2016届高考数学一轮复习 题组层级快练64(含答案解
2016届高考数学一轮复习 题组层级快练10(含解析)

题组层级快练(十)1.(2015·四川泸州一诊)2lg2-lg 125的值为( )A .1B .2C .3D .4答案 B解析 2lg2-lg 125=lg(22÷125)=lg100=2,故选B.2.(log 29)·(log 34)=( ) A.14 B.12 C .2 D .4答案 D解析 原式=(log 232)·(log 322)=4(log 23)·(log 32)=4·lg3lg2·lg2lg3=4.3.(2015·石家庄一模)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c答案 A解析 因为312>1,0<log 1312<1,c =log 213<0,所以a >b >c ,故选A.4.已知函数f (x )=2+log 2x ,x ∈[1,2],则函数y =f (x )+f (x 2)的值域为( ) A .[4,5] B .[4,112]C .[4,132]D .[4,7]答案 B解析 y =f (x )+f (x 2)=2+log 2x +2+log 2x 2=4+3log 2x ,注意到为使得y =f (x )+f (x 2)有意义,必有1≤x 2≤2,得1≤x ≤2,从而4≤y ≤112.5.(2014·四川文)已知b >0,log 5b =a ,lg b =c,5d=10,则下列等式一定成立的是( ) A .d =ac B .a =cd C .c =ad D .d =a +c答案 B解析 由已知得5a =b,10c =b ,∴5a =10c,5d =10,∴5dc =10c ,则5dc =5a,∴dc =a ,故选B. 6.若x ∈(e -1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 C 解析 由x ∈(e -1,1),得-1<ln x <0,a -b =-ln x >0,a >b ,a -c =ln x (1-ln 2x )<0,a <c ,因此有b <a <c ,选C.7.若点(a ,b )在y =lg x 图像上,a ≠1,则下列点也在此图像上的是( ) A .(1a,b )B .(10a,1-b )C .(10a,b +1)D .(a 2,2b )答案 D解析 当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 图像上. 8.设log b N <log a N <0,N >1,且a +b =1,则必有( ) A .1<a <b B .a <b <1 C .1<b <a D .b <a <1答案 B解析 ∵0>log a N >log b N ⇒log N b >log N a ,∴a <b <1.9.若0<a <1,则在区间(0,1)上函数f (x )=log a (x +1)是( ) A .增函数且f (x )>0 B .增函数且f (x )<0 C .减函数且f (x )>0 D .减函数且f (x )<0答案 D解析 ∵0<a <1时,y =log a u 为减函数,又u =x +1增函数,∴f (x )为减函数;又0<x <1时,x +1>1,又0<a <1,∴f (x )<0.选D.10.函数f (x )=2|log2x |的图像大致是( )答案 C解析 ∵f (x )=2|log2x |=⎩⎪⎨⎪⎧x ,x ≥1,1x,0<x <1,∴选C.11.设a =log 3π,b =log 23,c =log 32,则( ) A .a >b >c B .a >c >b C .b >a >c D .b >c >a答案 A解析 ∵a =log 3π>log 33=1,b =log 23<log 22=1,∴a >b .又b c =12log 2312log 32=(log 23)2>1,∴b >c .故a >b >c .选A.12.若0<a <1,则不等式1log a x>1的解是( ) A .x >a B .a <x <1 C .x >1 D .0<x <a答案 B解析 易得0<log a x <1,∴a <x <1.13.若log a (x +1)>log a (x -1),则x ∈________,a ∈________. 答案 (1,+∞) (1,+∞)14.若log a (a 2+1)<log a 2a <0,则实数a 的取值范围是__________. 答案 (12,1)解析 ∵a 2+1>1,log a (a 2+1)<0,∴0<a <1. 又log a 2a <0,∴2a >1,∴a >12.∴实数a 的取值范围是(12,1).15.若函数f (x )=log a (x +1)(a >0,且a ≠1)的定义域和值域都是[0,1],则a =________. 答案 2解析 f (x )=log a (x +1)的定义域是[0,1],∴0≤x ≤1,则1≤x +1≤2. 当a >1时,0=log a 1≤log a (x +1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0,与值域是[0,1]矛盾. 综上,a =2.16.(2015·广东韶关调研)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x,x ≤0,且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.答案 a >1解析 如图,在同一坐标系中分别作出y =f (x )与y =-x +a 的图像,其中a 表示直线在y 轴上的截距,由图可知,当a >1时,直线y =-x +a 与y =log 2x 只有一个交点.17.设函数f (x )=|lg x |,(1)若0<a <b 且f (a )=f (b ).证明:a ·b =1; (2)若0<a <b 且f (a )>f (b ).证明:ab <1. 答案 略解析 (1)由|lg a |=|lg b |,得-lg a =lg b .∴ab =1. (2)由题设f (a )>f (b ),即|lg a |>|lg b |.上式等价于(lg a )2>(lg b )2,即(lg a +lg b )(lg a -lg b )>0,lg(ab )lg ab >0,由已知b >a >0,得0<a b<1.∴lg a b<0,故lg(ab )<0.∴ab <1.18.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的取值范围. 答案 (1){x |-1<x <1} (2)奇函数 (3){x |0<x <1}解析 (1)f (x )=log a (x +1)-log a (1-x ),则⎩⎪⎨⎪⎧x +1>0,1-x >0,解得-1<x <1.故所求定义域为{x |-1<x <1}. (2)f (x )为奇函数.证明如下: 由(1)知f (x )的定义域为{x |-1<x <1},且f (-x )=log a (-x +1)-log a (1+x )=-[log a (x +1)-log a (1-x )]=-f (x ). 故f (x )为奇函数.(3)由f (x )>0,得log a (x +1)-log a (1-x )>0. ∴log a (x +1)>log a (1-x ).又a >1,∴⎩⎪⎨⎪⎧x +1>0,1-x >0,x +1>1-x ,解得0<x <1.所以使f (x )>0的x 的取值范围是{x |0<x <1}.若a >0且a ≠1,x >y >0,n ∈N *,则下列各式:①(log a x )n =n log a x ;②(log a x )n =log a x n;③log a x =-log a 1x ;④n log a x =1n log a x ;⑤log a x n=log a n x ;⑥log ax -y x +y =-log a x +yx -y.其中正确的有________.答案③⑤⑥。
2016届高三理科数学一轮复习题组层级快练17Word版含答案

题组层级快练(十七)(第一次作业)1.函数f (x )=(x 2-1)2+2的极值点是( ) A .x =1 B .x =-1 C .x =1或-1或0 D .x =0答案 C解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得 x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.2.(2013·课标全国Ⅱ)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ) A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图像是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)上单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0 答案 C解析 ∵x 0是f (x )的极小值点,则y =f (x )的图像大致如右图所示,则在(-∞,x 0)上不单调,故C 不正确.3.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )答案 C解析 由f (x )在x =-2处取得极小值可知, 当x <-2时,f ′(x )<0,则xf ′(x )>0; 当-2<x <0时,f ′(x )>0,则xf ′(x )<0; 当x >0时,xf ′(x )>0.4.若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0 答案 D解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b=0.5.若函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0. ∴b >0.f ′(1)=3-3b >0,∴b <1. 综上,b 的取值范围为0<b <1.6.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对 答案 A解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37,选A.7.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值范围为( ) A .[2,+∞) B .[4,+∞) C .{4} D .[2,4] 答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意; 当0<a ≤1时,f ′(x )=3ax 2-3=3a (x +1a )(x -1a),f (x )在[-1,1]上为减函数, f (x )min =f (1)=a -2≥0,a ≥2,不合题意; 当a >1时,f (-1)=-a +4≥0,且f (1a )=-2a+1≥0,解得a =4.综上所述,a =4. 8.若函数f (x )=e -x ·x ,则( )A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x ·x +12x ·e -x =e -x (-x +12x )=e -x ·1-2x2x . 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e ·12=12e.9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax +2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.10.若f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a +b =________. 答案 -7解析 由x =1时,f (x )有极值10知,f (1)=10,f ′(1)=0,∴⎩⎪⎨⎪⎧ 1+a +b +a 2=10,3+2a +b =0,即⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f (x )=x 3+4x 2-11x +16, 得f ′(x )=3x 2+8x -11=(3x +11)(x -1).当x ∈(-113,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )为极小值.当a =-3,b =3时,f ′(x )=3(x -1)2≥0,即x =1时,不取极值,a =-3,b =3应舍去.所以a +b =-7.11.若f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案 6解析 f ′(x )=3x 2-4cx +c 2, ∵f (x )在x =2处有极大值, ∴⎩⎪⎨⎪⎧f ′(2)=0,f ′(x )<0 (x >2),f ′(x )>0 (x <2).解得c =6.12.(2015·保定调研卷)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 13.(2015·郑州一模)已知函数f (x )=x 3-ax 2-3x .(1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =-13是函数f (x )的极值点,求函数f (x )在[1,a ]上的最大值;(3)设函数g (x )=f (x )-bx ,在(2)的条件下,若函数g (x )恰有3个零点,求实数b 的取值范围.答案 (1)a ≤0 (2)-6 (3)b >-7且b ≠-3 解析 (1)f ′(x )=3x 2-2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴f ′(x )≥0在[1,+∞)上恒成立,即 3x 2-2ax -3≥0在[1,+∞)上恒成立. 则必有a3≤1,且f ′(1)=-2a ≥0.∴a ≤0.(2)依题意,f ′(-13)=0,即13+23a -3=0,∴a =4.∴f (x )=x 3-4x 2-3x .令f ′(x )=3x 2-8x -3=0,得x 1=-13,x 2=3.则当x 变化时,f ′(x )与f (x )变化情况如下表:∴f (x )在(3)函数g (x )有3个零点⇔方程f (x )-bx =0有3个不相等的实根. 即方程x 3-4x 2-3x =bx 有3个不等实根. ∵x =0是其中一个根,∴只需满足方程x 2-4x -3-b =0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-3-b ≠0.∴b >-7且b ≠-3. 故实数b 的取值范围是b >-7且b ≠-3. 14.设f (x )=e x 1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求实数a 的取值范围. 答案 (1)极小值点为x 1=32,极大值点为x 2=12 (2)(0,1]解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.又当x 变化时,f ′(x )和f (x )的变化情况如下表:∴x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合(1)与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,由Δ=4a 2-4a =4a (a -1)≤0,得0<a ≤1.即实数a 的取值范围是(0,1].15.(2014·福建)已知函数f (x )=e x -ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x .答案 (1)a =2,极小值为f (ln2)=2-ln4 (2)略 解析 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f′(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g′(x)=e x-2x,由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.。
