y轴对称
么函数f(x)就叫做偶函数
第二章 函数(hánshù)、导数及其应用 第3讲 函数(hánshù)的奇偶性与周期性
12/8/2021
第一页,共七十四页。
[考纲解读] 1.了解函数奇偶性的含义. 2.会运用基本初等函数的图象分析函数的奇偶性.(重点) 3.了解函数周期性、最小正周期的含义,会判断、应用简单 函数的周期性.(重点) [考向预测] 从近三年高考情况来看,函数的奇偶性与周期性 是高考的一个热点.预测2021年高考会侧重以下三点:①函数 奇偶性的判断及应用;②函数周期性的判断及应用;③综合利 用函数奇偶性、周期性和单调性求参数的值或解不等式.
3.(2019·衡水模拟)已知 f(x)是定义在 R 上的奇函数,若 x>0 时,f(x)
=xln x,则 x<0 时,f(x)=( )
A.xln x
B.xln (-x)

全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版

(名师选题)全国通用版高中数学第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√x⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞).故选:A.2、已知实数a,b满足a+b=ab(a>1,b>1),则(a−1)2+(b−1)2的最小值为( ) A.2B.1C.4D.5答案:A分析:将a -1和b -1看作整体,由a +b =ab (a >1,b >1)构造出(a −1)(b −1)=1,根据(a −1)2+(b −1)2≥2(a −1)(b −1)即可求解.由a +b =ab (a >1,b >1)得a +b −ab −1=−1,因式分解得(a −1)(b −1)=1, 则(a −1)2+(b −1)2≥2(a −1)(b −1)=2,当且仅当a =b =2时取得最小值. 故选:A .3、已知x >0,y >0,x +2y =1,则1x+1y 的最小值为( )A .3+2√2B .12C .8+4√3D .6 答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x >0,y >0,x +2y =1, 所以(1x+1y )(x +2y)=3+2y x+xy≥3+2√2,当且仅当2yx =xy ,即x =√2−1,y =2−√22时,等号成立.故选:A.4、已知x >2,则x +4x−2的最小值为( ) A .6B .4C .3D .2 答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6, 故选:A .5、若实数x >32,y >13,不等式4x 2t (3y−1)+9y 2t (2x−3)≥2恒成立,则正实数t 的最大值为( ) A .4B .16C .72D .8答案:D分析:令3y −1=a,2x −3=b ,则(b+3)2a+(a+1)2b≥2t ,由权方和不等式和基本不等式得(b+3)2a+(a+1)2b≥16,即可求解t ≤8.由4x 2t (3y−1)+9y 2t (2x−3)≥2得4x 2(3y−1)+9y 2(2x−3)≥2t 因为x >32,y >13,则3y −1>0,2x −3>0 令3y −1=a,2x −3=b 则4x 2(3y−1)+9y 2(2x−3)≥2t 化为(b+3)2a+(a+1)2b≥2t 恒成立,由权方和不等式得(b+3)2a+(a+1)2b≥(a+b+4)2a+b=(a +b )+16a+b +8≥2√16+8=16当且仅当{b+3a=a+1ba +b =4,得a =53,b =73即x =73,y =109时等号成立.所以16≥2t ⇒t ≤8 故选:D6、若关于x 的不等式|x −1|<a 成立的充分条件是0<x <4,则实数a 的取值范围是( ) A .(-∞,1]B .(-∞,1) C .(3,+∞)D .[3,+∞) 答案:D分析:根据充分条件列不等式,由此求得a 的取值范围. |x −1|<a 成立的充分条件是0<x <4,则a >0, |x −1|<a ⇒1−a <x <1+a ,所以{1−a ≤01+a ≥4⇒a ≥3.故选:D7、已知0<x <2,则y =x√4−x 2的最大值为( ) A .2B .4C .5D .6 答案:A分析:由基本不等式求解即可 因为0<x <2, 所以可得4−x 2>0, 则y =x√4−x 2=√x 2⋅(4−x 2)≤x 2+(4−x 2)2=2,当且仅当x 2=4−x 2,即x =√2时,上式取得等号, y =x√4−x 2的最大值为2. 