2019-2020学年高考数学一轮复习-第2讲-平面向量、解三角形教学案

合集下载

2019-2020年高考数学专题6平面向量教案苏教版

2019-2020年高考数学专题6平面向量教案苏教版
③不正确.∵ 与若有一个为,则其方向不确定. ④不正确. 向量与向量共线, 则向量与向量所在的直线平行或重合, 因此 A,B,C,D 四点不一
定在一条直线上. ⑤正确.只要大小与方向相同则两向量相等,与其起点位置无关. 综上所述,正确命题的序号是②⑤.
例 2. 在中,,.若点满足,则 _______
rr b c cos120o =0;
rrr
r r 2r
若 ka b c 1 , 则 k a b 1c , 即
r2
r2
r2
k2 a
b 2c
r ur
ur r r
k2 a b 2 k ,a 1c b
k2
化简得
2k
0, k
2或k
0
uur ur uuur r
AB m, AC n, 例 6. 已知的重心为 G,若
与的夹角为钝角,则,且不共
线,又当共线时, ,
因此 λ 的取值范围是
r a 例 5 已 知
3/ 2,且 rr bc
-6 1, 且 两 两 夹 角 a bg) c _ _ _, 若_k a b c 1, 则 的 取 值 范 围 是
___________.
r r r rr rr rr 解 析 : (a b)gc a c b c a c cos120o —
,则 =__________
A
解析: 如图
E G
因为 G是的重心,所以
B
C D
uuur 2 uur 2 uur uuur CG CE ( AE AC ) =
3
3
2
(1
uur AB
uuur AC )
1
uur AB
2
uuur AC