2016届高考数学一轮复习 题组层级快练8(含解析)

题组层级快练(八)1.若函数f (x )=ax 2+bx +c 满足f (4)=f (1),则( ) A .f (2)>f (3) B .f (3)>f (2) C .f (3)=f (2)D .f (3)与f (2)的大小关系不确定 答案 C解析 ∵f (4)=f (1),∴对称轴为52,∴f (2)=f (3).2.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1,则f (x )的表达式为( ) A .f (x )=-x 2-x -1 B .f (x )=-x 2+x -1 C .f (x )=x 2-x -1 D .f (x )=x 2-x +1答案 D解析 设f (x )=ax 2+bx +c (a ≠0),由题意得⎩⎪⎨⎪⎧c =1,a x +2+b x ++c -ax 2+bx +c =2x .故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f (x )=x 2-x +1.故选D.3.如图所示,是二次函数y =ax 2+bx +c 的图像,则|OA |·|OB |等于( )A.caB .-c aC .±c aD .无法确定答案 B解析 ∵|OA |·|OB |=|OA ·OB |=|x 1x 2|=|c a |=-c a(∵a <0,c >0).4.(2015·上海静安期末)已知函数f (x )=-x 2+4x ,x ∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5)答案 C解析 二次函数f (x )=-x 2+4x 的图像是开口向下的抛物线,最大值为4,且在x =2时取得,而当x =5或-1时,f (x )=-5,结合图像可知m 的取值范围是[-1,2].5.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图像大致是( )答案 C6.(2015·山东济宁模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c x ≤,2 x ,若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .4B .2C .1D .3答案 D解析 由解析式可得f (-4)=16-4b +c =f (0)=c ,解得b =4.f (-2)=4-8+c =-2,可求得c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2x ,2 x 又f (x )=x ,则当x ≤0时,x 2+4x +2=x ,解得x 1=-1,x 2=-2. 当x >0时,x =2,综上可知有三解.7.二次函数f (x )的二次项系数为正数,且对任意的x ∈R 都有f (x )=f (4-x )成立,若f (1-2x 2)<f (1+2x -x 2),则实数x 的取值范围是( )A .(2,+∞)B .(-∞,-2)∪(0,2)C .(-2,0)D .(-∞,-2)∪(0,+∞)答案 C解析 由题意知,二次函数的开口向上,对称轴为直线x =2,图像在对称轴左侧为减函数.而1-2x 2<2,1+2x -x 2=2-(x -1)2≤2,所以由f (1-2x 2)<f (1+2x -x 2),得1-2x 2>1+2x -x 2,解得-2<x <0.8.已知函数f (x )=-x 2+ax +b 2-b +1(a ∈R ,b ∈R ),对任意实数x 都有f (1-x )=f (1+x )成立,若当x ∈[-1,1]时,f (x )>0恒成立,则实数b 的取值范围是( )A .-1<b <0B .b >0C .b <-1或b >2D .不能确定答案 C解析 由f (1-x )=f (1+x ),得对称轴方程为x =1=a2.∴a =2,f (x )在[-1,1]上是增函数. ∴要使x ∈[-1,1],f (x )>0恒成立.只要f (x )min =f (-1)=b 2-b -2>0,∴b >2或b <-1.9.(2015·上海虹口二模)函数f (x )=-x 2+4x +1(x ∈[-1,1])的最大值等于________. 答案 4解析 因为对称轴为x =2∉[-1,1],所以函数在[-1,1]上单调递增,因此当x =1时,函数取最大值4.10.设函数f (x )=mx 2-mx -1,若f (x )<0的解集为R ,则实数m 的取值范围是________. 答案 (-4,0]11.设函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图像关于直线x =1对称,则b =________. 答案 612.已知函数f (x )=x 2-6x +5,x ∈[1,a ],并且函数f (x )的最大值为f (a ),则实数a 的取值范围是________.答案 a ≥5解析 ∵f (x )的对称轴为x =3,要使f (x )在[1,a ]上f (x )max =f (a ),由图像对称性知a ≥5. 13.已知y =(cos x -a )2-1,当cos x =-1时,y 取最大值,当cos x =a 时,y 取最小值,则实数a 的范围是________.答案 0≤a ≤1解析 由题意知⎩⎪⎨⎪⎧-a ≤0,-1≤a ≤1,∴0≤a ≤1.14.若函数f (x )=x 2-2x +3在区间[0,m ]上的最小值是2,最大值是3,则实数m 的取值范围是________.答案 [1,2]解析 ∵f (x )=(x -1)2+2≥2, ∴x =1∈[0,m ].∴m ≥1.① ∵f (0)=3,而3是最大值.∴f (m )≤3⇒m 2-2m +3≤3⇒0≤m ≤2.② 由①②知:1≤m ≤2,故应填[1,2].15.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列且f (0)=-4,则f (x )有最________值(填“大”或“小”),且该值为________.答案 大 -3解析 ∵f (0)=c =-4,a ,b ,c 成等比,∴b 2=a ·c ,∴a <0.∴f (x )有最大值,最大值为c -b 24a=-3.16.函数f (x )=x 2+2x ,若f (x )>a 在区间[1,3]上满足:①恒有解,则a 的取值范围为________;②恒成立,则a 的取值范围为________.答案 a <15 a <3解析 ①f (x )>a 在区间[1,3]上恒有解,等价于a <[f (x )]max ,又f (x )=x 2+2x 且x ∈[1,3],当x =3时,[f (x )]max =15,故a 的取值范围为a <15.②f (x )>a 在区间[1,3]上恒成立,等价于a <[f (x )]min ,又f (x )=x 2+2x 且x ∈[1,3],当x =1时,[f (x )]min =3,故a 的取值范围为a <3.17.已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (3)当a =1时,求f (|x |)的单调区间. 答案 (1)最小值-1,最大值35 (2)a ≤-6或a ≥4(3)单调递增区间(0,6],单调递减区间[-6,0]解析 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,由于x ∈[-4,6], ∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增.∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35.(2)由于函数f (x )的图像开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.(3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈,6],x 2-2x +3,x ∈[-6,0].∴f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].18.二次函数f (x )=ax 2+bx +1(a >0),设f (x )=x 的两个实根为x 1,x 2. (1)如果b =2且|x 2-x 1|=2,求实数a 的值;(2)如果x 1<2<x 2<4,设函数f (x )的对称轴为x =x 0,求证:x 0>-1. 答案 (1)a =2-12(2)略 解析 (1)若b =2,则f (x )=ax 2+2x +1. 由f (x )=x ,得ax 2+2x +1=x . 即ax 2+x +1=0.由|x 2-x 1|=2,得(x 2-x 1)2=4. ∴(x 1+x 2)2-4x 1x 2=4.∴(1a )2-41a =4,得a =2-12(a >0).(2)由f (x )=x ,得ax 2+bx +1=x . 即ax 2+(b -1)x +1=0. 设g (x )=ax 2+(b -1)x +1,则⎩⎪⎨⎪⎧g ,g ,即⎩⎪⎨⎪⎧4a +2b -1<0,16a +4b -3>0.画出点(a ,b )的平面区域知该区域内有点均满足2a -b >0.从而2a >b ,∴x 0=-b2a>-1.1.(2013·浙江)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0 C .a >0,2a +b =0 D .a <0,2a +b =0答案 A解析 由f (0)=f (4),得f (x )=ax 2+bx +c 的对称轴为x =-b2a =2,∴4a +b =0,又f (0)>f (1),∴f (x )先减后增,∴a >0,选A.2.已知f (x )是二次函数,且函数y =ln f (x )的值域为[0,+∞),则f (x )的表达式可以是( ) A .y =x 2B .y =x 2+2x +2 C .y =x 2-2x +3 D .y =-x 2+1答案 B解析 由题意可知f (x )≥1.3.已知函数f (x )=e x -1,g (x )=-x 2+4x -3,若有f (a )=g (b ),则b 的取值范围为( ) A .[2-2,2+2] B .(2-2,2+2) C .[1,3] D .(1,3)答案 B解析 由题可知f (x )=e x -1>-1,g (x )=-x 2+4x -3=-(x -2)2+1≤1,若有f (a )=g (b ),则g (b )∈(-1,1].即-b 2+4b -3>-1,解得2-2<b <2+ 2.4.对一切实数x ,若不等式x 4+(a -1)x 2+1≥0恒成立,则a 的取值范围是( ) A .a ≥-1 B .a ≥0 C .a ≤3 D .a ≤1答案 A解析 令t =x 2≥0,则原不等式转化为t 2+(a -1)t +1≥0,当t ≥0时恒成立. 令f (t )=t 2+(a -1)t +1,则f (0)=1>0. (1)当-a -12≤0即a ≥1时,恒成立. (2)当-a -12>0即a <1时,由Δ=(a -1)2-4≤0,得-1≤a ≤3. ∴-1≤a <1,综上:a ≥-1.5.若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________. 答案 9或25 解析 y =8(x -m -116)2+m -7-8·(m -116)2,∵值域为[0,+∞),∴m -7-8·(m -116)2=0,∴m =9或25.6.已知t 为常数,函数y =|x 2-2x -t |在区间[0,3]上的最大值为2,则t =________. 答案 1解析 ∵y =|(x -1)2-t -1|,∴对称轴为x =1.若-t -1<0,即t >-1时,则当x =1或x =3时为最大值,即|1-2-t |=t +1=2或9-6-t =2,得t =1;若-t -1≥0,即t ≤-1时,则当x =3时为最大值,即9-6-t =2,t 无解.故得t =1.7.(2015·北京丰台期末)若f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ),其中a ≤b ≤c ,对于下列结论:①f (b )≤0;②若b =a +c2,则∀x ∈R ,f (x )≥f (b );③若b ≤a +c2,则f (a )≤f (c );④f (a )=f (c )成立的充要条件为b =0.其中正确的是________.(请填写序号)答案 ①②③解析 f (b )=(b -a )(b -b )+(b -b )(b -c )+(b -c )·(b -a )=(b -c )(b -a ),因为a ≤b ≤c ,所以f (b )≤0,①正确;将f (x )展开可得f (x )=3x 2-2(a +b +c )x +ab +bc +ac ,又抛物线开口向上,故f (x )min=f (a +b +c3).当b =a +c2时,a +b +c3=b ,所以f (x )min =f (b ),所以②正确;f (a )-f (c )=(a -b )(a -c )-(c -a )(c -b )=(a -c )(a +c -2b ),因为a ≤b ≤c ,且2b ≤a +c ,所以f (a )≤f (c ),③正确;因为a ≤b ≤c ,所以当f (a )=f (c )时,即(a -c )(a +c -2b )=0,所以a =b =c 或a +c =2b ,故④不正确.8.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.解析 (1)∵f (x )=(x -a )2+5-a 2(a >1),∴f (x )在[1,a ]上是减函数.又定义域和值域均为[1,a ],∴⎩⎪⎨⎪⎧f =1-2a +5=a ,f a =a 2-2a 2+5=1.解得a =2.(2)∵f (x )在区间(-∞,2]上是减函数,∴a ≥2. 又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2.∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4, ∴f (x )max -f (x )min ≤4,即(6-2a )-(5-a 2)≤4,解得-1≤a ≤3. 又a ≥2,∴2≤a ≤3.。