故选:A . 8、若x >1,则x +1x−1的最小值等于( )A .0B .1C .2D .3 答案:D 分析:将x +1x−1变形为x −1+1x−1+1,即可利用均值不等式求最小值.因为x >1,所以x −1>0,因此x +1x−1=x −1+1x−1+1≥2√(x −1)⋅1x−1+1=3,当且仅当x −1=1x−1,即x =2时,等号成立,所以x +1x−1的最小值等于3. 故选:D.9、已知y =(x −m )(x −n )+2022(n >m ),且α,β(α<β)是方程y =0的两实数根,则α,β,m ,n 的大小关系是( )A .α<m <n <βB .m <α<n <βC .m <α<β<nD .α<m <β<n 答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y =0的两实数根,∴α,β为函数y =(x −m )(x −n )+2022的图像与x 轴交点的横坐标, 令y 1=(x −m )(x −n ),∴m ,n 为函数y 1=(x −m )(x −n )的图像与x 轴交点的横坐标,易知函数y =(x −m )(x −n )+2022的图像可由y 1=(x −m )(x −n )的图像向上平移2022个单位长度得到, 所以m <α<β<n . 故选:C.10、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2 ,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.11、已知a,b 为正实数,且a +b =6+1a+9b ,则a +b 的最小值为( )A .6B .8C .9D .12 答案:B分析:根据题意,化简得到(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b,结合基本不等式,即可求解.由题意,可得(a +b )2=(6+1a +9b )(a +b )=6(a +b )+10+ba +9a b≥6(a +b )+16,则有(a +b )2−6(a +b )−16≥0,解得a +b ≥8,当且仅当a=2,b=6取到最小值8.故选:B.12、要使关于x的方程x2+(a2−1)x+a−2=0的一根比1大且另一根比1小,则实数a的取值范围是()A.{a|−1<a<2}B.{a|−2<a<1}C.{a|a<−2}D.{a|a>1}答案:B分析:根据二次方程根的分布可得出关于实数a的不等式,由此可解得实数a的取值范围.由题意可得1+(a2−1)+a−2=a2+a−2<0,解得−2<a<1.故选:B.填空题13、若对任意x>0,x3+5x2+4x≥ax2恒成立,则实数a的取值范围是___________.答案:(−∞,9]分析:先分离参数a,再运用基本不等式可求解.因为对任意x>0,x3+5x2+4x≥ax2⇔x2+5x+4x ≥a恒成立,只需满足a≤(x2+5x+4x)min,因为x>0,所以x 2+5x+4x=x+4x+5≥2√x⋅4x+5=9,当且仅当x=4x,即x=2时取等号.故实数a的取值范围是(−∞,9].所以答案是:(−∞,9]14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2. 所以答案是:615、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题.答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可.由不等式性质,得{ab>0ca>db⇒{ab>0bc−adab>0⇒bc>ad;{ab>0bc>ad⇒ca>db;{ca>dbbc>ad⇒{bc−adab>0bc>ad⇒ab>0.故可组成3个真命题.所以答案是:3.16、正实数x,y满足:2x+y=1,则2x +1y的最小值为_____.答案:9解析:根据题意,可得2x +1y=(2x+1y)(2x+y)=5+2yx+2xy,然后再利用基本不等式,即可求解.2 x +1y=(2x+1y)(2x+y)=5+2yx+2xy≥5+2√2yx⋅2xy≥5+2√4=9,当且仅当x=y=13时取等号.