2019-2020年高考数学一轮复习专题25平面向量的基本定理及其坐标表示教学案理

2019-2020年高考数学一轮复习专题25平面向量的基本定理及其坐标表示教学案理

2019-2020年高考数学一轮复习专题25平面向量的基本定理及其坐标表示教学案理1.了解平面向量基本定理及其意义.2.掌握平面向量的正交分解及坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.高频考点一 平面向量基本定理的应用例1、(1)在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )A.15B.25C.35D.45(2)如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.(2)设BP →=kBN →,k ∈R . 因为AP →=AB →+BP →=AB →+kBN → =AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.【感悟提升】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【变式探究】(1)如图,已知AB →=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=________.(2)(如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ=________.解析 (1)AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b .(2)由题意可得BE →=12BA →+12BO →=12BA →+14BD →,由平面向量基本定理可得λ=12,μ=14,所以λ+μ=34.答案 (1)14a +34b (2)34高频考点二 平面向量的坐标运算例2、(1)已知向量a =(5,2),b =(-4,-3),c =(x ,y ),若3a -2b +c =0,则c =( ) A.(-23,-12) B.(23,12) C.(7,0)D.(-7,0)(2)向量a ,b ,c 在正方形网格中,如图所示,若c =λa +μb (λ,μ∈R ),则λμ=()A.1B.2C.3D.4解析 (1)3a -2b +c =(23+x ,12+y )=0,故x =-23,y =-12,故选A.(2)以向量a ,b 的交点为坐标原点,建立如图直角坐标系(设每个小正方形边长为1),A (1,-1),B (6,2),C (5,-1),所以a =(-1,1),b =(6,2),c =(-1,-3),∵c =λa +μb ,∴⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解之得λ=-2且μ=-12,因此,λμ=-2-12=4,故选D.答案 (1)A (2)D【方法规律】(1)巧借方程思想求坐标:若已知向量两端点的坐标,则应先求出向量的坐标,解题过程中注意方程思想的应用.(2)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可以用坐标来进行,实现了向量运算的代数化,将数与形结合起来,使几何问题转化为数量运算问题.【变式探究】 (1)已知点A (-1,5)和向量a =(2,3),若AB →=3a ,则点B 的坐标为( ) A.(7,4) B.(7,14) C.(5,4)D.(5,14)(2)已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________.高频考点三 向量共线的坐标表示例3、(1)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. (2)已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________.解析 (1)由a =(1,2),b =(-2,m ),且a ∥b , 得1×m -2×(-2)=0,即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8). (2)设P (x ,y ),由点P 在线段AB 的延长线上, 则AP →=32BP →,得(x -2,y -3)=32(x -4,y +3),即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎪⎨⎪⎧x =8,y =-15.所以点P 的坐标为(8,-15).答案 (1)(-4,-8) (2)(8,-15)【方法规律】(1)两平面向量共线的充要条件有两种形式:①若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0;②若a ∥b (b ≠0),则a =λb .(2)向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【变式探究】 (1)已知点A (1,3),B (4,-1),则与AB →同方向的单位向量是( ) A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 (2)若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________. 解析 (1)AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4), ∴与AB →同方向的单位向量为AB sup 6(→)|AB →|=⎝ ⎛⎭⎪⎫35,-45.(2)AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →, ∴4(a -1)-3×(-3)=0,即4a =-5,∴a =-54.答案 (1)A (2)-54【感悟提升】平面向量共线的坐标表示问题的常见类型及解题策略(1)利用两向量共线求参数.如果已知两向量共线,求某些参数的取值时,利用“若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2=x 2y 1”解题比较方便.(2)利用两向量共线的条件求向量坐标.一般地,在求与一个已知向量a 共线的向量时,可设所求向量为λa (λ∈R ),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa 即可得到所求的向量.(3)三点共线问题.A ,B ,C 三点共线等价于AB →与AC →共线.【举一反三】设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b的最小值为________.答案3+222解析 由题意得AB →=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,所以(-a +2,-2)=λ(b +2,-4),即⎩⎪⎨⎪⎧-a +2=λb +,-2=-4λ,整理得2a +b =2,所以1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).高频考点四、解析法(坐标法)在向量中的应用例4、给定两个长度为1的平面向量OA →和OB →,它们的夹角为2π3.如图所示,点C 在以O 为圆心的AB 上运动.若OC →=xOA →+yOB →,其中x ,y ∈R ,求x +y 的最大值.解 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32).设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得⎩⎪⎨⎪⎧cos α=x -12y ,sin α=32y ,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3],所以当α=π3时,x +y 取得最大值2.【感悟提升】本题首先通过建立平面直角坐标系,引入向量的坐标运算,然后用三角函数的知识求出x +y 的最大值.引入向量的坐标运算使得本题比较容易解决,体现了解析法(坐标法)解决问题的优势,凸显出了向量的代数特征,为用代数的方法研究向量问题奠定了基础.【方法技巧】1.平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. 向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 2.根据向量共线可以证明点共线;利用两向量共线也可以求点的坐标或参数值.1.【2016年高考四川理数】在平面内,定点A ,B ,C ,D 满足DA=DB =DC ,DA DB =DB DC =DC DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( )(A )434 (B )494(C)374+ (D)374+【答案】B【解析】甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为轴建立平面直角坐标系,如图所示,则()((2,0,1,,1,.A B C ---设(),,P x y 由已知1AP =,得()2221x y-+=,又131,,,,,22x y x PM MC M BM ⎛⎫⎛-++=∴∴=⎪ ⎝⎭⎝⎭()(222+14x y BM ++∴=,它表示圆()2221x y -+=上的点()x y ,与点(1,--的距离的平方的14,()22max149144BM⎫∴==⎪⎭,故选B.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以11PB t-=(,-4),1PC -=(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【2015高考湖北,理11】已知向量OA AB ⊥,||3OA =,则OA OB ∙= . 【答案】9【解析】因为OA AB ⊥,||3OA =,所以OA OB ∙=93||||)(222===∙+=+∙.1.(2014·重庆卷) 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92 B .0C .3 D.152【答案】C【解析】∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.2.(2014·福建卷) 在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B.3.(2014·山东卷) 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6. 由题意知,g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图像上符合题意的最高点为(x 0,2). 由题意知,x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝ ⎛⎭⎪⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z,所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z. 4.(2014·陕西卷) 设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.【答案】12【解析】因为向量a ∥b ,所以sin 2θ-cos θ·cos θ=0,又cos θ≠0,所以2sinθ=cos θ,故tan θ=12.5.(2014·陕西卷) 在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若PA →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R),用x ,y 表示m -n ,并求m -n 的最大值.(2)∵OP →=mAB →+nAC →, ∴(x ,y )=(m +2n ,2m +n ),∴⎩⎪⎨⎪⎧x =m +2n ,y =2m +n ,两式相减得,m -n =y -x ,令y -x =t ,由图知,当直线y =x +t 过点B (2,3)时,t 取得最大值1,故m -n 的最大值为1.6.(2013·安徽卷) 在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P|OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是( )A .2 2B .2 3C .4 2D .4 3 【答案】D【解析】由|OA →|=|OB →|=OA →·OB →=2,可得点A , B 在圆x 2+y 2=4上且∠AOB=60°,在平面直角坐标系中,设A(2,0),B(1,3),设P(x ,y),则(x ,y)=λ(2,0)+μ(1,3),由此得x =2λ+μ,y =3μ,解得μ=y3,λ=12x -12 3y ,由于|λ|+|μ|≤1,所以12x -12 3y +13y≤1,即|3x -y|+|2y|≤2 3.①⎩⎨⎧3x -y≥0,y≥0,3x +y≤2 3或②⎩⎨⎧3x -y≥0,y<0,3x -3y≤2 3或 ③⎩⎨⎧3x -y<0,y≥0,-3x +3y≤23或④⎩⎨⎧3x -y<0,y<0,-3x -y≤2 3.上述四个不等式组在平面直角坐标系中表示的区域如图阴影部分所示,所以所求区域的面积是4 3.7.(2013·湖南卷) 已知a ,b 是单位向量,a·b =0,若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1]B .[2-1,2+2]C .[1,2+1]D .1,2+2 【答案】A【解析】由题可知a ·b =0,则a ⊥b ,又|a |=|b |=1,且|c -a -b |=1,不妨令c =(x ,y),a =(1,0),b =(0,1),则(x -1)2+(y -1)2=1,又|c |=x 2+y 2,故根据几何关系可知|c |max =12+12+1=1+2,|c |min =12+12-1=2-1,故选A.8.(2013·北京卷) 向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R),则λμ=________.图1-3 【答案】4【解析】以向量a 和b 的交点为原点,水平方向和竖直方向分别为x 轴和y 轴建立直角坐标系,则a =(-1,1),b =(6,2),c =(-1,-3),则⎩⎪⎨⎪⎧-1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,所以λμ=4.9.(2013·辽宁卷) 已知点A(1,3),B(4,-1),则与向量AB 同方向的单位向量为( ) A.⎝ ⎛⎭⎪⎫35,-45 B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 【答案】A【解析】∵AB →=(3,-4),∴与AB →方向相同的单位向量为AB sup6(→)|AB →|=⎝ ⎛⎭⎪⎫35,-45,故选A.10.(2013·天津卷) 在平行四边形ABCD 中,AD =1,∠BAD=60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为________.【答案】1211.(2013·新课标全国卷Ⅱ] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________.【答案】2【解析】如图,建立直角坐标系,则AE →=(1,2),BD →=(-2,2),AE →·BD →=2.12.(2013·重庆卷) 如图1-9所示,椭圆的中心为原点O ,长轴在x 轴上,离心率e =22,过左焦点F 1作x 轴的垂线交椭圆于A ,A′两点,|A A′|=4. (1)求该椭圆的标准方程;(2)取垂直于x 轴的直线与椭圆相交于不同的两点P ,P′,过P ,P′作圆心为Q 的圆,使椭圆上的其余点均在圆Q 外,若PQ⊥P′Q,求圆Q 的标准方程.图1-9【解析】(1)由题意知点A(-c ,2)在椭圆上,则(-c )2a 2+22b 2=1,从而e 2+4b 2=1. 由e =22得b 2=41-e 2=8,从而a 2=b 21-e 2=16.故该椭圆的标准方程为x 216+y28=1.(2)由椭圆的对称性,可设Q(x 0,0).又设M(x ,y)是椭圆上任意一点,则|QM|2=(x -x 0)2+y 2=x 2-2x 0x +x 20+8⎝ ⎛⎭⎪⎫1-x 216=12(x -2x 0)2-x 20+8(x∈[-4,4]).设P(x 1,y 1),由题意,P 是椭圆上到Q 的距离最小的点,因此,上式当x =x 1时取得最小值.又因x 1∈(-4,4),所以上式当x =2x 0时取得最小值,从而x 1=2x 0,且|QP|2=8-x 20.因为PQ⊥P′Q,且P′(x 1,-y 1),所以QP →·QP →′=(x 1-x 0,y 1)·(x 1-x 0,-y 1)=0, 即(x 1-x 0)2-y 21=0.由椭圆方程及x 1=2x 0得14x 21-8⎝ ⎛⎭⎪⎫1-x 2116=0,解得x 1=±4 63,x 0=x 12=±2 63,从而|QP|2=8-x 20=163.故这样的圆有两个,其标准方程分别为⎝ ⎛⎭⎪⎫x +2 632+y 2=163,⎝⎛⎭⎪⎫x -2 632+y 2=163.13.(2013·重庆卷) 在平面上,AB 1→⊥AB 2→,|OB 1|=|OB 2→|=1,AP →=AB 1→+AB 2→.若|OP →|<12,则|OA →|的取值范围是( )A.⎝ ⎛⎦⎥⎤0,52 B.⎝ ⎛⎦⎥⎤52,72 C.⎝ ⎛⎦⎥⎤52,2 D.⎝ ⎛⎦⎥⎤72,2【答案】D【解析】根据条件知A ,B 1,P ,B 2构成一个矩形AB 1PB 2,以AB 1,AB 2所在直线为坐标轴建立直角坐标系,如图.设|AB 1|=a ,|AB 2|=b ,点O 的坐标为(x ,y),则点P 的坐标为(a ,b),由|OB 1→|=|OB 2→|=1得⎩⎪⎨⎪⎧(x -a )2+y 2=1,x 2+(y -b )2=1, 则⎩⎪⎨⎪⎧(x -a )2=1-y 2,(y -b )2=1-x 2. 又由|OP →|<12,得(x -a)2+(y -b)2<14,则1-x 2+1-y 2<14,即x 2+y 2>74①.又(x -a)2+y 2=1,得x 2+y 2+a 2=1+2ax≤1+a 2+x 2,则y 2≤1; 同理由x 2+(y -b)2=1,得x 2≤1,即有x 2+y 2≤2②. 由①②知74<x 2+y 2≤2,所以72<x 2+y 2≤ 2.而|OA →|=x 2+y 2,所以72<|OA →|≤2,故选D.1.下列各组向量中,可以作为基底的是( ) A.e 1=(0,0),e 2=(1,-2) B.e 1=(-1,2),e 2=(5,7) C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B. 答案 B2.已知在▱ABCD 中,AD →=(2,8),AB →=(-3,4),则AC →=( ) A.(-1,-12) B.(-1,12) C.(1,-12)D.(1,12)解析 因为四边形ABCD 是平行四边形, 所以AC →=AB →+AD →=(-1,12),故选B. 答案 B3.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A.充分必要条件 B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,所以m =-6,则“m =-6”是“a ∥(a +b )”的充要条件,故选A.答案 A4.如右图,向量e 1,e 2,a 的起点与终点均在正方形网格的格点上,则向量a 可用基底e 1,e 2表示为( )A.e 1+e 2B.-2e 1+e 2C.2e 1-e 2D.2e 1+e 25.已知向量OA →=(k ,12),OB →=(4,5),OC →=(-k ,10),且A ,B ,C 三点共线,则k 的值是( )A.-23B.43C.12D.13解析 AB →=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2),因为A ,B ,C 三点共线,所以AB →,AC →共线,所以-2×(4-k )=-7×(-2k ),解得k =-23.答案 A6.在△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 等于( ) A.23 B.43C.-3D.0解析 因为CD →=2DB →,所以CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0,故选D.答案 D7.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A.(-2,7)B.(-6,21)C.(2,-7)D.(6,-21)解析 AQ →=PQ →-PA →=(-3,2),∵Q 是AC 的中点, ∴AC →=2AQ →=(-6,4),PC →=PA →+AC →=(-2,7), ∵BP →=2PC →,∴BC →=3PC →=(-6,21). 答案 B8.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=( ) A.12AC →+13AB →B.12AC →+16AB →C.16AC →+12AB →D.16AC →+32AB → 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →. 答案 C9.已知向量a =(x ,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 因为(x ,1)+(2,y )=(1,-1),所以⎩⎪⎨⎪⎧x +2=1,y +1=-1,解得⎩⎪⎨⎪⎧x =-1,y =-2,所以x +y =-3.答案 -310.若三点A (2,2),B (a ,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0,所以1a +1b =12.答案 1211.已知向量a =(1,2),b =(x ,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________. 解析 因为a =(1,2),b =(x ,1),u =a +2b ,v =2a -b ,所以u =(1,2)+2(x ,1)=(2x +1,4),v =2(1,2)-(x ,1)=(2-x ,3).又因为u ∥v ,所以3(2x +1)-4(2-x )=0,即10x =5,解得x =12.答案 1212.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2)表示.解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.答案 -23e 1+512e 213.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________.。