2016届高考数学一轮复习 题组层级快练47(含解析)

题组层级快练(四十七)1.分析法又称执果索因法,若用分析法证明:“设a >b >c ,且a +b +c =0,求证:b 2-ac <3a ”“索”的“因”应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0答案 C 解析b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2⇔a 2+2ac +c 2-ac -3a 2<0⇔-2a 2+ac +c 2<0⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0.2.(2015·浙江名校联考)设a =lg2+lg5,b =e x(x <0),则a 与b 的大小关系为( ) A .a >b B .a <b C .a =b D .a ≤b答案 A解析 ∵a =lg2+lg5=lg10=1,而b =e x <e 0=1,故a >b . 3.要证明a 2+b 2-1-a 2b 2≤0,只要证明( ) A .2ab -1-a 2b 2≤0 B .a 2+b 2-1-a 4+b 42≤0C.a +b22-1-a 2b 2≤0D .(a 2-1)(b 2-1)≥0答案 D解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0. 4.若实数a ,b 满足a +b <0,则( ) A .a ,b 都小于0 B .a ,b 都大于0C .a ,b 中至少有一个大于0D .a ,b 中至少有一个小于0 答案 D解析 假设a ,b 都不小于0,即a ≥0,b ≥0,则a +b ≥0,这与a +b <0相矛盾,因此假设错误,即a ,b 中至少有一个小于0.5.若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是( ) A .P >Q B .P =QC .P <QD .由a 的取值确定答案 C解析 要比较P ,Q 的大小关系,只要比较P 2,Q 2的大小关系,只要比较 2a +7+2aa +7与2a +7+2a +3a +4的大小,只要比较aa +7与a +3a +4的大小,即比较a 2+7a 与a 2+7a +12的大小, 只要比较0与12的大小,∵0<12,∴P <Q .6.已知函数f (x )满足:f (a +b )=f (a )·f (b ),f (1)=2,则f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7=( )A .4B .8C .12D .16答案 D解析 根据f (a +b )=f (a )·f (b ),得f (2n )=f 2(n ). 又f (1)=2,则f n +1f n=2.由f 21+f 2f 1+f 22+f 4f 3+f 23+f 6f 5+f 24+f 8f 7=2f 2f 1+2f 4f 3+2f6f5+2f 8f 7=16. 7.已知a >0,b >0,如果不等式2a +1b ≥m 2a +b 恒成立,那么m 的最大值等于( )A .10B .9C .8D .7答案 B解析 ∵a >0,b >0,∴2a +b >0.∴不等式可化为m ≤(2a +1b )(2a +b )=5+2(b a +a b ).∵5+2(b a +ab)≥5+4=9,即其最小值为9,∴m ≤9,即m 的最大值等于9.8.已知命题:“在等差数列{a n }中,若4a 2+a 10+a ( )=24,则S 11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为________.答案 18 解析 S 11=11a 1+a 112=11a 6,由S 11为定值,可知a 6=a 1+5d 为定值.设4a 2+a 10+a n =24,整理得a 1+n +126d =4,可知n =18.9.(2015·江苏盐城一模)已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 23x 2+x 21x 3≥1.答案 略解析 ∵x 22x 1+x 1+x 23x 2+x 2+x 21x 3+x 3≥2x 22+2x 23+2x 21=2(x 1+x 2+x 3)=2,∴x 22x 1+x 23x 2+x 21x 3≥1.10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得x +1≥2x ,x 2+1≥2x ,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x ∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x >0时,不等式成立; 当x ≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0,此时不等式仍然成立. 11.已知函数f (x )=a x+x -2x +1(a >1), (1)证明:函数f (x )在(-1,+∞)上为增函数; (2)用反证法证明f (x )=0没有负实数根. 答案 (1)略 (2)略解析 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,ax 2-x 1>1,且ax 1>0,所以ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又因为x 1+1>0,x 2+1>0, 所以x 2-2x 2+1-x 1-2x 1+1 =x 2-2x 1+1-x 1-2x 2+1x 2+1x 1+1=3x 2-x 1x 2+1x 1+1>0.于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0. 故函数f (x )在(-1,+∞)上为增函数. (2)设存在x 0<0(x 0≠-1),满足f (x 0)=0, 则ax 0=-x 0-2x 0+1. 又0<ax 0<1,所以0<-x 0-2x 0+1<1,即12<x 0<2,与x 0<0(x 0≠-1)假设矛盾. 故f (x )=0没有负实数根.12.已知等比数列{a n }的前n 项和为S n ,若a m ,a m +2,a m +1(m ∈N *)成等差数列,试判断S m ,S m +2,S m +1是否成等差数列,并证明你的结论.答案 q =1时,不成等差数列;q =-12时,成等差数列 证明略解析 设等比数列{a n }的首项为a 1,公比为q (a 1≠0,q ≠0), 若a m ,a m +2,a m +1成等差数列,则2a m +2=a m +a m +1. ∴2a 1qm +1=a 1qm -1+a 1q m.∵a 1≠0,q ≠0,∴2q 2-q -1=0. 解得q =1或q =-12.当q =1时,∵S m =ma 1,S m +1=(m +1)a 1,S m +2=(m +2)a 1,∴2S m +2≠S m +S m +1.∴当q =1时,S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m ,S m +2,S m +1成等差数列.下面给出证明:证法一:∵(S m +S m +1)-2S m +2 =(S m +S m +a m +1)-2(S m +a m +1+a m +2) =-a m +1-2a m +2=-a m +1-2a m +1q =-a m +1-2a m +1(-12)=0,∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.证法二:∵2S m +2=2a 1[1--12m +2]1+12=43a 1[1-(-12)m +2], 又S m +S m +1=a 1[1--12m]1+12+a 1[1--12m +1]1+12=23a 1[2-(-12)m -(-12)m +1] =23a 1[2-4(-12)m +2+2(-12)m +2] =43a 1[1-(-12)m +2], ∴2S m +2=S m +S m +1.∴当q =-12时,S m ,S m +2,S m +1成等差数列.13.设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求实数a 的取值范围,使得g (a )-g (x )<1a对任意x >0成立.答案 (1)单调递减区间(0,1),单调递增区间(1,+∞) (2)当0<x <1时,g (x )>g (1x );当x >1时,g (x )<g (1x)(3)0<a <e解析 (1)由题设知f (x )=ln x ,g (x )=ln x +1x,∴g ′(x )=x -1x 2.令g ′(x )=0,得x =1. 当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调减区间; 当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调增区间.因此x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以g (x )的最小值为g (1)=1. (2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x,则h ′(x )=-x -12x 2.当x =1时,h (1)=0,即g (x )=g (1x);当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此h (x )在(0,+∞)上单调递减. 当0<x <1时,h (x )>h (1)=0, 即g (x )>g (1x);当x >1时,h (x )<h (1)=0, 即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a对任意x >0成立⇔g (a )-1<1a,即ln a<1,从而得0<a<e.。
2016届高考数学一轮复习 题组层级快练17(含解析)

题组层级快练(十七)(第一次作业)1.函数f(x)=(x2-1)2+2的极值点是( )A.x=1 B.x=-1C.x=1或-1或0 D.x=0答案 C解析∵f(x)=x4-2x2+3,由f′(x)=4x3-4x=4x(x+1)(x-1)=0,得x=0或x=1或x=-1.又当x<-1时,f′(x)<0,当-1<x<0时,f′(x)>0,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,∴x=0,1,-1都是f(x)的极值点.2.(2013·课标全国Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0答案 C解析∵x0是f(x)的极小值点,则y=f(x)的图像大致如右图所示,则在(-∞,x0)上不单调,故C 不正确.3.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是( )答案 C解析由f(x)在x=-2处取得极小值可知,当x<-2时,f′(x)<0,则xf′(x)>0;当-2<x<0时,f′(x)>0,则xf′(x)<0;当x>0时,xf′(x)>0.4.若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0答案 D解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.5.若函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0. ∴b >0.f ′(1)=3-3b >0,∴b <1. 综上,b 的取值范围为0<b <1.6.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对答案 A解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37,选A.7.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值范围为( ) A .[2,+∞) B .[4,+∞) C .{4} D .[2,4]答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意; 当0<a ≤1时,f ′(x )=3ax 2-3=3a (x +1a)(x -1a),f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且f (1a)=-2a+1≥0,解得a =4.综上所述,a =4.8.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x =e -x(-x +12x )=e -x·1-2x 2x . 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e·12=12e. 9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=a x+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23,b =-16.10.若f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a +b =________. 答案 -7解析 由x =1时,f (x )有极值10知,f (1)=10,f ′(1)=0,∴⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,即⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f (x )=x 3+4x 2-11x +16, 得f ′(x )=3x 2+8x -11=(3x +11)(x -1).当x ∈(-113,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )为极小值.当a =-3,b =3时,f ′(x )=3(x -1)2≥0,即x =1时,不取极值,a =-3,b =3应舍去.所以a +b =-7.11.若f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案 6解析 f ′(x )=3x 2-4cx +c 2, ∵f (x )在x =2处有极大值,∴⎩⎪⎨⎪⎧f =0,f x x ,fxx解得c =6.12.(2015·保定调研卷)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧f =0,f =2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3.(2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0. 