所以答案是:9.小提示:本题主要考查利用基本不等式求最值,属于基础题.17、当x>1时,求2x+8x−1的最小值为___________.答案:10分析:化为积为定值的形式后,利用基本不等式可求得结果.当x>1时,2x+8x−1=2(x−1)+8x−1+2≥2√2(x−1)⋅8x−1+2=8+2=10,当且仅当{x>12(x−1)=8x−1,即x=3时等号成立.∴2x+8x−1的最小值为10.所以答案是:10.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.解答题18、已知实数x>0,y>0.(1)若x+y+xy=3,求2xy的最大值与x+y的最小值;(2)若x>y,求xy 2x−y +xy+1y2的最小值.答案:(1)最小值为2;(2)最小值为4.分析:(1)由已知结合基本不等式x+y⩾2√xy,及不等式的性质即可求解;(2)先进行换元t=x−y,t>0,然后把x=t+y代入所求式子,进行合理的变形后结合基本不等式可求.解:(1)因为x+y≥2√xy,又因为x+y+xy=3,所以xy+2√xy≤3,解得−3≤√xy≤1,因为0<√xy,所以0<√xy≤1,所以0<xy≤1,所以2xy≤2,当且仅当x=y=1时等号成立,所以2xy最大值为2;因为xy≤(x+y2)2,所以(x+y2)2+(x+y)≥3,当且仅当x=y=1时等号成立,所以x+y≥2,所以x+y最小值为2;(2)xy 2x−y +xy+1y2=x2yx−y+1y2,令t=x−y,t>0,所以x=t+y,x2y x−y +1y2=(t+y)2yt+1y2=ty+y3t+2y2+1y2≥2√ty⋅y3t+2y2+1y2=4y2+1y2≥2√4y2⋅1y2=4;当且仅当ty=y 3t ,且4y2=1y2,即x=√2,y=√22时等号成立,所以xy 2x−y +xy+1y2最小值为4.19、已知12<a<60,15<b<36,求a−2b,2ab的取值范围.答案:a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).分析:根据题意可得−72<−2b<−30,进而得到a−2b的范围,再根据分数的性质可得2ab的取值范围. 因为15<b<36,所以−72<−2b<−30.又12<a<60,所以12−72<a−2b<60−30,即−60<a−2b<30.因为12<a<60,所以24<2a<120,因为15<b<36,所以136<1b<115,所以2436<2ab<12015,即23<2ab<8.所以a−2b的取值范围是(−60,30),2ab 的取值范围是(23,8).20、设f(x)=ax2+(1-a)x+a-2.(1)若命题“对任意实数x,f(x)≥-2”为真命题,求实数a的取值范围;(2)解关于x的不等式f(x)<a-1(a∈R).答案:(1)a≥13(2)答案见解析分析:(1)根据“对任意实数x,f(x)≥-2”为真命题,知ax2+(1-a)x+a-2≥-2,即ax2+(1-a)x+a≥0,此时对a进行分类讨论,再结合判别式Δ即可求出a的范围.(2)由f(x)<a-1得ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0,对a进行分类讨论,即可求出不等式f(x)<a-1的解集.(1)∵命题“对任意实数x,f(x)≥-2”为真命题,∴ax2+(1-a)x+a-2≥-2恒成立,即ax2+(1-a)x+a≥0恒成立. 当a=0时,x≥0,不满足题意;当a≠0时,知{a>0,Δ≤0,即{a>0,(1-a)2-4a2≤0,解得a≥13.故实数a的取值范围为a≥13.(2)∵f(x)<a-1(a∈R),∴ax2+(1-a)x+a-2<a-1,即ax2+(1-a)x-1<0.当a=0时,x<1,∴不等式的解集为{x|x<1};当a>0时,ax2+(1-a)x-1<0⇒(ax+1)(x-1)<0,此时方程(ax+1)(x-1)=0的解分别为-1a,1,∵-1a <1,∴不等式的解集为{x|-1a<x<1},当a<0时,不等式可化为(ax+1)(x-1)<0,①当a=-1时,-1a=1,∴不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,此时不等式的解集为{x|x>−1a或x<1};③当a<-1时,-1a <1,此时不等式的解集为{x|x>1或x<−1a}。