2019-2020学年高考数学一轮复习-空间向量与立体几何教学案

2019-2020学年高考数学一轮复习-空间向量与立体几何教学案

2019-2020学年高考数学一轮复习 空间向量与立体几何教学案二、教学目标1.会用向量法解决平行与垂直问题;2.掌握平面的法向量的求法;3.掌握向量法求空间角;4.会用向量法求点面距。

三、重点难点:向量法求空间角 四、知识导学 1.若()123,,a a a a =,()123,,b b b b =则(1)312123||a a a a b b b b ⇔== (b 1b 2b 3≠0)(2) 1122330a b a b a b a b ⊥⇔++=(3) cos ,a b <>=2.设A (x 1,y 1,z 1) B(x 2,y 2,z 2)则AB d =3.直线的方向向量.平面的法向量的概念及求法 4.向量法解决几何问题的步骤:(1)建立空间直角坐标系,把立体几何问题转化为向量问题;(2)进行空间向量的运算,研究点、直线、平面之间的位置关系以及它们之间的夹角和距离问题;(3)把向量的运算结果“翻译”成相应的几何意义。

五、课前自学1.在四棱锥P-ABCD 中,PD ⊥平面ABCD,PA 与平面ABCD 所成角是600,底面ABCD 中, ∠D=∠DAB=900, AB=4,CD=1,AD=2, 则异面直线PA,BC 所成角的余弦值 . 2.在正方体ABCD-A 1B 1C 1D 1中,F 是BC 的中点,点E 1在C 1D 1上,且111114D E D C =则直线E 1F 和平面D 1AC 所成角的大小为3.四棱锥P-ABCD 的底面是边长为a 的正方形,PA ⊥底面ABCD,E 是PC 上的点,且CE:EP=1:2, (1)在线段AB 上是否存在点F,使得EF ∥平面PAD? (2)若二面角B-PC-D 的大小是1200,求PA 的长.六、合作、探究、展示例题1.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,点E 为棱AB 的中点,求: (Ⅰ)D 1E 与平面BC 1D 所成角的大小; (Ⅱ)二面角D -BC 1-C 的大小;(Ⅲ)异面直线B 1D 1与BC 1之间的距离.例题2.已知棱长为1的正方体A C 1,E 、F 分别是B 1C 1、C 1D 的中点.AB CD 1A 1B1C1DE(1)求证:E 、F 、D 、B 共面;(2)求点A 1到平面的B DEF 的距离; (3)求直线A 1D 与平面B DEF 所成的角.例题3. 已知长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =1, AA 1=2,点M 、N 、P 分别是棱AB 、BC 、DD 1上的点,(1)若DP =16DD 1,且PB⊥面MNB 1,求二面角M -B 1N -B 大小;(2)棱DD 1上是否存在点P ,使面APC 1⊥面ACC 1,证明你的结论。