则g ′(x )=-1-2x +3x=-x -x +x.当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 13.(2015·郑州一模)已知函数f (x )=x 3-ax 2-3x .(1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =-13是函数f (x )的极值点,求函数f (x )在[1,a ]上的最大值;(3)设函数g (x )=f (x )-bx ,在(2)的条件下,若函数g (x )恰有3个零点,求实数b 的取值范围. 答案 (1)a ≤0 (2)-6 (3)b >-7且b ≠-3 解析 (1)f ′(x )=3x 2-2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴f ′(x )≥0在[1,+∞)上恒成立,即 3x 2-2ax -3≥0在[1,+∞)上恒成立. 则必有a3≤1,且f ′(1)=-2a ≥0.∴a ≤0.(2)依题意,f ′(-13)=0,即13+23a -3=0,∴a =4.∴f (x )=x 3-4x 2-3x .令f ′(x )=3x 2-8x -3=0,得x 1=-13,x 2=3.则当x 变化时,f ′(x )与f (x )变化情况如下表:∴f (x )在(3)函数g (x )有3个零点⇔方程f (x )-bx =0有3个不相等的实根. 即方程x 3-4x 2-3x =bx 有3个不等实根. ∵x =0是其中一个根,∴只需满足方程x 2-4x -3-b =0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16++b ,-3-b ≠0.∴b >-7且b ≠-3.故实数b 的取值范围是b >-7且b ≠-3. 14.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求实数a 的取值范围. 答案 (1)极小值点为x 1=32,极大值点为x 2=12 (2)(0,1]解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax+ax22.(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.又当x 变化时,f ′(x )和f (x )的变化情况如下表:∴x 1=2是极小值点,x 2=2是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合(1)与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,由Δ=4a 2-4a =4a (a -1)≤0,得0<a ≤1.即实数a 的取值范围是(0,1].15.(2014·福建)已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x.答案(1)a=2,极小值为f(ln2)=2-ln4 (2)略解析(1)由f(x)=e x-ax,得f′(x)=e x-a.又f′(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g′(x)=e x-2x,由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.。
2016届高考数学一轮复习 题组层级快练19(含解析)

题组层级快练(十九)1.函数f (x )的图像如图所示,下列数值排序正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3) 答案 B解析 f ′(2),f ′(3)是x 分别为2,3时对应图像上点的切线斜率,f (3)-f (2)=f-f 3-2,∴f (3)-f (2)是图像上x 为2和3对应两点连线的斜率,故选B.2.(2015·赣州模拟)函数y =x 2e x的图像大致为( )答案 A解析 因为y ′=2x e x +x 2e x =x (x +2)e x ,所以当x <-2或x >0时,y ′>0,函数y =x 2e x为增函数;当-2<x <0时,y ′<0,函数y =x 2e x为减函数,排除B ,C ,又y =x 2e x>0,所以排除D ,故选A.3.设底面为等边三角形的直三棱柱的体积为V ,那么其表面积最小时,底面边长为( ) A.3V B.32V C.34V D .23V答案 C4.如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长、宽分别为( )A .长102米,宽5 00051 米B .长150米,宽66米C .长、宽均为100米D .长150米,宽2003米答案 D解析 设鱼塘长、宽分别为y 米,x 米,依题意xy =10 000. 设占地面积为S ,则S =(3x +8)(y +6)=18x +80 000x+30 048,令S ′=18-80 000x 2=0,得x =2003,此时y =150. 5.(2015·南昌一模)已知函数y =f (x )对任意的x ∈(-π2,π2)满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式成立的是( )A.2f (-π3)<f (-π4)B.2f (π3)<f (π4)C .f (0)>2f (π3)D .f (0)>2f (π4) 答案 A解析 由f ′(x )cos x +f (x )sin x >0知(f x cos x )′>0,所以g (x )=f x cos x 在(-π2,π2)上是增函数,所以g (-π3)<g (-π4),即f -π3-π3<f -π4-π4,即2f (-π3)<f (-π4),所以A 正确.同理有g (π3)>g (π4),即fπ3cos π3>f π4cos π4,得2f (π3)>f (π4),所以B 不正确;由g (π3)>g (0),即f π3cosπ3>fcos0,得f (0)<2f (π3),所以C 不正确;由g (π4)>g (0),即fπ4cosπ4>f cos0,得f (0)<2f (π4),所以D 不正确.故选A.6.(2015·绵阳市高三诊断性考试)已知f (x )=|x |e x (x ∈R ),若关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,则实数m 的取值范围为( )A .(1e,2)∪(2,e)B .(1e,1)C .(1,1e +1)D .(1e,e)答案 C解析 依题意,由f 2(x )-mf (x )+m -1=0,得f (x )=1或f (x )=m -1.当x <0时,f (x )=-x e -x,f ′(x )=(x -1)e -x<0,此时f (x )是减函数.当x >0时,f (x )=x e -x,f ′(x )=-(x -1)e -x,若0<x <1,则f ′(x )>0,f (x )是增函数;若x >1,则f ′(x )<0,f (x )是减函数.因此,要使关于x 的方程f 2(x )-mf (x )+m -1=0恰好有4个不相等的实数根,只要求直线y =1,直线y =m -1与函数y =f (x )的图像共有四个不同的交点.注意到直线y =1与函数y =f (x )的图像有唯一公共点,因此要求直线y =m -1与函数y =f (x )的图像共有三个不同的交点,结合图像可知,0<m -1<1e ,即1<m <1+1e ,则实数m 的取值范围为(1,1+1e),选C.7.(2015·江西七校一联)定义域为R 的连续函数f (x ),对任意x 都有f (2+x )=f (2-x ),且其导函数f ′(x )满足(x -2)f ′(x )>0,则当2<a <4时,有( )A .f (2a)<f (2)<f (log 2a ) B .f (2)<f (2a)<f (log 2a ) C .f (log 2a )<f (2a)<f (2) D .f (2)<f (log 2a )<f (2a)答案 D解析 ∵对任意x 都有f (2+x )=f (2-x ),∴x =2是f (x )的对称轴.又∵(x -2)f ′(x )>0,∴当x >2时,f ′(x )>0,f (x )是增函数;当x <2时,f ′(x )<0,f (x )是减函数.又∵2<a <4,∴1<log 2a <2.4<2a<16;由f (2+x )=f (2-x ),得f (x )=f (4-x ).∴f (log 2a )=f (4-log 2a ).由1<log 2a <2,得-2<-log 2a <-1.∴2<4-log 2a <3.∴2<4-log 2a <2a .∴f (2)<f (4-log 2a )<f (2a ),即f (2)<f (log 2a )<f (2a),故选D.8.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≥2,x -3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.答案 (0,1)解析 当x <2时,f ′(x )=3(x -2)2>0,说明函数在(-∞,2]上单调递增,函数的值域是(-∞,1),函数在[2,+∞)上单调递减,函数的值域是(0,1].因此要使方程f (x )=k 有两个不同的实根,则0<k <1.9.设函数f (x )=a 2ln x -x 2+ax ,a >0. (1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.(其中,e 为自然对数的底数). 答案 (1)单调递增区间为(0,a ),单调递减区间为(a ,+∞) (2)a =e 解析 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-x -a x +ax.由于a >0,所以f (x )的单调递增区间为(0,a ),单调递减区间为(a ,+∞). (2)由题意得,f (1)=a -1≥e-1,即a ≥e. 由(1)知f (x )在[1,e]上单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f =a -1≥e-1, ①f =a 2-e 2+a e≤e 2, ②由①得a ≥e;由②得a ≤e.因此a =e.故当e -1≤f (x )≤e 2对x ∈[1,e]恒成立时,实数a 的值为e. 10.(2013·北京理)设l 为曲线C :y =ln xx在点(1,0)处的切线.(1)求l 的方程;(2)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 答案 (1)y =x -1 (2)略解析 (1)设f (x )=ln x x ,则f ′(x )=1-ln xx2. 所以f ′(1)=1.所以l 的方程为y =x -1.(2)令g (x )=x -1-f (x ),则除切点之外,曲线C 在直线l 的下方等价于g (x )>0(∀x >0,x ≠1).g (x )满足g (1)=0,且g ′(x )=1-f ′(x )=x 2-1+ln x x 2.当0<x <1时,x 2-1<0,ln x <0,所以g ′(x )<0,故g (x )单调递减; 当x >1时,x 2-1>0,ln x >0,所以g ′(x )>0,故g (x )单调递增. 所以g (x )>g (1)=0(∀x >0,x ≠1). 所以除切点之外,曲线C 在直线l 的下方.11.已知函数f (x )=x -ln(x +a )在x =1处取得极值. (1)求实数a 的值;(2)若关于x 的方程f (x )+2x =x 2+b 在[12,2]上恰有两个不相等的实数根,求实数b 的取值范围.答案 (1)0 (2)54+ln2≤b <2解析 (1)对f (x )求导,得f ′(x )=1-1x +a. 由题意,得f ′(1)=0,即1-11+a =0,∴a =0.(2)由(1)得f (x )=x -ln x .∴f (x )+2x =x 2+b ,即x 2-3x +ln x +b =0. 设g (x )=x 2-3x +ln x +b (x >0),则 g ′(x )=2x -3+1x =2x 2-3x +1x=x -x -x.令g ′(x )=0,得x 1=12,x 2=1.当x 变化时,g ′(x ),g (x )的变化情况如下表:又g (12)=b -54-ln2,g (2)=b -2+ln2,∵方程f (x )+2x =x 2+b 在[12,2]上恰有两个不相等的实数根,∴⎩⎪⎨⎪⎧g 12,g ,g,即⎩⎪⎨⎪⎧b -54-ln2≥0,b -2<0,b -2+ln2≥0,解得54+ln2≤b <2.12.(2014·浙江文)已知函数f (x )=x 3+3|x -a |(a >0),若f (x )在[-1,1]上的最小值记为g (a ). (1)求g (a );(2)证明:当x ∈[-1,1]时,恒有f (x )≤g (a )+4.答案 (1)g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1(2)略解析 (1)因为a >0,-1≤x ≤1,所以 ①当0<a <1时,若x ∈[-1,a ],则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,a )上是减函数; 若x ∈[a,1],则f (x )=x 3+3x -3a ,f ′(x )=3x 2+3>0,故f (x )在(a,1)上是增函数. 所以g (a )=f (a )=a 3.②当a ≥1时,有x ≤a ,则f (x )=x 3-3x +3a ,f ′(x )=3x 2-3<0,故f (x )在(-1,1)上是减函数,所以g (a )=f (1)=-2+3a .综上,g (a )=⎩⎪⎨⎪⎧a 3,0<a <1,-2+3a ,a ≥1.(2)证明:令h (x )=f (x )-g (a ). ①当0<a <1时,g (a )=a 3.若x ∈[a,1],则h (x )=x 3+3x -3a -a 3,h ′(x )=3x 2+3,所以h (x )在(a,1)上是增函数,所以h (x )在[a,1]上的最大值是h (1)=4-3a -a 3,且0<a <1,所以h (1)≤4.故f (x )≤g (a )+4.若x ∈[-1,a ],则h (x )=x 3-3x +3a -a 3,h ′(x )=3x 2-3,所以h (x )在(-1,a )上是减函数,所以h (x )在[-1,a ]上的最大值是h (-1)=2+3a -a 3.令t (a )=2+3a -a 3,则t ′(a )=3-3a 2>0, 知t (a )在(0,1)上是增函数.所以t (a )<t (1)=4, 即h (-1)<4.故f (x )≤g (a )+4.②当a ≥1时,g (a )=-2+3a , 故h (x )=x 3-3x +2,h ′(x )=3x 2-3.此时h (x )在(-1,1)上是减函数,因此h (x )在[-1,1]上的最大值是h (-1)=4. 故f (x )≤g (a )+4.综上,当x ∈[-1,1]时,恒有f (x )≤g (a )+4.13.