高中数学探究导学课型第二章基本初等函数(I)2.1.2指数函数及其性质第1课时指数函数的图象及性质课


第十四页,共55页。
2.函数y=2-x的图象(tú xiànɡ)是 ( )
【解析】选B.y=2-x= ,故此函数是指数函数,且为
减函数.
(1)x
2
第十五页,共55页。
3.若指数函数f(x)的图象(tú xiànɡ)过点(3,8),则f(x)的
解析式为 ( )
A.f(x)=x3
B.f(x)=2x
C.f(x)=
【解析(jiě xī)】由已知得f(1)=(a+1)1=3,所以a=2,
于是f(x)=3x,故
f(1)
f
1
1
32
31
1
3 2
3.
2
3
第十九页,共55页。
【互动探究】 1.指数(zhǐshù)函数解析式有什么特征? 提示:特征1:底数a为大于0且不等于1的常数. 特征2:自变量x的位置在指数(zhǐshù)上,且x的系数 是1. 特征3:ax的系数是1.
当x<-1时,y=5|x+1|=5-(x+(11))x=1. 所以(suǒyǐ)函数y=5|x+1|的图5象如图(1)所示.
第四十页,共55页。
方法二:利用图象变换来解题.易画出y=5|x|的图象,只需 将函数(hánshù)y=5|x|的图象向左平移1个单位,即可得 函数(hánshù)y=5|x+1|的图象.如图(2)所示.
增函数
减函数(hánshù)
第十二页,共55页。
【深度思考】 结合教材P56例6,你认为怎样求指数函数(zhǐ shù hán shù)的解设析出式一?般(yībān)形
第一步代:式_入__题__中__条__件__(_t_i(已áo给ji出àn的)求省略此步). 第二步底:_数__________________.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新人教版小学试题
部编本试题,欢迎下载!
2.1.4 函数的奇偶性 2.1.5 用计算机作函数的图象(选学)
课时过关·能力提升
1下列函数是奇函数的是( )
A.y= B.y=-3x2
C.y=-|x| D.y=πx3-x
解析先判断函数的定义域是否关于原点对称,再确定f(-x)与f(x)的关系.选项A中函数的定义
域为(-∞,1)∪(1,+∞),不关于原点对称,所以排除A;选项B,C中函数的定义域均是R,且函数
均是偶函数;选项D中函数的定义域是R,且f(-x)=-f(x),则此函数是奇函数.
答案D

2设函数f(x)=+1,则f(x)( )
A.是奇函数
B.是偶函数
C.是非奇非偶函数
D.既是奇函数又是偶函数

解析由得-1≤x≤1,
即函数定义域为[-1,1],关于原点对称.

又因为f(-x)=+1=f(x),
所以f(x)是偶函数.
答案B

3若函数f(x)=是定义域为R的奇函数,则实数b的值为( )
A.1 B.-1
C.0 D.1或-1

解析由已知得f(0)=0,即=0,故b=0,且此时f(x)=,f(-x)==-=-f(x),
即f(x)是奇函数.
答案C

4已知偶函数y=f(x)在区间(-∞,0]上是增函数,则下列不等式一定成立的是( )
最新人教版小学试题
部编本试题,欢迎下载!
A.f(3)>f(-2)
B.f(-π)>f(3)
C.f(1)>f(a2+2a+3)
D.f(a2+2)>f(a2+1)
解析因为y=f(x)在区间(-∞,0]上是增函数,且f(x)为偶函数,
所以y=f(x)在区间[0,+∞)内是减函数.
因为a2+2a+3=(a+1)2+2>1,
所以f(a2+2a+3)答案C

5已知f(x)=ax7-bx5+cx3+2,且f(-5)=m,则f(5)+f(-5)的值为( )
A.4 B.0
C.2m D.-m+4
解析由已知,得f(x)+f(-x)=4,
故f(-5)+f(5)=4.
答案A

6若偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为( )
A.{x|x<-2或x>4} B.{x|x<0或x>4}
C.{x|x<0或x>6} D.{x|x<-2或x>2}
解析当x≥0时,令f(x)=2x-4>0,得x>2.
又因为函数f(x)为偶函数,
所以函数f(x)>0的解集为{x|x<-2或x>2}.
故f(x-2)>0的解集为{x|x<0或x>4}.
答案B

7若函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)等于 ( )
A.0 B.1 C. D.5
解析在f(x+2)=f(x)+f(2)中,令x=-1得f(1)=f(-1)+ f(2).因为f(1)=,f(x)是奇函数,