2020版高考数学(文)大一轮复习导学案:专题提能课(3) 解决平面向量计算的两种策略

2020版高考数学(文)大一轮复习导学案:专题提能课(3) 解决平面向量计算的两种策略

专题提能课(3) 解决平面向量计算的两种策略解法1 向量的线性运算与数量积混合运算 [例1]已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( )A .-58B.18C.14D.118解析:策略一:转化为基底运算 法一:设BA→=a ,BC →=b ,∴DE→=12AC →=12(b -a ),DF →=32DE →=34(b -a ),AF →=AD →+DF →=-12a +34(b -a )=-54a +34b ,∴AF →·BC →=-54a ·b +34b 2=-58+34=18,故选B. 策略二:借助数量积的几何意义法二:AF →·BC →的几何意义是BC →的长度与AF →在BC →方向上射影的乘积.如图所示,连接AE ,过D 作BC 的垂线,垂足为M ,过F 作BC 的垂线,垂足为N .则EN 的长度为AF→在BC →方向上的射影.由△DME 和△FNE 的相似比是2∶1,容易求得|EN |=18,∴AF →·BC →=|BC |·|EN |=18,故选B.答案:B[例2] 已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 解析:策略一:转化为基底运算 法一:设BA→=a ,BC →=b , ∴BD→=a +b ,AE →=AD →+DE →=b -12a , ∴BD →·AE →=(a +b )·(b -12a )=b 2-12a 2=4-2=2.策略二:转化为坐标运算法二:以B 为坐标原点,BA 所在直线为y 轴,BC 所在直线为x 轴,容易得到: BD→=(2,2),AE →=(2,1)-(0,2)=(2,-1),∴BD →·AE→=4-2=2. 策略三:借助数量积的几何意义法三:由AE →·BD →=AE →·(BA →+BC →)=AE →·BA →+AE →·BC →,则AE →·BD→的几何意义是BA →的长度和AE→在BA→方向上射影的乘积与BC→的长度和AE→在BC →方向上射影的乘积之和.如图所示,过E 作AB 的垂线,垂足为F .则-|AF |是AE→在BA→方向上的射影,|BC |是AE →在BC →方向上的射影. ∴AE →·BD →=AE →·BA →+AE →·BC →=-|AF |·|BA |+|BC |·|BC |=-2+4=2.答案:2[评析] 研究向量数量积的计算问题,如果通过数,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种思路实质相同,取决于问题是否容易坐标化.如果利用数量积的几何意义,借助于几何运算会有意想不到的效果,但前提是某些射影容易计算. 解法2 数量积范围和最值问题 [例3]如图,△AOB 为等腰直角三角形,OA =1,OC 为斜边AB 的高,点P 在射线OC 上,则AP →·OP→的最小值为________.解析:策略一:转化为基底运算法一:由题设条件,OC →=12OA →+12OB →. 设OP→=λOC →=λ2OA →+λ2OB →, 则AP →=OP →-OA →=⎝ ⎛⎭⎪⎫λ2-1OA →+λ2OB →,∴AP →·OP →=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫λ2-1OA →+λ2OB →·⎝⎛⎭⎪⎫λ2OA →+λ2OB →=λ2⎝ ⎛⎭⎪⎫λ2-1|OA →|2+⎝ ⎛⎭⎪⎫λ22|OB →|2=λ2⎝ ⎛⎭⎪⎫λ2-1+⎝ ⎛⎭⎪⎫λ22=λ22-λ2=12⎝ ⎛⎭⎪⎫λ-122-18≥-18,∴AP →·OP →的最小值为-18. 策略二:借助数量积的几何意义法二:AP →·OP →的几何意义是OP →的长度与AP →在OP →方向上射影的乘积,当点P 在线段OC 上时,AP →·OP →为负值,当点P 在线段OC 的延长线时,AP →·OP →为正值, ∴当AP →·OP→取得最小值时,点P 在线段OC 上. 此时有AP →·OP →=-|OP →|·|CP →|,而|OP →|+|CP →|=22,则AP →·OP →=-|OP →|·|CP→|≥-(|OP →|+|CP →|)24=-18. 答案:-18[评析] 本题的代数方法为将向量AP→,OP →用基底向量OA →,OB →线性表出,从而达到数化的目的,转化成函数问题求最值,当然也可以直接坐标化处理问题;法二借助于数量积几何意义将问题转化为两线段和为定值,求其积的最值的问题,借助不等式放缩,水到渠成. [例4]如图,已知点P (2,0),且正方形ABCD 内接于圆O :x 2+y 2=1,M ,N 分别为边A B ,BC 的中点.当正方形ABCD 绕圆心O 旋转时,PM→·ON→的取值范围为________.解析:策略一:转化为坐标运算法一:正方形ABCD 绕圆心O 旋转时,始终存在|OM |=|ON |=22,OM ⊥ON ,设N ⎝ ⎛⎭⎪⎫22cos α,22sin α,则有M ⎝ ⎛⎭⎪⎫22cos ⎝ ⎛⎭⎪⎫α-π2,22sin ⎝ ⎛⎭⎪⎫α-π2,即M ⎝ ⎛⎭⎪⎫22sin α,-22cos α,则ON→=⎝ ⎛⎭⎪⎫22cos α,22sin α, PM→=⎝ ⎛⎭⎪⎫22sin α-2,-22cos α, PM →·ON→=22cos α⎝ ⎛⎭⎪⎫22sin α-2-12sin αcos α=-2cos α∈[-2,2]. 策略二:借助数量积的几何意义法二:PM →·ON →=(PO →+OM →)·ON →=PO →·ON →=-OP →·ON→.而OP →·ON→的几何意义是OP →的长度和ON →在OP 方向上射影的乘积. ∵|OP →|=2,|ON →|=22,ON →在OP →方向上射影范围为⎣⎢⎡⎦⎥⎤-22,22,∴PM →·ON→=-OP →·ON →∈[-2,2].答案:[-2,2][评析] 本题的代数方法容易想到点M ,N 在半径为22的圆上,坐标化以后变成三角函数的值域问题.策略二,需要寻求数量积的几何意义,容易想到拆分向量PM →=PO →+OM →,因向量OM →与ON →垂直,问题转化为求PO →·ON →的范围,而其中一个向量是确定的,另一个是变化的,可以借助向量数量积的几何意义来处理问题. 解法3 数量积问题的应用[例5] 在△ABC 中,BC =5,G ,O 分别是△ABC 的重心和外心,且OG →·BC →=5,则△ABC 的形状是( ) A .锐角三角形 B .钝角三角形C .直角三角形D .上述三种情况都有可能解析:策略一:转化为基底运算法一:如图所示,取BC 的中点D ,连接GD ,OD , 则OG →=OD →+DG →,OG →·BC →=5,即 OG →·BC →=(OD →+DG →)·BC → =OD →·BC →+DG →·BC → =DG →·BC→ =-13AD →·BC →=-13⎣⎢⎡⎦⎥⎤12(AB →+AC →)·(AC →-AB →)=-16(AB →+AC →)·(AC →-AB →)=5, 即AB→2-AC →2=30>25=BC →2, ∴|BC |2+|AC |2<|AB |2,即角C 为钝角,△ABC 是钝角三角形,选B. 策略二:借助数量积的几何意义法二:如图,过G 点作BC 的垂线,垂足为E ,过A 点作BC 的垂线,垂足为OG →·BC →的几何意义是BC →的长度与OG →在BC →方向上射影的乘积. ∵OG →·BC →=5,|BC →|=5, ∴OG→在BC →方向上射影为1>0, ∴点E 在线段DC 上, 即DE =1,∵△DGE 与△DAF 的相似比为1∶3, 可得DF =3, 而DC =12BC =52,∴F 在线段BC 的延长线上,即角C 为钝角,△ABC 是钝角三角形,选B. 答案:B[评析] 本题是一道数量积的应用问题,关键是如何化简给出的条件OG →·BC →=5,既然问△ABC 的形状,那么要推导边的关系,所以代数方法可以将OG →,BC →用基底向量AB→,AC →线性表出,寻找边的关系;而几何方法就需要有意识借助题目的条件寻找几何条件,方法虽然巧了一些,但确实起到四两拨千斤的作用,回味无穷. [例6]过点M (2,1)作一直线l 分别与x 轴、y 轴正半轴交于A 、B 两点,求|MA |·|MB |的最小解析:设直线l 的方程为y -1=k (x -2)(其中k <0),则A (2-1k ,0),B (0,1-2k ).因为点M 在线段AB 上,MA →,MB →的夹角为π,于是|MA |·|MB |=|MA →|·|MB→|=-MA →·MB →=-(-1k ,-1)·(-2,-2k )=-2k -2k =2[1(-k )+(-k )]≥4,当且仅当k =-1时等号成立,此时直线l 的方程为x +y -3=0. 所以|MA |·|MB |的最小值为4.[评析] 此题的解法是借助于向量数量积形式表示线段长度积形式,大大简化了运算.此法的使用体现了向量的工具作用,促进了数与形的结合,有助于实现几何问题的代数化和坐标化.。