(2014·北京理)已知函数f (x )=x cos x -sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求证:f (x )≤0;(2)若a <sin x x <b 对x ∈⎝ ⎛⎭⎪⎫0,π2恒成立,求a 的最大值与b 的最小值.答案 (1)略 (2)a 的最大值为2π,b 的最小值为1解析 (1)证明:由f (x )=x cos x -sin x ,得f ′(x )=cos x -x sin x -cos x =-x sin x .因为在区间⎝ ⎛⎭⎪⎫0,π2上f ′(x )=-x sin x <0,所以f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.从而f (x )≤f (0)=0.(2)当x >0时,“sin x x >a ”等价于“sin x -ax >0”;“sin xx<b ”等价于“sin x -bx <0”.令g (x )=sin x -cx ,则g ′(x )=cos x -c .当c ≤0时,g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立.当c ≥1时,因为对任意x ∈⎝⎛⎭⎪⎫0,π2,g ′(x )=cos x -c <0, 所以g (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,从而g (x )<g (0)=0对任意x ∈⎝ ⎛⎭⎪⎫0,π2恒成立.当0<c <1时,存在唯一的x 0∈⎝⎛⎭⎪⎫0,π2使得g ′(x 0)=cos x 0-c =0.g (x )与g ′(x )在区间⎝⎛⎭⎪⎫0,π2上的情况如下表:因为g (x )在区间[0,x 0]上是增函数,所以g (x 0)>g (0)=0.进一步,“g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立”当且仅当g ⎝ ⎛⎭⎪⎫π2=1-π2c ≥0,即0<c ≤2π. 综上所述,当且仅当c ≤2π时,g (x )>0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立;当且仅当c ≥1时,g (x )<0对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立.所以,若a <sin x x <b 对任意x ∈⎝⎛⎭⎪⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.。
【高考调研】2016届高三理科数学一轮复习题组层级快练69含答案
【⾼考调研】2016届⾼三理科数学⼀轮复习题组层级快练69含答案题组层级快练(六⼗九)1.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A .椭圆 B .AB 所在的直线 C .线段AB D .⽆轨迹答案 C解析∵|AB |=5,∴到A ,B 两点距离之和为5的点的轨迹是线段AB .2.若点P 到点F (0,2)的距离⽐它到直线y +4=0的距离⼩2,则P 的轨迹⽅程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D .x 2=-8y 答案 C解析由题意知P 到F (0,2)的距离⽐它到y +4=0的距离⼩2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,所以P 的轨迹⽅程为x 2=8y .3.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹⽅程是( )A.x 23+y 24=1 B.x 23+y 24=1(x ≠±3) C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 答案 D解析∵|BC |,|CA |,|AB |成等差数列,∴|BC |+|BA |=2|CA |=4.∴点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.⼜B 是三⾓形的顶点,A ,B ,C 三点不能共线,故所求的轨迹⽅程为x 24+y 23=1,且y ≠0.4.已知点F (1,0),直线l :x =-1,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线答案 D解析连接MF ,由中垂线性质,知|MB |=|MF |.即M 到定点F 的距离与它到直线x =-1距离相等.∴点M 的轨迹是抛物线.∴D 正确.5.设椭圆与双曲线有共同的焦点F 1(-1,0),F 2(1,0),且椭圆长轴是双曲线实轴的2倍,则椭圆与双曲线的交点轨迹是( )A .双曲线B .⼀个圆C .两个圆D .两条抛物线答案 C解析由|PF 1|+|PF 2|=4a ,|PF 1|-|PF 2|=2a ,得到|PF 1|=3|PF 2|或|PF 2|=3|PF 1|,所以是两个圆.6.经过抛物线y 2=2px 焦点的弦的中点的轨迹是( ) A .抛物线 B .椭圆 C .双曲线 D .直线答案 A解析点差法 k AB =2p y 1+y 2=2p 2y=k MF =yx -p 2化简得抛物线.7.(2015·北京朝阳上学期期末)已知正⽅形的四个顶点分别为O (0,0),A (1,0),B (1,1),C (0,1),点D ,E 分别在线段OC ,AB 上运动,且|OD |=|BE |,设AD 与OE 交于点G ,则点G 的轨迹⽅程是( )A .y =x (1-x )(0≤x ≤1)B .x =y (1-y )(0≤y ≤1)C .y =x 2(0≤x ≤1)D .y =1-x 2(0≤x ≤1) 答案 A解析设D (0,λ),E (1,1-λ),0≤λ≤1,所以线段AD 的⽅程为x +yλ=1(0≤x ≤1),线段OE 的⽅程为y =(1-λ)x (0≤x ≤1),联⽴⽅程组x +y λ=1,0≤x ≤1,y =(1-λ)x ,0≤x ≤1,(λ为参数),消去参数λ得点G 的轨迹⽅程为y =x (1-x )(0≤x ≤1),故A 正确.8.(2015·衡⽔调研卷)双曲线M :x 2a 2-y 2b 2=1(a >0,b >0)实轴的两个顶点为A ,B ,点P 为双曲线M 上除A ,B 外的⼀个动点,若QA ⊥P A 且QB ⊥PB ,则动点Q 的运动轨迹为( )A .圆B .椭圆C .双曲线D .抛物线答案 C解析 A (-a,0),B (a,0),设Q (x ,y ),P (x 0,y 0),k AP =y 0x 0+a ,k BP =y 0x 0-a ,k AQ =yx +a ,k BQ=y x -a ,由QA ⊥P A 且QB ⊥PB ,得k AP k AQ =y 0x 0+a ·y x +a =-1,k BP k BQ =y 0x 0-a ·y x -a=-1.两式相乘即得轨迹为双曲线.9.长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满⾜AC →=2CB →,则动点C 的轨迹⽅程________.答案 x 2+14y 2=1解析设A (a,0),B (0,b ),则a 2+b 2=9.⼜C (x ,y ),则由AC →=2CB →,得(x -a ,y )=2(-x ,b -y ).即x -a =-2x ,y =2b -2y ,即?a =3x ,b =32y ,代⼊a 2+b 2=9,并整理,得x 2+14y 2=1.10.若过抛物线y 2=4x 的焦点作直线与其交于M ,N 两点,作平⾏四边形MONP ,则点P 的轨迹⽅程为________.答案 y 2=4(x -2)解析设直线⽅程为y =k (x -1),点M (x 1,y 1),N (x 2,y 2),P (x ,y ),由OM →=NP →,得(x 1,y 1)=(x -x 2,y -y 2).得x 1+x 2=x ,y 1+y 2=y .由?y =k (x -1),y 2=4x ,联⽴得x =x 1+x 2=2k 2+4k 2.y =y 1+y 2=4kk2,消去参数k ,得y 2=4(x -2).11.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹⽅程为________.答案 (x -10)2+y 2=36(y ≠0)解析⽅法⼀:直接法.设A (x ,y ),y ≠0,则D (x 2,y2).∴|CD |=(x 2-5)2+y 24=3. 化简,得(x -10)2+y 2=36.由于A ,B ,C 三点构成三⾓形,所以A 不能落在x 轴上,即y ≠0. ⽅法⼆:定义法.如图,设A (x ,y ),D 为AB 的中点,过A 作AE ∥CD 交x 轴于E .∵|CD |=3,∴|AE |=6,则E (10,0),∴A 到E 的距离为常数6.∴A 的轨迹为以E 为圆⼼,6为半径的圆,即(x -10)2+y 2=36.⼜A ,B ,C 不共线,故A 点纵坐标y ≠0,故A 点轨迹⽅程为(x -10)2+y 2=36(y ≠0).12.已知抛物线y 2=nx (n <0)与双曲线x 28-y 2m=1有⼀个相同的焦点,则动点(m ,n )的轨迹⽅程是________.答案 n 2=16(m +8)(n <0)解析抛物线的焦点为(n 4,0),在双曲线中,8+m =c 2=(n4)2,n <0,即n 2=16(m +8)(n <0).13.如图所⽰,直⾓三⾓形ABC 的顶点坐标A (-2,0),直⾓顶点B (0,-22),顶点C 在x 轴上,点P 为线段OA 的中点.(1)求BC 边所在直线⽅程;(2)M 为直⾓三⾓形ABC 外接圆的圆⼼,求圆M 的⽅程;(3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆⼼N 的轨迹⽅程.答案 (1)y =22x -22 (2)(x -1)2+y 2=9 (3)49x 2+45y 2=1 解析 (1)∵k AB =-2,AB ⊥BC ,∴k CB =22.∴BC :y =22x -2 2. (2)在上式中,令y =0,得C (4,0).∴圆⼼M (1,0).⼜∵|AM |=3,∴外接圆的⽅程为(x -1)2+y 2=9. (3)∵P (-1,0),M (1,0),∵圆N 过点P (-1,0),∴PN 是该圆的半径.⼜∵动圆N 与圆M 内切,∴|MN |=3-|PN |,即|MN |+|PN |=3.∴点N 的轨迹是以M ,P 为焦点,长轴长为3的椭圆.∴a =32,c =1,b =a 2-c 2=54. ∴轨迹⽅程为49x 2+45y 2=1.14.已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0). (1)求动点P 的轨迹C 的⽅程; (2)讨论轨迹C 的形状.答案 (1)x 2-y 2λ=1(λ≠0,x ≠±1) (2)略解析 (1)由题设知直线PM 与PN 的斜率存在且均不为零,所以k PM ·k PN =y x +1·yx -1=λ. 整理,得x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中⼼在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中⼼在原点,焦点在x 轴上的椭圆(除去长轴两个端点);③当λ=-1时,轨迹C 为以原点为圆⼼,1为半径的圆除去点(-1,0),(1,0);④当λ<-1时,轨迹C 为中⼼在原点,焦点在y 轴上的椭圆(除去短轴的两个端点). 15.(2014·福建⽂)已知曲线Γ上的点到点F (0,1)的距离⽐它到直线y =-3的距离⼩2. (1)求曲线Γ的⽅程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发⽣变化?证明你的结论.答案 (1)x 2=4y (2)线段AB 长度不变,证明略思路 (1)由题意判断曲线是抛物线,⽤定义求曲线⽅程;(2)先求出切线⽅程,联⽴⽅程得出A ,M 的坐标,⽤勾股定理表⽰AB 的长度.解析⽅法⼀:(1)设S (x ,y )为曲线Γ上任意⼀点,依题意,点S 到F (0,1)的距离与它到直线y =-1的距离相等,所以曲线Γ是以点F (0,1)为焦点,直线y =-1为准线的抛物线,所以曲线Γ的⽅程为x 2=4y .(2)当点P 在曲线Γ上运动时,线段AB 的长度不变.证明如下:由(1)知抛物线Γ的⽅程为y =14x 2,设P (x 0,y 0)(x 0≠0),则y 0=14x 20.由y ′=12x ,得切线l 的斜率k =y ′|x =x 0=12x 0.所以切线l 的⽅程为y -y 0=12x 0(x -x 0),即y =12x 0x -14x 20.由 y =12x 0x -14x 20,y =0,得A 12x 0,0. 由y =12x 0x -14x 20,y =3,得M 12x 0+6x 0,3. ⼜N (0,3),所以圆⼼C14x 0+3x 0,3,半径r =12|MN |=14x 0+3x 0. ∴|AB |=|AC |2-r 2 =12x 0-14x 0+3x 02+32-14x 0+3x 02= 6. 所以点P 在曲线Γ上运动时,线段AB 的长度不变.⽅法⼆:(1)设S (x ,y )为曲线Γ上任意⼀点,则|y -(-3)|-(x -0)2+(y -1)2=2,依题意,点S (x ,y )只能在直线y =-3的上⽅,所以y >-3. 所以(x -0)2+(y -1)2=y +1. 化简,得曲线Γ的⽅程为x 2=4y . (2)同⽅法⼀.16.(2014·湖北)在平⾯直⾓坐标系xOy 中,点M 到点F (1,0)的距离⽐它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的⽅程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有⼀个公共点、两个公共点、三个公共点时k 的相应取值范围.答案 (1)y 2=?4x ,x ≥0,0,x <0. (2)略思路 (1)根据两点间的距离公式及点到直线的距离公式列⽅程求解轨迹⽅程,注意分x ≥0,x <0两种情况讨论,最后写成分段函数的形式;(2)先求出直线l 的⽅程,然后联⽴直线l 与抛物线的⽅程,消去x ,得到关于y 的⽅程,分k =0,k ≠0两种情况讨论;当k ≠0时,设直线l 与x 轴的交点为(x 0,0)进⽽按Δ,x 0与0的⼤⼩关系再分情况讨论.解析 (1)设点M (x ,y ),依题意得|MF |=|x |+1,即(x -1)2+y 2=|x |+1. 化简整理,得y 2=2(|x |+x ).故点M 的轨迹C 的⽅程为y 2=?4x ,x ≥0,0,x <0.(2)在点M 的轨迹C 中,记C 1:y 2=4x ,C 2:y =0(x <0).依题意,可设直线l 的⽅程为y -1=k (x +2).由⽅程组?y -1=k (x +2),y 2=4x ,可得ky 2-4y +4(2k +1)=0. ①当k =0时,此时y =1.把y =1代⼊轨迹C 的⽅程,得x =14.故此时直线l :y =1与轨迹C 恰好有⼀个公共点14,1. 当k ≠0时,⽅程①的判别式为Δ=-16(2k 2+k -1).②设直线l 与x 轴的交点为(x 0,0),则由y -1=k (x +2),令y =0,得x 0=-2k +1k.③若?Δ<0,x 0<0,由②③解得k <-1,或k >12.即当k ∈(-∞,-1)∪12,+∞时,直线l 与C 1没有公共点,与C 2有⼀个公共点,故此时直线l 与轨迹C 恰好有⼀个公共点.若 Δ=0,x 0<0,或Δ>0,x 0≥0,由②③解得k ∈-1,12,或-12≤k <0.即当k ∈?-1,12时,直线l 与C 1只有⼀个公共点,与C 2有⼀个公共点.当k ∈-12,0时,直线l 与C 1有两个公共点,与C 2没有公共点.故当k ∈-12,0∪?-1,12时,直线l 与轨迹C 恰好有两个公共点.若Δ>0,x 0<0,由②③解得-12.即当k ∈-1,-12∪0,12时,直线l 与C 1有两个公共点,与C 2有⼀个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综上可知,当k ∈(-∞,-1)∪12,+∞∪{0}时,直线l 与轨迹C 恰好有⼀个公共点;当k ∈-12,0∪?-1,12时,直线l 与轨迹C 恰好有两个公共点;当k ∈?-1,-12∪0,12时,直线l与轨迹C恰好有三个公共点.。