所以f(-1)=-,f(2)=1,
所以f(x+2)=f(x)+1,

故f(5)=f(3)+1=f(1)+1+1=+2=.
答案C

8设函数f(x)=为奇函数,则实数a= .
解析因为f(x)是奇函数,
最新人教版小学试题
部编本试题,欢迎下载!
所以f(-1)==0=-f(1)=-=-2(1+a).
所以a=-1.当a=-1时,f(x)==x-(x≠0),f(x)为奇函数,故a=-1.
答案-1

9已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2+4x+m,则当x<0
时,f(x)= .
解析因为f(x)是定义域为R的奇函数,
所以f(0)=0,即02+4×0+m=0,解得m=0,当x≥0时,f(x)=x2+4x.设x<0,则-x>0,
故f(-x)=(-x)2+4·(-x)=x2-4x.
又因为f(-x)=-f(x),
所以当x<0时,f(x)=-x2+4x.
答案-x2+4x

10已知奇函数f(x)(x∈R)满足f(x+4)=f(x)+f(2),且f(1)=2,则f(1)+f(2)+f(3)+…+f(2
016)等于 .
答案0

11已知定义在(-1,1)内的奇函数f(x),在定义域上为减函数,且f(1-a)+f(1-2a) >0,求实
数a的取值范围.
解∵f(1-a)+f(1-2a)>0,
∴f(1-a)>-f(1-2a).
∵f(x)是奇函数,∴-f(1-2a)=f(2a-
1),

即f(1-a)>f(2a-1).
又f(x)在(-1,1)内是减函数,

故a的取值范围是.
★12函数f(x)是定义在R上的偶函数,且当x>0时,函数的解析式为f(x)= -1.
(1)求f(-1)的值;
最新人教版小学试题
部编本试题,欢迎下载!
(2)求当x<0时函数的解析式;
(3)用定义证明f(x)在(0,+∞)内是减函数.
(1)解因为f(x)是偶函数,
所以f(-1)=f(1)=2-1=1.

(2)解当x<0时,-x>0,故f(-x)=-1.
因为f(x)为偶函数,

所以当x<0时,f(x)=f(-x)=-1=--1.
(3)证明设x1,x2是(0, +∞)内的任意两个不相等的实数,且0则Δx=x2-x1>0,Δy=f(x2)-f(x1)

=-1-.
因为x1-x2<0,x1x2>0,
所以Δy<0.

故f(x)=-1在(0,+∞)内是减函数.
★13(1)已知函数f(x),x∈R,若对于任意实数a,b,都有f(a+b)=f(a)+f(b),求证:f(x)为奇
函数;
(2)已知函数f(x),x∈R,若对于任意实数x1,x2,都有f(x1+x2)+f(x1-x2)=2f(x1)f(x2),求证: f(x)
是偶函数;
(3)设函数f(x)定义在(-l,l)内,求证:f(x)+f(-x)是偶函数, f(x)-f(-x)是奇函数.
证明(1)函数f(x)的定义域为R,关于原点对称.
设a=0,则f(b)=f(0)+f(b),故f(0)=0.
设a=-x,b=x,则f(0)=f(-x)+f(x),
即f(-x)=-f(x).因此,f(x)是奇函数.
(2)函数f(x)的定义域为R,关于原点对称.
设x1=0,x2=x,得f(x)+f(-x)=2f(0)f(x). ①
设x1=x,x2=0,得f(x)+f(x)=2f(0)f(x). ②
由①②,得f(-x)=f(x).
故f(x)是偶函数.
(3)由于对任意的x∈(-l,l),也必有-x∈(-l,l),
可见,f(-x)的定义域也是(-l,l).
若设F (x)=f(x)+f(-x),G(x)=f(x)-f(-x),
则F(x)与G(x)的定义域也是(-l,l),显然是关于原点对称的区间.
最新人教版小学试题
部编本试题,欢迎下载!
∵F(-x)=f(-x)+f[-(-x)]=f(x)+f(-x)=F(x),G(-x)=f(-x)-f[-(-x)]=f(-x)-f(x)=-[f(x)-
f(-x)]=-G(x
),

∴F(x)是偶函数,G(x
)是奇函数,

即f(x)+f(-x)是偶函数,f(x)-f(-x)是奇函数.

相关文档
最新文档