2019-2020学年高考数学一轮复习《空间向量》教案.doc

2019-2020学年高考数学一轮复习《空间向量》教案.doc

2019-2020学年高考数学一轮复习《空间向量》教案1.理解空间向量的概念;掌握空间向量的加法、减法和数乘.2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算.3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间的距离公式.理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直第1课时 空间向量及其运算(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 .(3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 . 4.共面向量(1) 共面向量:平行于 的向量.(2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P .共面向量定理的推论: . 5.空间向量基本定理(1) 空间向量的基底: 的三个向量.(2) 空间向量基本定理:如果a ,b ,c 三个向量不共面,那么对空间中任意一个向量p ,存在一个唯一的有序实数组z y x ,,,使 .空间向量基本定理的推论:设O ,A ,B ,C 是不共面的的四点,则对空间中任意一点P ,都存在唯一的有序实数组z y x ,,,使 .6.空间向量的数量积(1) 空间向量的夹角: .(2) 空间向量的长度或模: .(3) 空间向量的数量积:已知空间中任意两个向量a 、b ,则a ·b = . 空间向量的数量积的常用结论: (a) cos 〈a 、b 〉= ;(b) ⎪a ⎪2= ; (c) a ⊥b ⇔ . (4) 空间向量的数量积的运算律:(a ) 交换律a ·b = ; (b ) 分配律a ·(b +c )= .例1.已知正方体ABCD —A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若1AA y AB x AD AF ++=,求x -y 的值.解:易求得0,21=-∴==y x y x变式训练1. 在平行六面体1111D C B A ABCD -中,M 为AC 与BD 的交点,若=11B A a ,=11D A b ,=A 1c ,则下列向量中与B 1相等的向量是( )A .-21a +21b +c B .21a +21b +cC .21a -21b +cD .-21a -21b +c解:A例2. 底面为正三角形的斜棱柱ABC -A 1B 1C 1中,D 为AC 的中点,ACD A1B 1求证:AB 1∥平面C 1BD. 证明:记,,,1AA ===则c b CC DC DC b a AD AB DB c a AB +=+=-=-=+=21,21,111∴11AB c a DC DB =+=+,∴11,,DC DB AB 共面.∵B 1∉平面C 1BD, AB 1//平面C 1BD.变式训练2:正方体ABCD -EFGH 中,M 、N 分别是对角线AC 和BE 上的点,且AM =EN . (1) 求证:MN∥平面FC ; (2) 求证:MN⊥AB;(3) 当MA 为何值时,MN 取最小值,最小值是多少? 解:(1) 设.)1(,BF k BC k MN k ACMCEB NB +-===则变式训练3:已知平行六面体1111D C B A ABCD -,E 、F 、G 、H 分别为棱AB C C C D D A 和11111,,的中点.求证:E 、F 、G 、H 四点共面. 解:+==1GC +=1FC GF HC ++=GF FC F A ++11=GF EF +2, 所以EH EG EF ,,共面,即点E 、F 、G 、H 共面.例4. 如图,平行六面体AC 1中,AE =3EA 1,AF =FD ,AG =GB 21,过E 、F 、G 的平面与对角线AC 1交于点P ,求AP:PC 1的值.解:设1m =ADAA AB C B BB AB AC 234311111++=++=++=∴m m m 2343++=又∵E、F 、G 、P 四点共面,∴12343=++m m m ∴193=m ∴AP︰PC 1=3︰16 变式训练4:已知空间四边形OABC 中,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为O B 的中点,若AB =OC ,求证QN PM ⊥. 证明:法一:)(21OC OB OM +=)(21OC OA ON +=)(21OC AB OM PO PM +=+=∴ )(21AB OC ON QO QN -=+=0)41==⋅∴QN PM 故QN PM ⊥法二:·=(+)·(+) =)(21+·)(21+ =)(4122-=01.立体几何中有关垂直和平行的一些命题,可通过向量运算来证明.对于垂直,一般是利用a ⊥b ⇔a ·b =0进行证明.对于平行,一般是利用共线向量和共面向量定理进行证明. 2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,然后计算这个向量对应的模.而计算过程中只要运用好加法法则,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,从而求得结果.13.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角,而求两个向量的夹角则可以利用公式c osθ.4.异面直线间的距离的向量求法:已知异面直线l1、l2,AB为其公垂线段,C、D分别为l1、l2上的任意一点,为与共线的向量,则|.5.设平面α的一个法向量为,点P是平面α外一点,且P o∈α,则点P到平面α的距离是do||n。