2016届高考数学一轮复习 题组层级快练7(含解析)
题组层级快练(七)1.下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3C .y =1xD .y =x |x |答案 D解析 由函数的奇偶性排除A ,由函数的单调性排除B ,C ,由y =x |x |的图像可知当x >0时此函数为增函数,又该函数为奇函数,故选D.2.已知f (x )为奇函数,当x >0,f (x )=x (1+x ),那么x <0,f (x )等于( ) A .-x (1-x ) B .x (1-x ) C .-x (1+x ) D .x (1+x )答案 B解析 当x <0时,则-x >0,∴f (-x )=(-x )(1-x ).又f (-x )=-f (x ),∴f (x )=x (1-x ). 3.若f (x )=ax 2+bx +c (a ≠0)是偶函数,则g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .非奇非偶函数 D .既奇又偶函数答案 A解析 由f (x )是偶函数知b =0,∴g (x )=ax 3+cx 是奇函数.4.(2013·山东)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x,则f (-1)=( )A .2B .1C .0D .-2答案 D解析 由f (x )为奇函数知f (-1)=-f (1)=-2.5.若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,则g (x )=( ) A .e x -e -xB.12(e x +e -x )C.12(e -x -e x) D.12(e x -e -x ) 答案 D解析 由f (x )+g (x )=e x ,可得f (-x )+g (-x )=e -x.又f (x )为偶函数,g (x )为奇函数,可得f (x )-g (x )=e -x,则两式相减,可得g (x )=e x -e-x2,选D.6.函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数,若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数7.若f(x)是定义在R上以3为周期的偶函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数至少是( )A.1 B.4C.3 D.2答案 B解析由f(2)=0,得f(5)=0.∴f(-2)=0,f(-5)=0.∴f(-2)=f(-2+3)=f(1)=0,f(-5)=f(-5+9)=f(4)=0.故f(x)=0在区间(0,6)内的解至少有1,2,4,5四个解.8.(2015·深圳一调)已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(3)=2,则f(2 015)的值为( )A.2 B.0C.-2 D.±2答案 A解析∵f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),∴g(-x)=f(-x-1)=f(x+1)=-g(x)=-f(x-1).即f(x+1)=-f(x-1).∴f(x+2)=-f(x).∴f(x+4)=f((x+2)+2)=-f(x+2)=f(x).∴函数f(x)是周期函数,且周期为4.∴f(2 015)=f(3)=2.9.(2014·湖南理)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=( )A.-3 B.-1C.1 D.3答案 C解析用“-x”代替“x”,得f(-x)-g(-x)=(-x)3+(-x)2+1,化简得f(x)+g(x)=-x3+x2+1.令x=1,得f(1)+g(1)=1,故选C.10.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=2x-3,则f(-2)=( )A.1 B.-1C.14D.-114答案 B11.已知定义在R上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为________.12.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f (-52)=________.答案 -12解析 依题意,得f (-52)=-f (52)=-f (52-2)=-f (12)=-2×12×(1-12)=-12.13.函数f (x )=x 3+sin x +1的图像关于________点对称. 答案 (0,1)解析 f (x )的图像是由y =x 3+sin x 的图像向上平移一个单位得到的.14.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x+m (m 为常数),则f (-log 35)的值为________.答案 -415.定义在(-∞,+∞)上的函数y =f (x )在(-∞,2)上是增函数,且函数y =f (x +2)为偶函数,则f (-1),f (4),f (512)的大小关系是__________.答案 f (512)<f (-1)<f (4)解析 ∵y =f (x +2)为偶函数, ∴y =f (x )关于x =2对称.又y =f (x )在(-∞,2)上为增函数,∴y =f (x )在(2,+∞)上为减函数,而f (-1)=f (5), ∴f (512)<f (-1)<f (4).16.定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下列关于f (x )的判断:①f (x )是周期函数; ②f (x )关于直线x =1对称; ③f (x )在[0,1]上是增函数; ④f (x )在[1,2]上是减函数; ⑤f (2)=f (0).其中正确的序号是________. 答案 ①②⑤解析 由f (x +1)=-f (x ),得f (x +2)=-f (x +1)=f (x ).∴f (x )是周期为2的函数,①正确.f (x )关于直线x =1对称,②正确.f (x )为偶函数,在[-1,0]上是增函数,∴f (x )在[0,1]上是减函数,[1,2]上为增函数,f (2)=f (0).因此③,④错误,⑤正确.综上,①②⑤正确.17.(2015·湖北八校)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),求:(1)f (0)与f (2)的值; (2)f (3)的值;(3)f (2 013)+f (-2 014)的值.答案 (1)f (0)=0,f (2)=0 (2)f (3)=-1 (3)1 解析 (2)f (3)=f (1+2)=-f (1)=-log 2(1+1)=-1.(3)依题意得,x ≥0时,f (x +4)=-f (x +2)=f (x ),即x ≥0时,f (x )是以4为周期的函数. 因此,f (2 013)+f (-2 014)=f (2 013)+f (2 014)=f (1)+f (2).而f (2)=-f (0)=-log 2(0+1)=0,f (1)=log 2(1+1)=1,故f (2 013)+f (-2 014)=1.18.若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.答案 -4解析 由题意知,当x >0时,F (x )≤8. ∵f (x ),g (x )都是奇函数,且当x <0时,-x >0. ∴F (-x )=af (-x )+bg (-x )+2 =-af (x )-bg (x )+2=-[af (x )+bg (x )+2]+4≤8. ∴af (x )+bg (x )+2≥-4.∴F (x )=af (x )+bg (x )+2在(-∞,0)上有最小值-4.1.已知f (x )是在R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (3)=________;f (2 019)=________.答案 0 0解析 在f (x +6)=f (x )+f (3)中,令x =-3,得f (3)=f (-3)+f (3),即f (-3)=0. 又f (x )是R 上的奇函数,故f (3)=0.即f (x +6)=f (x ),知f (x )是周期为6的周期函数,从而f (2 019)=f (6×336+3)=f (3)=0. 2.若f (x )是定义在(-1,1)上的奇函数,且x ∈[0,1)时f (x )为增函数,则不等式f (x )+f (x -12)<0的解集为________.答案 {x |-12<x <14}解析 ∵f (x )为奇函数,且在[0,1)上为增函数,∴f (x )在(-1,0)上也是增函数. ∴f (x )在(-1,1)上为增函数.f (x )+f (x -12)<0⇔ f (x )<-f (x -12)=f (12-x )⇔⎩⎪⎨⎪⎧-1<x <1,-1<12-x <1,x <12-x⇔-12<x <14.∴不等式f (x )+f (x -12)<0的解集为{x |-12<x <14}.。
2016届高考数学一轮复习 题组层级快练33(含解析)
题组层级快练(三十三)1.已知向量a =(1,sin θ),b =(1,cos θ),则|a -b |的最大值为( ) A .1 B. 2 C. 3 D .2答案 B解析 ∵a =(1,sin θ),b =(1,cos θ),∴a -b =(0,sin θ-cos θ). ∴|a -b |=02+θ-cos θ2=1-sin2θ.∴|a -b |最大值为 2.故选B.2.在平行四边形ABCD 中,AB →=a ,AD →=b ,则当(a +b )2=(a -b )2时,该平行四边形为( ) A .菱形 B .矩形 C .正方形 D .以上都不正确答案 B解析 在平行四边形中,a +b =AB →+AD →=AC →,a -b =AB →-AD →=DB →,∵|a +b |=|a -b |,∴|AC →|=|DB →|,对角线相等的平行四边形为矩形,故选B. 3.在△ABC 中,若AB →2=AB →·AC →+BA →·BC →+CA →·CB →,则△ABC 是( ) A .等边三角形 B .锐角三角形 C .钝角三角形 D .直角三角形 答案 D解析 由已知,AB →2=AB →·AC →-AB →·BC →+CA →·CB →=AB →·(AC →+CB →)+CA →·CB →=AB →2+CA →·CB →,∴CA →·CB →=0.4.已知A ,B 是圆心为C 半径为5的圆上两点,且|AB →|=5,则AC →·CB →等于( ) A .-52B.52 C .0 D.532答案 A解析 由于弦长|AB |=5与半径相同,则∠ACB =60°⇒AC →·CB →=-CA →·CB →=-|CA →|·|CB →|·cos∠ACB =-5·5·cos60°=-52.5.设△ABC 的三个内角为A ,B ,C ,向量m =(3sin A ,sin B ),n =(cos B ,3cos A ),若m·n =1+cos(A +B ),则C =( )A.π6B.π3C.2π3D.5π6答案 C解析 依题意得3sin A cos B +3cos A sin B =1+cos(A +B ),3sin(A +B )=1+cos(A +B ),3sin C +cos C =1,2sin(C +π6)=1,sin(C +π6)=12.又π6<C +π6<7π6,因此C +π6=5π6,C =2π3,选C.6.设P 是曲线y =1x上一点,点P 关于直线y =x 的对称点为Q ,点O 为坐标原点,则OP →·OQ →=( )A .0B .1C .2D .3答案 C解析 设P (x 1,1x 1),则Q (1x 1,x 1).∴OP →·OQ →=(x 1,1x 1)·(1x 1,x 1)=x 1·1x 1+1x 1·x 1=2.7.在△ABC 中,BC →=a ,CA →=b ,AB →=c ,且a·b =b·c =c·a ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形答案 D解析 因a ,b ,c 均为非零向量,且a·b =b·c ,得b·(a -c )=0⇒b⊥(a -c ). 又a +b +c =0⇒b =-(a +c ),∴[-(a +c )]·(a -c )=0⇒a 2=c 2,得|a|=|c|. 同理|b|=|a|,∴|a|=|b|=|c|. 故△ABC 为等边三角形.8.(2015·辽宁五校协作体第一次联考)已知数列{a n }是等差数列,其前n 项和为S n ,若平面上的三个不共线的向量OA →,OB →,OC →满足OB →=a 1OA →+a 2 014OC →,且A ,B ,C 三点共线,则S 2 014=( )A .1 007B .1 006C .2 012D .2 014答案 A解析 因为OB →=a 1OA →+a 2 014OC →,又A ,B ,C 三点共线,所以a 1+a 2 014=1,∴S 2 014=a 1+a 2 0142×2 014=1007.故选A.9.已知a ,b 是两个非零向量,给定命题p :|a ·b |=|a ||b |,命题q :∃t ∈R ,使得a =t b ,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 ∵|a ·b |=|a ||b ||cos θ|=|a ||b |, ∴θ=0°或180°,即a ,b 共线. ∴∃t ∈R ,使得a =t b 成立. ∴p 是q 的充分条件.若∃t ∈R ,使得a =t b ,则a ,b 共线. ∴|a ·b |=|a ||b |.∴p 是q 的必要条件. 综上可知,p 是q 的充要条件.10.(2015·保定模拟)若O 是△ABC 所在平面内一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形答案 B解析 OB →+OC →-2OA →=OB →-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB →+AC →|=|AB →-AC →|⇒|AB →+AC →|2=|AB →-AC →|2⇒AB →·AC →=0,∴三角形为直角三角形,故选B.11.