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理

2019-2020年高考数学一轮复习专题26平面向量的数量积及平面向量的应用教学案理1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b 的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤x21+y21·x22+y22. 3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a ∥b (b ≠0)⇔a =λb ⇔x 1y 2-x 2y 1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.(2)方法一 以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1. 因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1, 故DE →·DC →的最大值为1.方法二 由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,∴DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大即为DC =1, ∴(DE →·DC →)max =|DC →|·1=1.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 答案 (1)22 (2)2高频考点二 用数量积求向量的模、夹角例2、(1)(2016·全国Ⅱ卷)已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A.-8 B.-6 C.6D.8(2)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.解析 (1)由题知a +b =(4,m -2),因为(a +b )⊥b ,所以(a +b )·b =0, 即4×3+(-2)×(m -2)=0,解之得m =8,故选D. (2)∵2a -3b 与c 的夹角为钝角, ∴(2a -3b )·c <0,即(2k -3,-6)·(2,1)<0,解得k <3. 又若(2a -3b )∥c ,则2k -3=-12,即k =-92.当k =-92时,2a -3b =(-12,-6)=-6c , 此时2a -3b 与c 反向,不合题意.综上,k 的取值范围为⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3.答案 (1)D (2)⎝⎛⎭⎫-∞,-92∪⎝⎛⎭⎫-92,3【方法规律】(1)根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.(2)数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【变式探究】 (1)(2016·全国Ⅲ卷)已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A.30°B.45°C.60°D.120°(2)(2016·全国Ⅰ卷)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. 解析 (1)|BA →|=1,|BC →|=1, cos ∠ABC =BA sup 6(→)·BC →|BA →|·|BC →|=32.由〈BA →,BC →〉∈[0°,180°],得∠ABC =30°. (2)由|a +b |2=|a |2+|b |2,得a ⊥b , 所以m ×1+1×2=0,得m =-2. 答案 (1)A (2)-2【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6答案 (1)223 (2)C 解析 (1)∵|a |=3e 1-2e 22=9+4-12×1×1×13=3,|b |=3e 1-e 22=9+1-6×1×1×13=22,∴a ·b =(3e 1-2e 2)·(3e 1-e 2)=9e 21-9e 1·e 2+2e 22=9-9×1×1×13+2=8, ∴cos β=83×22=223.(2)∵AB →·AC →=-1,∴|AB →|·|AC →|·cos120°=-1, 即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2 ≥2|AB →|·|AC →|-2AB →·AC →=6, ∴|BC →|min = 6.高频考点三 平面向量与三角函数例3、在平面直角坐标系xOy 中,已知向量m =⎝ ⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值. 解 (1)因为m =⎝⎛⎭⎪⎫22,-22,n =(sin x ,cos x ),m ⊥n . 所以m ·n =0,即22sin x -22cos x =0, 所以sin x =cos x ,所以tan x =1.(2)因为|m |=|n |=1,所以m ·n =cos π3=12, 即22sin x -22cos x =12,所以sin ⎝⎛⎭⎫x -π4=12,因为0<x <π2,所以-π4<x -π4<π4, 所以x -π4=π6,即x =5π12.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( ) A .-43 B .-45 C.45 D.34答案 A高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心答案 C解析 由原等式,得OP →-OA →=λ(AB →+AC →),即AP →=λ(AB →+AC →),根据平行四边形法则,知AB →+AC →是△ABC 的中线AD (D 为BC 的中点)所对应向量AD →的2倍,所以点P 的轨迹必过△ABC 的重心.【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形 D .菱形 答案 (1)12 (2)D解析 (1)在平行四边形ABCD 中,取AB 的中点F ,则BE →=FD →,∴BE →=FD →=AD →-12AB →, 又∵AC →=AD →+AB →,∴AC →·BE →=(AD →+AB →)·(AD →-12AB →) =AD →2-12AD →·AB →+AD →·AB →-12AB →2 =|AD →|2+12|AD →||AB →|cos60°-12|AB →|2 =1+12×12|AB →|-12|AB →|2=1.∴()avs4alco1(f(1,2)-|AB →|)|AB →|=0,又|AB →|≠0,∴|AB →|=12.(2)AB →+CD →=0⇒AB →=-CD →=DC →⇒平面四边形ABCD 是平行四边形,(AB →-AD →)·AC →=DB →·AC →=0⇒DB →⊥AC →,所以平行四边形ABCD 是菱形.高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则yx =______.答案 (1)2x +y -3=0 (2)± 3 解析 (1)∵AB →=OB →-OA →=(4-k ,-7), BC →=OC →-OB →=(6,k -5),且AB →∥BC →, ∴(4-k )(k -5)+6×7=0, 解得k =-2或k =11.由k <0可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.(2)∵OM →·CM →=0,∴OM ⊥CM ,∴OM 是圆的切线,设OM 的方程为y =kx , 由|2k |1+k 2=3,得k =±3,即yx =± 3. 【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12答案 B解析 圆(x -2)2+y 2=4的圆心C (2,0),半径为2,圆M (x -2-5cos θ)2+(y -5sin θ)2=1,圆心M (2+5cos θ,5sin θ),半径为1,∵CM =5>2+1,故两圆相离.如图所示,设直线CM 和圆M 交于H ,G 两点,则PE →·PF →最小值是HE →·HF →,HC =CM -1=5-1=4,HE =HC 2-CE 2=16-4=23, sin ∠CHE =CE CH =12,∴cos ∠EHF =cos2∠CHE =1-2sin 2∠CHE =12,HE →·HF →=|HE →|·|HF →|cos ∠EHF =23×23×12=6,故选B.高频考点六 向量的综合应用例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.答案 (1)D (2)3(2)由图象可知,M ⎝⎛⎭⎫12,1,N ()x N ,-1,所以OM →·ON →=⎝⎛⎭⎫12,1·(x N ,-1)=12x N -1=0,解得x N =2,所以函数f (x )的最小正周期是2×⎝⎛⎭⎫2-12=3.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( )A .2 2B .2 3C .4 2D .4 3答案 D解析 由|OA →|=|OB →|=OA →·OB →=2, 知〈OA →,OB →〉=π3.当λ≥0,μ≥0,λ+μ=1时,在△OAB 中,取OC →=λOA →,过点C 作CD ∥OB 交AB 于点D ,作DE ∥OA 交OB 于点E ,显然OD →=λOA →+CD →.由于CD OB =AC AO ,CD OB =2-2λ2,∴CD →=(1-λ)OB →,∴OD →=λOA →+(1-λ)OB →=λOA →+μOB →=OP →, ∴λ+μ=1时,点P 在线段AB 上,∴λ≥0,μ≥0,λ+μ≤1时,点P 必在△OAB 内(包括边界).考虑|λ|+|μ|≤1的其他情形,点P 构成的集合恰好是以AB 为一边,以OA ,OB 为对角线一半的矩形,其面积为S =4S △OAB =4×12×2×2sin π3=4 3.1.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【答案】78【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠= ,则BD CD ⋅=( )(A )232a -(B )234a - (C ) 234a (D ) 232a 【答案】D 【解析】因为()BD CD BD BA BA BC BA ⋅=⋅=+⋅()22223cos602BA BC BA a a a +⋅=+=故选D.【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【答案】B【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6 【答案】C 【解析】311,443AM AB AD NM CM CN AD AB =+=-=-+,所以 221111(43)(43)(169)(1636916)94124848AM NM AB AD AB AD AB AD =+-=-=⨯-⨯=,选C.【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B 【答案】D 【解析】如图,由题意,(2)2BC AC AB a b a b =-=+-=,则||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=,且AD BC ⊥,而22(2)4AD a a b a b =++=+,所以()4C a b +⊥B ,故选D.【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B . 15C .19D .21 【答案】A【解析】以A 为坐标原点,建立平面直角坐标系,如图所示,则1(,0)B t,(0,)C t ,1AP =(,0)+4(0,1)=(1,4),即1P (,4),所以11PB t-=(,-4),1PC -=(,t-4),因此PB PC ⋅11416t t =--+117(4)t t=-+,因为144t t +≥=,所以PB PC ⋅ 的最大值等于13,当14t t =,即12t =时取等号.【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+, ()221919191181818AE AF AB BC AB BC AB BC AB BC λλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. BA1.(2014·北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________.【答案】5【解析】∵λa +b =0,∴λa =-b ,∴|λ|=|b ||a |=51= 5. 2.(2014·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.【答案】±3【解析】因为a +λb =(3+λ,3-λ),a -λb =(3-λ,3+λ),又(a +λb )⊥(a -λb ),所以(a +λb )·(a -λb )=(3+λ)(3-λ)+(3-λ)(3+λ)=0,解得λ=±3.3.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【答案】2 234.(2014·全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.22 【答案】B【解析】因为(a +b )⊥a ,所以(a +b )=0,即2+=因为(+b )⊥b ,所以(+b )=0,即b +2=0,与2+=0联立,可得-2=0,所以=2= 2.5.(2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .5 【答案】A【解析】由已知得|a +b |2=10,|a -b |2=6,两式相减,得4a ·b =4,所以a ·b =1.6.(2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______. 【答案】16【解析】因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S =12|AB →|·|AC →|sin A =12×23×sin π6=16 .7.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.712 【答案】C【解析】建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,① CE →·CF →=(λ-1,3(λ-1))·(μ-1,3(1-μ))=-23.②①-②得λ+μ=56.8.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322 D .-31529.(2013年高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( )A .[2-1,2+1] B.[]2-1,2+2 C .[1,2+1] D .[1,2+2]解析:由a ,b 为单位向量且a ·b =0,可设a =(1,0),b =(0,1),又设c =(x ,y ),代入|c -a -b |=1得(x -1)2+(y -1)2=1,又|c |= x 2+y 2,故由几何性质得12+12-1≤|c |≤12+12+1,即2-1≤|c |≤ 2+1.答案:A10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2.(1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 解析:(1)由|a |2=(3sin x )2+(sin x )2=4sin 2x , |b |2=(cos x )2+(sin x )2=1, 及|a |=|b |,得4sin 2x =1. 又x ∈⎣⎡⎦⎤0,π2,从而sin x =12,所以x =π6.(2)f (x )=a ·b =3sin x ·cos x +sin 2x =32sin 2x -12cos 2x +12=sin ⎝⎛⎭⎫2x -π6+12, 当x =π3∈[0,π2]时,sin ⎝⎛⎭⎫2x -π6取最大值1.所以f (x )的最大值为32.11.(2013年高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b = (3sin x ,cos 2x ),x ∈R ,设函数f (x )=a ·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值.解析:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x )=3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期为T =2πω=2π2=π,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6.由正弦函数的性质,知当2x -π6=π2,即x =π3时,f (x )取得最大值1.当2x -π6=-π6,即x =0时,f (x )取得最小值-12. 因此,f (x )在[0,π2]上的最大值是1,最小值是-12.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( ) A .22+ 3 B .2 3 C .4 D .12答案 B解析 |a +b |2=|a |2+|b |2+2|a ||b |cos60°=4+4+2×2×2×12=12,|a +b |=2 3. 2.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( ) A .2 3 B. 3 C .0 D .- 3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m ,a ·b =12+32×32+m 2×cos π6, ∴3+3m =12+32×32+m 2×cos π6,∴m = 3.3.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k 的值为( )A.32B.22C.52D.72 答案 A4.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形答案 C解析 因为(OB →-OC →)·(OB →+OC →-2OA →)=0, 即CB →·(AB →+AC →)=0,∵AB →-AC →=CB →, ∴(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|, 所以△ABC 是等腰三角形,故选C.5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269答案 B解析 若|AB →+AC →|=|AB →-AC →|,则AB →2+AC →2+2AB →·AC →=AB →2+AC →2-2AB →·AC →,即有AB →·AC →=0.E ,F 为BC 边的三等分点,则AE →·AF →=(AC →+CE →)·(AB →+BF →)=⎝⎛⎭⎫avs4alco1(o(AC ,sup6(→))+13CB →)·⎝⎛⎭⎫avs4alco1(o(AB ,sup6(→))+13BC→)=⎝⎛⎭⎫avs4alco1(f(2,3)AC →+13AB →)·⎝⎛⎭⎫avs4alco1(f(1,3)AC →+23AB →)=29AC →2+29AB →2+59AB →·AC →=29×(1+4)+0=109.故选B.6.在△ABC 中,M 是BC 的中点,AM =3,点P 在AM 上,且满足AP →=2PM →,则PA →·(PB →+PC →)的值为________.答案 -4解析 由题意得,AP =2,PM =1, 所以PA →·(PB →+PC →)=PA →·2PM → =2×2×1×cos180°=-4.7.如图,在△ABC 中,O 为BC 中点,若AB =1,AC =3,〈AB →,AC →〉=60°,则|OA →|=________.答案132解析 因为〈AB →,AC →〉=60°,所以AB →·AC →=|AB →|·|AC →|cos60°=1×3×12=32,又AO →=12(AB →+AC →),所以AO →2=14(AB →+AC →)2=14(AB →2+2AB →·AC →+AC →2),所以AO →2=14(1+3+9)=134,所以|OA →|=132.8.在△ABC 中,若OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的________(填“重心”、“垂心”、“内心”、“外心”).答案 垂心解析 ∵OA →·OB →=OB →·OC →, ∴OB →·(OA →-OC →)=0,∴OB →·CA →=0,∴OB ⊥CA ,即OB 为△ABC 底边CA 上的高所在直线.同理OA →·BC →=0,OC →·AB →=0,故O 是△ABC 的垂心.9.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又∵|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12, 又∵0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45.11.已知点P (0,-3),点A 在x 轴上,点Q 在y 轴的正半轴上,点M 满足PA →·AM →=0,AM →=-32MQ →,当点A 在x 轴上移动时,求动点M 的轨迹方程.解 设M (x ,y )为所求轨迹上任一点,设A (a,0),Q (0,b )(b >0),则PA →=(a,3),AM →=(x -a ,y ),MQ →=(-x ,b -y ),由PA →·AM →=0,得a (x -a )+3y =0.①由AM →=-32MQ →,得 (x -a ,y )=-32(-x ,b -y )=⎝⎛⎭⎫32x ,32y -b , ∴⎩⎨⎧ x -a =32x ,y =32y -32b ,∴⎩⎨⎧ a =-x 2,b =y 3.∴b >0,y >0, 把a =-x 2代入①,得-x 2⎝⎛⎭⎫x +x 2+3y =0,整理得y =14x 2(x ≠0).所以动点M 的轨迹方程为y =14x 2(x ≠0).12.已知向量a =⎝⎛⎭⎫sin x ,34,b =(cos x ,-1). (1)当a ∥b 时,求cos 2x -sin2x 的值;(2)设函数f (x )=2(a +b )·b ,已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a =3,b =2,sin B =63,求f (x )+4cos ⎝⎛⎭⎫2A +π6⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π3的取值范围. 解 (1)因为a ∥b , 所以34cos x +sin x =0,所以tan x =-34.cos 2x -sin2x =cos 2x -2sin x cos x sin 2x +cos 2x =1-2tan x 1+tan 2x =85. (2)f (x )=2(a +b )·b =2sin ⎝⎛⎭⎫2x +π4+32. 由正弦定理a sin A =b sin B ,得sin A =22,所以A =π4,或A =3π4.因为b >a ,所以A =π4.f (x )+4cos ⎝⎛⎭⎫2A +π6=2sin ⎝⎛⎭⎫2x +π4-12, 因为x ∈⎣⎡⎦⎤0,π3,所以2x +π4∈⎣⎡⎦⎤π4,11π12, 32-1≤f (x )+4cos ⎝⎛⎭⎫2A +π6≤2-12. ∴所求范围是⎣⎢⎡⎦⎥⎤32-1,2-12. 13.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,(1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.解 (1)∵(2a -3b )·(2a +b )=61,∴4|a |2-4a ·b -3|b |2=61.又|a |=4,|b |=3,∴64-4a ·b -27=61,∴a ·b =-6.∴cos θ=a ·b |a ||b |=-64×3=-12. 又0≤θ≤π,∴θ=2π3.(2)|a +b |2=(a +b )2=|a |2+2a ·b +|b |2=42+2×(-6)+32=13,∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a|=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(cos(A -B ),sin(A -B )),n=(cos B ,-sin B ),且m ·n =-35.(1)求sin A 的值;(2)若a =42,b =5,求角B 的大小及向量BA →在BC →方向上的投影.解 (1)由m ·n =-35,得cos(A -B )cos B -sin(A -B )sin B =-35,所以cos A =-35.因为0<A <π,所以sin A =1-cos 2A =1-⎝⎛⎭⎫-352=45. (2)由正弦定理,得a sin A =b sin B ,则sin B =b sin A a =5×4542=22, 因为a >b ,所以A >B ,且B 是△ABC 一内角,则B =π4.由余弦定理得(42)2=52+c 2-2×5c ×⎝⎛⎭⎫-35, 解得c =1,c =-7舍去,故向量BA →在BC →方向上的投影为|BA →|cos B =c cos B =1×22=22.15.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上,且OP →=mAB →+nAC →(m ,n ∈R).(1)若m =n =23,求|OP →|;(2)用x ,y 表示m -n ,并求m -n 的最大值.解 (1)∵m =n =23,AB →=(1,2),AC →=(2,1),∴OP →=23(1,2)+23(2,1)=(2,2),∴|OP →|=22+22=2 2.。