已知直线x +y =a 与圆x 2+y 2=4交于A ,B 两点,且 |OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为( ) A .2 B .-2 C .2或-2 D.6或- 6答案 C解析 由|OA →+OB →|=|OA →-OB →|,得OA →⊥OB →. ∴点O 到AB 的距离d =2,即|-a |2=2,解得a =±2. 12.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的交点为B ,点A 在抛物线的准线上的射影为C ,若AF →=FB →,BA →·BC →=48,则抛物线的方程为( )A .y 2=8x B .y 2=4x C .y 2=16x D .y 2=42x答案 B解析 如图所示,AF →=FB →⇒F 为线段AB 中点,∵AF =AC ,∴∠ABC =30°.由BA →·BC →=48,得BC =4 3.则AC =4.∴由中位线的性质有p =12AC =2.故抛物线的方程为y 2=4x .故选B.13.已知向量i 和j 为互相垂直的单位向量,向量a =i -2j ,b =i +λj ,a 与b 的夹角为锐角,则实数λ的取值范围是________.答案 (-∞,-2)∪(-2,12)解析 ∵0<〈a ,b 〉<π2,∴0<cos 〈a ,b 〉<1,∴0<a ·b |a |·|b |<1,即0<1-2λ5·1+λ2<1,解得λ<12且λ≠-2,∴λ的取值范围是(-∞,-2)∪(-2,12).14.(2013·新课标全国Ⅱ)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 2解析 方法一:AE →·BD →=(AD →+12AB →)·(AD →-AB →)=AD →2-12AB →2=22-12×22=2.方法二:以A 为原点建立平面直角坐标系(如图),可得A (0,0),E (1,2),B (2,0),C (2,2),D (0,2),AE →=(1,2),BD →=(-2,2),则AE →·BD →=(1,2)·(-2,2)=1×(-2)+2×2=2.15.已知圆O :x 2+y 2=4,直线x -3y +10=0上有一动点P ,过点P 作圆O 的一条切线,切点为A ,则PO →·PA →的最小值为________.答案 6解析 圆心O 到直线x -3y +10=0的距离d =|10|12+-2=10>2,所以直线和圆相离.因为PA与圆O 相切,所以PA ⊥OA ,故PA →·AO →=0.又PO →=PA →+AO →,所以PO →·PA →=(PA →+AO →)·PA →=PA →2+AO →·PA →=PA →2. 又PA ⊥OA ,所以PA →2=|PA →|2=|PO →|2-|OA →|2=|PO →|2-4.显然|PO →|的最小值为圆心O 到直线x -3y +10=0的距离d =10,所以PO →·PA →的最小值为(10)2-4=6.16.(2014·陕西文)在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R ).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值. 答案 (1)2 2 (2)1解析 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2).∴|OP →|=22+22=2 2.(2)∵OP →=m (1,2)+n (2,1)=(m +2n,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n .两式相减,得m -n =y -x .令m -n =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.17.(2015·四川雅安中学)已知向量OP →=(2cos(π2+x ),-1),OQ →=(-sin(π2-x ),cos2x ),定义函数f (x )=OP →·OQ →.(1)求函数f (x )的表达式,并指出其最大值和最小值;(2)在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且f (A )=1,bc =8,求△ABC 的面积S .答案 (1)f (x )=2sin(2x -π4),最大,最小值分别为2,- 2 (2)2 2解析 (1)∵f (x )=OP →·OQ →=(-2sin x ,-1)·(-cos x ,cos2x )=sin2x -cos2x =2sin(2x -π4),∴f (x )的最大值和最小值分别是2和- 2. (2)∵f (A )=1,∴sin(2A -π4)=22. ∴2A -π4=π4或2A -π4=3π4.∴A =π4或A =π2.又∵△ABC 为锐角三角形,∴A =π4.∵bc =8,∴△ABC 的面积S =12bc sin A =12×8×22=2 2.1.若△ABC 的三内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量p =(a +b ,c ),q =(a -b ,c -a ),若|p +q |=|p -q |,则角B 的大小是( )A .30°B .60°C .90°D .120°答案 B解析 由|p +q |=|p -q |,可得p 2+2p ·q +q 2=p 2-2p ·q +q 2,化简得p ·q =0.又由p ·q =(a +b ,c )·(a -b ,c -a )=a 2-b 2+c 2-ac =0,可得cos B =a 2+c 2-b 22ac =12.由B ∈(0,π),可得B =60°,故选B.2.已知点A (-2,0),B (3,0),动点P (x ,y )满足PA →·PB →=x 2,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线答案 D解析 ∵PA →=(-2-x ,-y ),PB →=(3-x ,-y ), ∴PA →·PB →=(-2-x )(3-x )+y 2=x 2,∴y 2=x +6.3.设O 点在三角形ABC 内部,且有OA →+2OB →+3OC →=0,则三角形ABC 的面积与三角形AOC 的面积之比( )A .2 B.32 C .3D.53答案 C解析 联想三角形ABC 重心满足GA →+GB →+GC →=0可延长OB 至E 使OE →=2OB →,延长OC 至F 使OF →=3OC →,则O 为三角形AEF 的重心从而S △AOC =13S △AOF =19S △AEF , S △AOB =12S △AOE =16S △AEF , S △BOC =13S △BOF =118S △AEF .∴S △ABC =S △AOC +S △AOB +S △BOC =13S △AEF .∴S △AOC =13S △ABC ,故选C.4.已知|a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( ) A .[0,π6]B .[π3,π]C .[π3,2π3]D .[π6,π]答案 B解析 |a |=2|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则|a |2-4a ·b ≥0,设向量a ·b 的夹角为θ,cos θ=a ·b |a |·|b |≤14|a |212|a |2=12,∴θ∈[π3,π].。
2016届高考数学一轮复习 题组层级快练17(含解析)
题组层级快练(十七)(第一次作业)1.函数f(x)=(x2-1)2+2的极值点是( )A.x=1 B.x=-1C.x=1或-1或0 D.x=0答案 C解析∵f(x)=x4-2x2+3,由f′(x)=4x3-4x=4x(x+1)(x-1)=0,得x=0或x=1或x=-1.又当x<-1时,f′(x)<0,当-1<x<0时,f′(x)>0,当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,∴x=0,1,-1都是f(x)的极值点.2.(2013·课标全国Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0答案 C解析∵x0是f(x)的极小值点,则y=f(x)的图像大致如右图所示,则在(-∞,x0)上不单调,故C 不正确.3.设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图像可能是( )答案 C解析由f(x)在x=-2处取得极小值可知,当x<-2时,f′(x)<0,则xf′(x)>0;当-2<x<0时,f′(x)>0,则xf′(x)<0;当x>0时,xf′(x)>0.4.若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则( )A .a -2b =0B .2a -b =0C .2a +b =0D .a +2b =0答案 D解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.5.若函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则( ) A .0<b <1 B .b <1 C .b >0 D .b <12答案 A解析 f (x )在(0,1)内有极小值,则f ′(x )=3x 2-3b 在(0,1)上先负后正,∴f ′(0)=-3b <0. ∴b >0.f ′(1)=3-3b >0,∴b <1. 综上,b 的取值范围为0<b <1.6.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对答案 A解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37,选A.7.若函数f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则实数a 的取值范围为( ) A .[2,+∞) B .[4,+∞) C .{4} D .[2,4]答案 C解析 f ′(x )=3ax 2-3,当a ≤0时,f (x )min =f (1)=a -2≥0,a ≥2,不合题意; 当0<a ≤1时,f ′(x )=3ax 2-3=3a (x +1a)(x -1a),f (x )在[-1,1]上为减函数,f (x )min =f (1)=a -2≥0,a ≥2,不合题意;当a >1时,f (-1)=-a +4≥0,且f (1a)=-2a+1≥0,解得a =4.综上所述,a =4.8.若函数f (x )=e -x·x ,则( ) A .仅有极小值12eB .仅有极大值12eC .有极小值0,极大值12eD .以上皆不正确答案 B解析 f ′(x )=-e -x·x +12x·e -x =e -x(-x +12x )=e -x·1-2x 2x . 令f ′(x )=0,得x =12.当x >12时,f ′(x )<0;当x <12时,f ′(x )>0.∴x =12时取极大值,f (12)=1e·12=12e. 9.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=a x+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a2+4b +1=0,解得⎩⎪⎨⎪⎧a =-23,b =-16.10.若f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a +b =________. 答案 -7解析 由x =1时,f (x )有极值10知,f (1)=10,f ′(1)=0,∴⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,即⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f (x )=x 3+4x 2-11x +16, 得f ′(x )=3x 2+8x -11=(3x +11)(x -1).当x ∈(-113,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )为极小值.当a =-3,b =3时,f ′(x )=3(x -1)2≥0,即x =1时,不取极值,a =-3,b =3应舍去.所以a +b =-7.11.若f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案 6解析 f ′(x )=3x 2-4cx +c 2, ∵f (x )在x =2处有极大值,∴⎩⎪⎨⎪⎧f =0,f x x ,fxx解得c =6.12.(2015·保定调研卷)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧f =0,f =2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3.(2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0. 则g ′(x )=-1-2x +3x=-x -x +x.当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 13.(2015·郑州一模)已知函数f (x )=x 3-ax 2-3x .(1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =-13是函数f (x )的极值点,求函数f (x )在[1,a ]上的最大值;(3)设函数g (x )=f (x )-bx ,在(2)的条件下,若函数g (x )恰有3个零点,求实数b 的取值范围. 答案 (1)a ≤0 (2)-6 (3)b >-7且b ≠-3 解析 (1)f ′(x )=3x 2-2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴f ′(x )≥0在[1,+∞)上恒成立,即 3x 2-2ax -3≥0在[1,+∞)上恒成立. 则必有a3≤1,且f ′(1)=-2a ≥0.∴a ≤0.(2)依题意,f ′(-13)=0,即13+23a -3=0,∴a =4.∴f (x )=x 3-4x 2-3x .令f ′(x )=3x 2-8x -3=0,得x 1=-13,x 2=3.则当x 变化时,f ′(x )与f (x )变化情况如下表:∴f (x )在(3)函数g (x )有3个零点⇔方程f (x )-bx =0有3个不相等的实根. 即方程x 3-4x 2-3x =bx 有3个不等实根. ∵x =0是其中一个根,∴只需满足方程x 2-4x -3-b =0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16++b ,-3-b ≠0.∴b >-7且b ≠-3.故实数b 的取值范围是b >-7且b ≠-3. 14.