高三数学高考第一轮复习课件:平面向量


第33讲 │ 知识要点
第33讲 │ 双基固化 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第33讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 双基固化
第31讲 │ 能力提升 能力提升
第31讲 │ 能力提升
第31讲 │ 能力提升
第31讲 │ 规律总结 规律总结
第32讲 │ 解斜三角形及应用举例
第32讲 解斜三角形及应用举例
第32讲 │ 编读互动 编读互动
第32讲 │ 知识要点 知识要点
第五单元 │ 考点解读
(6)掌握平面两点间的距离公式以及线段的定比分点 和中点坐标公式,并且能熟练运用,掌握平移公式.
(7)掌握正弦定理、余弦定理,并能初步运用它们解 斜三角形.
第五单元 │ 复习策略
复习策略
1.向量具有的几何形式和代数形式的“双重身份”,使 它成为中学数学知识的一个交汇点,成为多项内容的媒介.本 单元内容为新增知识点,在近几年的考试中所占分值比例正逐 年加大,分值在16~17分,较多情况是2小1大(一选择 一填空,解答题中一部分)或1小2大(选择或填空,解答题 以向量为背景或叙述形式). 2.本单元主要命题方式及考点: (1)主要考查向量的性质和运算法则以及基本运算技 能.要求掌握和、差、数乘和向量的数量积的运算法则,理解 其直观的几何意义.
第28讲 │ 双基固化
第28讲 │ 双基固化

2019-2020年高中数学第二章平面向量第1课时2.1向量的概念及表示教案苏教版必修4

2019-2020年高中数学第二章平面向量第1课时2.1向量的概念及表示教案苏教版必修4【教学目标】一、知识与技能1.理解向量的概念,掌握向量的二要素(长度、方向),能正确地表示向量;2.注意向量的特点:可以平行移动(长度、方向确定,起点不确定);3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念。

二、过程与方法(1)从对不同问题的思考中感受什么是向量。

(2)通过师生互动、交流与学习,培养学生探求新知识的学习品质.三、情感、态度与价值观(1)通过向量包含大小和方向,概念的学习感知数学美。

(2)向量的方向包含正反两方面,正反关系的对照培养学生辨证唯物主义思维【教学重点难点】:1.向量、相等向量、共线向量等概念;2.向量的几何表示【教学过程】一、问题情境:问题1、湖面上有3个景点O,A,B,如图所示.一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B,从景点O到景点A有一个位移,从景点A到景点B也有一个位移.位移与距离这两个量有什么不同?问题2、下列物理量中,那些量分别与位移和距离这两个量类似:(1)物体在重力作用下发生位移,重力所做的功;(2)物体所受重力;(3)物体的质量为a千克;(4)1月1日的4级偏南风的风速。