设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求实数a 的取值范围. 答案 (1)极小值点为x 1=32,极大值点为x 2=12 (2)(0,1]解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax+ax22.(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.又当x 变化时,f ′(x )和f (x )的变化情况如下表:∴x 1=2是极小值点,x 2=2是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号.结合(1)与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,由Δ=4a 2-4a =4a (a -1)≤0,得0<a ≤1.即实数a 的取值范围是(0,1].15.(2014·福建)已知函数f (x )=e x-ax (a 为常数)的图像与y 轴交于点A ,曲线y =f (x )在点A 处的切线斜率为-1.(1)求a 的值及函数f (x )的极值; (2)证明:当x >0时,x 2<e x.答案(1)a=2,极小值为f(ln2)=2-ln4 (2)略解析(1)由f(x)=e x-ax,得f′(x)=e x-a.又f′(0)=1-a=-1,得a=2.所以f(x)=e x-2x,f′(x)=e x-2.令f′(x)=0,得x=ln2.当x<ln2时,f′(x)<0,f(x)单调递减;当x>ln2时,f′(x)>0,f(x)单调递增.所以当x=ln2时,f(x)取得极小值,且极小值为f(ln2)=e ln2-2ln2=2-ln4,f(x)无极大值.(2)令g(x)=e x-x2,则g′(x)=e x-2x,由(1)得g′(x)=f(x)≥f(ln2)>0,故g(x)在R上单调递增.又g(0)=1>0,因此,当x>0时,g(x)>g(0)>0,即x2<e x.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题组层级快练(六十四)1.已知M (-2,0),N (2,0),|PM |-|PN |=3,则动点P 的轨迹是( ) A .双曲线 B .双曲线左边一支 C .双曲线右边一支 D .一条射线答案 C解析 ∵|PM |-|PN |=3<4,由双曲线定义知,其轨迹为双曲线的一支. 又∵|PM |>|PN |,故点P 的轨迹为双曲线的右支.2.与椭圆x 24+y 2=1共焦点且过点P (2,1)的双曲线方程是( )A.x 24-y 2=1 B.x 22-y 2=1 C.x 23-y 23=1 D .x 2-y 22=1答案 B解析 椭圆x 24+y 2=1的焦点为(±3,0).因为双曲线与椭圆共焦点,所以排除A ,C. 又双曲线x 22-y 2=1经过点(2,1),所以选B.3.(2015²济宁模拟)如图所示,正六边形ABCDEF 的两个顶点A ,D 为双曲线的两个焦点,其余4个顶点都在双曲线上,则该双曲线的离心率是( )A.3+1B.3-1C. 3D. 2答案 A解析 令正六边形的边长为m ,则有|AD |=2m ,|AB |=m ,|BD |=3m ,该双曲线的离心率等于|AD |||AB |-|BD ||=2m3m -m=3+1.4.已知双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),双曲线的一个焦点到一条渐近线的距离为53c (c 为双曲线的半焦距长),则双曲线的离心率为( )A.52B.32C.355 D.23答案 B解析 双曲线x 2a 2-y 2b 2=1的渐近线为x a ±y b =0,焦点A (c,0)到直线bx -ay =0的距离为bc a 2+b 2=53c ,则c 2-a 2=59c 2,得e 2=94,e =32,故选B.5.已知双曲线的两个焦点F 1(-10,0),F 2(10,0),M 是此双曲线上的一点,且MF 1→²MF 2→=0,|MF 1→|²|MF 2→|=2,则该双曲线的方程是( )A.x 29-y 2=1 B .x 2-y 29=1C.x 29-y 27=1D.x 27-y 23=1 答案 A解析 ∵MF 1→²MF 2→=0,∴MF 1→⊥MF 2→.∴|MF 1→|2+|MF 2→|2=40.∵||MF 1→|-|MF 2→||=2a , ∴|MF 1→|²|MF 2→|=20-2a 2=2,∴a 2=9,b 2=1. ∴所求双曲线的方程为x 29-y 2=1.6.已知双曲线mx 2-ny 2=1(m >0,n >0)的离心率为2,则椭圆mx 2+ny 2=1的离心率为( ) A.12 B.63 C.33D.233答案 B解析 由已知双曲线的离心率为2,得1m +1n1m=2. 解得m =3n .又m >0,n >0,∴m >n ,即1n >1m.故由椭圆mx 2+ny 2=1,得y 21n+x 21m=1.∴所求椭圆的离心率为e =1n -1m1n =1n -13n 1n=63. 7.(2014²山东理)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ²a 2+b 2a =32,所以a 4-b 4=34a 4,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0.8.设F 1,F 2是双曲线x 23-y 2=1的两个焦点,点P 在双曲线上,当△F 1PF 2的面积为2时,PF 1→²PF 2→的值为( )A .2B .3C .4D .6答案 B解析 设点P (x 0,y 0),依题意得,|F 1F 2|=23+1=4,S △PF 1F 2=12|F 1F 2||y 0|=2|y 0|=2,∴|y 0|=1.又∵x 203-y 20=1,∴x 20=3(y 20+1)=6.∴PF 1→²PF 2→=(-2-x 0,-y 0)²(2-x 0,-y 0)=x 20+y 20-4=3. 9.已知点F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 1且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABF 2是锐角三角形,则该双曲线离心率的取值范围是( )A .(1,3)B .(3,22)C .(1+2,+∞)D .(1,1+2)答案 D解析 依题意,0<∠AF 2F 1<π4,故0<tan ∠AF 2F 1<1,则b 2a 2c =c 2-a 22ac <1,即e -1e<2,e 2-2e -1<0,(e -1)2<2,所以1<e <1+2,故选D.10.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.3. B.38 C.233D.433答案 D解析 设M (x 0,12p x 20),y ′=(12p x 2)′=x p ,故在M 点处的切线的斜率为x 0p =33,故M (33p ,16p ).由题意又可知抛物线的焦点为(0,p 2),双曲线右焦点为(2,0),且(33p ,16p ),(0,p2),(2,0)三点共线,可求得p =433,故选D.11.双曲线x 24-y 2=1的顶点到其渐近线的距离等于________.答案255解析 双曲线x 24-y 2=1的顶点为(±2,0),渐近线方程为y =±12x ,即x -2y =0和x +2y =0.故其顶点到渐近线的距离d =|±2|1+4=25=255. 12.已知双曲线x 29-y 2a=1的右焦点的坐标为(13,0),则该双曲线的渐近线方程为________.答案 2x ±3y =0解析 ∵右焦点坐标是(13,0), ∴9+a =13,即a =4. ∴双曲线方程为x 29-y 24=1.∴渐近线方程为x 3±y2=0,即2x ±3y =0.13.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→²PF 2→的最小值为________.答案 -2解析 由题可知A 1(-1,0),F 2(2,0). 设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→²PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.∵x ≥1,函数f (x )=4x 2-x -5的图像的对称轴为x =18,∴当x =1时,PA 1→²PF 2→取得最小值-2.14.P 是双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上一点,F 1,F 2分别为双曲线的左、右焦点,焦距为2c ,则△PF 1F 2的内切圆的圆心横坐标为________.答案 a解析 如图所示,内切圆与三条边的切点分别为A ,B ,C ,由切线性质,得|F 1C |=|F 1A |,|PC |=|PB |,|F 2A |=|F 2B|.由双曲线定义知,|PF 1|-|PF 2|=2a , 即(|PC |+|CF 1|)-(|PB |+|BF 2|)=2a . ∴|CF 1|-|BF 2|=2a 即|F 1A |-|F 2A |=2a . ∵|F 1A |+|F 2A |=2c ,∴|F 1A |=a +c .∴A (a,0).15.(2015²兰州高三诊断)若双曲线x 2a -y 2b =1(a >0,b >0)一条渐近线的倾斜角为π3,离心率为e ,则a 2+eb的最小值为________. 答案263解析 由题意,可得k =b a =tan π3= 3.∴b =3a ,则a 2=b 23,∴e =1+b 2a2=2. ∴a 2+e b =b 23+2b =b 3+2b≥2b 3³2b =263. 当且仅当b 2=6,a 2=2时取“=”.16.已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10). (1)求双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1→²MF 2→=0; (3)在(2)的条件下求△F 1MF 2的面积. 答案 (1)x 2-y 2=6 (2)略 (3)6解析 (1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点P (4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 2-y 2=6.(2)方法一:由(1)可知,在双曲线中,a =b =6, ∴c =23,∴F 1(-23,0),F 2(23,0). ∴kMF 1=m 3+23,kMF 2=m3-23.∴kMF 1²kMF 2=m 29-12=-m 23.∵点M (3,m )在双曲线上, ∴9-m 2=6,m 2=3.故kMF 1²kMF 2=-1,∴MF 1⊥MF 2. ∴MF 1→²MF 2→=0.方法二:∵MF 1→=(-3-23,-m ),MF 2→=(23-3,-m ),∴MF 1→²MF 2→=(3+23)³(3-23)+m 2=-3+m 2. ∵M (3,m )在双曲线上, ∴9-m 2=6,即m 2-3=0. ∴MF 1→²MF 2→=0.(3)△F 1MF 2的底|F 1F 2|=43, △F 1MF 2的边F 1F 2的高h =|m |=3, ∴S △F 1MF 2=6.17.如图所示,双曲线的中心在坐标原点,焦点在x 轴上,F 1,F 2分别为左、右焦点,双曲线的左支上有一点P ,∠F 1PF 2=π3,且△PF 1F 2的面积为23,又双曲线的离心率为2,求该双曲线的方程.答案 3x 22-y 22=1解析 设双曲线的方程为x 2a 2-y 2b2=1,∴F 1(-c,0),F 2(c,0),P (x 0,y 0).在△PF 1F 2中,由余弦定理,得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|²|PF 2|²cos π3=(|PF 1|-|PF 2|)2+|PF 1|²|PF 2|. 即4c 2=4a 2+|PF 1|²|PF 2|. 又∵S △PF 1F 2=23,∴12|PF 1|²|PF 2|²sin π3=2 3. ∴|PF 1|²|PF 2|=8. ∴4c 2=4a 2+8,即b 2=2.又∵e =c a =2,∴a 2=23.∴所求双曲线方程为3x 22-y22=1.1.设F 1,F 2分别是双曲线x 2a 2-y 2b2=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°且|AF 1|=3|AF 2|,则双曲线的离心率为( )A. 5B.152C.102D.52答案 C解析 由双曲线的定义:|AF 1|-|AF 2|=2a 和|AF 1|=3|AF 2|,得|AF 1|=3a ,|AF 2|=a .在△AF 1F 2中,由勾股定理4c 2=(3a )2+a 2解出答案.2.(2013²全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 ∵e =c a =52,∴e 2=c 2a 2=a 2+b 2a 2=54.∴a 2=4b 2,b a =±12.∴渐近线方程为y =±12x .3.(2013²天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3答案 C解析 设A 点坐标为(x 0,y 0),则由题意,得S △AOB =|x 0|²|y 0|= 3.抛物线y 2=2px 的准线为x =-p2,所以x 0=-p2,代入双曲线的渐近线的方程y =±b a x ,得|y 0|=bp 2a.由⎩⎪⎨⎪⎧ca =2,a 2+b 2=c 2,得b =3a ,所以|y 0|=32p .所以S △AOB =34p 2=3,解得p =2或p =-2(舍去). 4.已知双曲线的渐近线方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,求双曲线方程.答案x 236-y 264=1或y 264-x 236=1 解析 方法一:①当焦点在x 轴上时,设双曲线的方程为x 2a -y 2b=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,∴⎩⎪⎨⎪⎧b a =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =6,b =8.∴双曲线的方程为x 236-y 264=1.②当焦点在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0),因渐近线的方程为y =±43x ,并且焦点都在圆x 2+y 2=100上,∴⎩⎪⎨⎪⎧a b =43,a 2+b 2=100,解得⎩⎪⎨⎪⎧a =8,b =6.∴双曲线的方程为y 264-x 236=1. 综上,双曲线的方程为x 236-y 264=1或y 264-x 236=1.方法二:设双曲线的方程为42²x 2-32²y 2=λ(λ≠0), 从而有(|λ|4)2+(|λ|3)2=100,解得λ=±576.x2 36-y264=1或y264-x236=1.∴双曲线的方程为。