问题3、上述的物理量中有什么区别吗?二、新课讲解:(一)概念辨析:(1)向量的定义:(2)向量的表示:(3)向量的大小及表示(4)零向量:(5)单位向量:(二)向量的关系:问题4:在平行四边形ABCD中,向量与,与有什么关系?(1)平行向量(2)相等向量(3)相反向量说明:(1)规定:零向量与任一向量平行,记作;(2)零向量与零向量相等,记作;(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。

问题5:1.向量能否平移?2. 要确定一个向量必须确定什么?要确定一个有向线段必须确定什么?两者有何区别?二、例题分析:例1、已知O为正六边形ABCDEF的中心,如图,所标出的向量中:(1)试找出与FE共线的向量;(2)确定与FE相等的向量;(3)OA与BC向量相等么?例2、判断:(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量? (6)两个非零向量相等的当且仅当什么? (7)共线向量一定在同一直线上吗?例3、如图,在4×5的方格纸中有一个向量AB ,分别以图中的格点为起点和终点作向量,其中与AB 相等的向量有多少个?与AB 长度相等的共线向量有多少个?(AB 除外)课时小结:(1) 向量是既有大小又有方向的量,向量有两个要素:方向和长度,称为自由向量;有向线段具有三个要素:起点,方向和长度;(2) 数量(标量)与向量的区别与联系:向量不同于数量。

2019-2020学年高一数学 平面向量的实际背景及基本概念复习学案.doc

2019-2020学年高一数学平面向量的实际背景及基本概念复习学

_____________
下列物理量:①质量;②速度;③位移;④力;⑤加速度;⑥路程;⑦密
为终点的有向线段记作
有向线段包含三个要素:
⑶有向线段也可用字母如表示.印刷品中用黑体字
反思:⑴“向量就是有向线段,有向线段就是向量”的说法对吗?
⑵为什么三要素中不包含终点?
⑶数量能比较大小吗?向量呢?向量的模呢?
)共线向量:
)相等向量:
二、典型例题
如下图,试根据图中的比例尺以及三地的位置,
两地的位移,并
分别的力和一个水平向左、

)写出与向量OA共线的向量;
OA长度相等的向量。

为正方形,则可用同一条有向线段表示的两个向量为
的长度相等;
平行的。

第2节平面向量基本定理及向量坐标运算--2025湘教版高中数学一轮复习课件(新高考新教材)

若三点共线,则向量 , 共线,所以 1×(-10)-(-5)×(x-1)=0,解得 x=3.
题组三连线高考
8.(2015·全国Ⅰ,理 7)设 D 为△ABC 所在平面内一点,C=3CD,则( A )
1
A.D=-3
C.D =
+
4

3
4
C
3
+
1
C
3
解析 ∵ =3 ,
解得
-3 =
2
×
3
2
,因为
3
A(3,1),D(-3,1),所以
(-6),
-1 = 0,
= -1,
即 G(-1,1),即△ABC 的重心坐标为(-1,1).
= 1,
考点三 向量共线的坐标表示(多考向探究预测)
考向1利用向量共线求参数
例3已知向量a=(-1,2),b=(3,λ),若a+2b与2a-b平行,则实数λ的值为( D )
c=-2a-3b=-2(1,-3)-3(-2,4)=(4,-6).
(2)(2024·浙江金华模拟)如图,将两块全等的等腰直角三角形拼在一起,若

+2C=xE+yD,则 =
3
.
(2)设等腰直角三角形的直角边长为 1,则斜边长为√2,以 AB,AC 所在直线分
别为 x 轴、y 轴建立如图所示直角坐标系,可得
C.11 a+11 b
3
6
D.11 a+11 b
解析 过点F作FN平行于BC,交BE于点M,交AB于点N.因为DF=FC,则F为DC
的中点,
所以 MN∥AE 且
1
1
3
3
MN= AE= × AD= AD,因为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年高考数学一轮复习 第2讲 平面向量、解三角形教学案
【学习目标】
(1)正弦定理、余弦定理及其应用(B 级)
(2)处理与三角形有关的三角综合问题,除正确运用好正弦定理、余弦定理、面积公式及己知的三角函数关系式外,对隐含的很多条件,如三角函数的定义、三角形的内角和、诱导公式、勾股定理,向量有关知识等等,都要综合考虑,这样才能有效的解决问题
【知识要点】
1.已知两个非零向量a 与b ,它们的夹角是θ,则有a =⋅b __________,其中夹角θ的取值范围是________,规定=⋅a 0___ _;向量的数量积的结果是一个_____ _ 2.平面向量数量积的坐标表示: 已知),,(),,(2211y x b y x a ==则=⋅b a _____ ________;记a 与b 的夹角为θ,
则=θcos _____________ __=||a ___ __ ____
3.向量的平行的充要条件:设),(11y x a =,),(22y x b =,且0≠a ,
则⇔b a // ⇔
4.两非零向量垂直的充要条件:设),,(),,(2211y x b y x a ==则⇔⊥b a _____ __
5.正弦定理: .
6.余弦定理:第一形式:=2a ,第二形式: =A cos
7.三角形的面积公式
【自主学习】
1. (必修4 P90习题19改编)已知向量a =(6,-3),b =(2,x +1),若a ⊥b ,
则实数x = .
2. (必修4 P80例5改编)已知向量a =(1,0),b =(2,1),则当k = 时,向量k a -b 与a +3b 平行.
3. (必修5 P10习题4改编)在△ABC 中,已知
b a a +=sin sin -sin B B A , 且2sin Asin B=2sin 2C ,则△ABC 的形状为
4. (必修5 P16习题1(3)改编)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a =7,b =43,c =13,则△ABC 最小的内角为 .
【课堂探究】
例1 (2015·江苏卷)在△ABC 中,已知AB=2,AC=3,角A=60°.
(1) 求BC 的长;(2) 求sin 2C 的值.
例2 在△ABC中,角A,B,C所对的边分别为a,b,c.已知
sin
2sin-sin
C
A C
=
222
222
--
--
b a c
c a b
.
(1) 求角B的大小;
(2) 设T=sin2A+sin2B+sin2C,求T的取值范围.
例3 (2015·陕西卷)在△ABC中,已知角A,B,C所对的边分别为a,b,c,向量m=(a,3b)与n=(cos A,sin B)平行.
(1) 求角A的大小;(2) 若a7b=2,求△ABC的面积.
【针对训练】
1. (2015·安徽卷)在△ABC中,已知6A=75°,B=45°,则AC= .
2. (2015·南京调研)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a+2c=2b,sin B=2sin C,则cos A= .
3. (2014·常州期末)在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,22 -
a b
c
=3,则c= . 【巩固提升】
1. 已知向量a,b满足|a|=1,|b|=2,|a-b|=2,则|a+b|=
2. (2015·苏锡常镇宿一调)如图,在平行四边形ABCD中,
E为DC的中点,AE与BD交于点M,AB=2,AD=1,
且MA·MB=-1
6
,则AB·AD= .
3. (2015·福建卷)在△ABC中,若AC=3,A=45°,C=75°,则BC= .
4.(2015·镇江期末)已知△ABC的面积为S,且AB·AC=2S.
(1) 求sin A的值;(2) 若|AB|=3,|AB-AC|=23,求sin B的值.
5. (2015·苏北四市)已知向量a=(1,2sin θ),b=
π
sin1
3
θ
⎛⎫
⎛⎫
+


⎝⎭
⎝⎭
,,θ∈R.
(1) 若a⊥b,求tan θ的值;(2) 若a∥b,且θ∈
π
2
⎛⎫

⎝⎭
,,求θ的值.。

相关文档
最新文档