复合函数的知识的总结及例的题目

合集下载

微专题 复合函数问题

微专题 复合函数问题

2
2
2
根据以上信息,作出函数f(x)的图象如图.
观察图象可得函数y=f(x)的图象与直线y=2有2个交点,所以方程f(x)=2有两个根,
所以方程f(x)=m有3个根,且异于方程f(x)=2的根,观察图象可得
1 2
<m<2,所以m的取值范围为
1 2
,
2
.
故选D.
答案 D
例4 已知函数y=f(x)和y=g(x)在[-2,2]上的图象如图所示.
x 2, x 1,
因此f(f(x))= ln(x 2), 1 x 0,
ln[ln(x 1) 1], x 0.
在平面直角坐标系内作出函数y=f(f(x))的图象,如图.
方程f(f(x))=a恰有两个不相等的实数根等价于直线y=a与函数y=f(f(x))的图象有两个不同交点,观 察图象知ln 2≤a<1, 此时x1+2=a,且ln[ln(x2+1)+1]=a,
1 2
,
1 2
单调递增,排除B;当x∈
,
1 2
时,
f(x)=ln(-2x-1)-ln(1-2x),则f
'(x)=
2 -
2x 1
2 = 4 <0,
1 2x 1 4x2
∴f(x)在
,
1 2
单调递减,∴D正确.
答案 D
例2 (多选)(2023安徽宣城二调,12)已知函数f(x)=sin(cos x)+cos(sin x),下列关于该函数的结论正 确的是( ) A. f(x)的图象关于直线x=π对称 B. f(x)的一个周期是2π
类型三:复合函数的方程(组)、不等式问题 解复合函数中的方程或不等式问题,一种思路是将f(g(x))=0分解为f(t)=0,t=g(x)处理;另一种思

高中数学复习专题五--复合函数问题

高中数学复习专题五--复合函数问题

专题五 复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A ⊇B ,则y 关于x 函数的y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二、复合函数定义域问题:题型一、已知f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D ,即x D ∈,所以f 的作用范围为D ,又f 对g x ()作用,作用范围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域。

例1. 设函数f u ()的定义域为(0,1),则函数f x (ln )的定义域为__________。

解:函数f u ()的定义域为(0,1)即u ∈()01,,所以f 的作用范围为(0,1) 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为(1,e )例2. 若函数f x x ()=+11,则函数[]f f x ()的定义域为______________。

解:先求f 的作用范围,由f x x ()=+11,知x ≠-1即f 的作用范围为{}x R x ∈≠-|1,又f 对f(x)作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 题型二、已知[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D ,即x D ∈,由此得g x E ()∈,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以x E E ∈,为f x ()的定义域。

例3. 已知f x ()32-的定义域为[]x ∈-12,,则函数f x ()的定义域为_____。

高考数学经典常考题型第12专题 复合函数零点问题

高考数学经典常考题型第12专题 复合函数零点问题

高考数学经典常考题型第12专题复合函数零点问题第12专题训练:复合函数零点问题一、基础知识:1、复合函数定义:设 $y=f(t),t=g(x)$,且函数 $g(x)$ 的值域为 $f(t)$ 的定义域的子集,那么 $y$ 通过 $t$ 的联系而得到自变量 $x$ 的函数,称 $y$ 是 $x$ 的复合函数,记为$y=f(g(x))$。

2、复合函数函数值计算的步骤:求 $y=g(f(x))$ 函数值遵循“由内到外”的顺序,一层层求出函数值。

例如:已知$f(x)=2x,g(x)=x^2-x$,计算 $g(f(2))$。

解:$f(2)=2\times 2=4$,$\therefore g(f(2))=g(4)=12$3、已知函数值求自变量的步骤:若已知函数值求 $x$ 的解,则遵循“由外到内”的顺序,一层层拆解直到求出 $x$ 的值。

例如:已知 $f(x)=2x,g(x)=x^2-2x$,若 $g(f(x))=0$,求 $x$。

解:令 $t=f(x)$,则 $g(t)=0$,$\therefore t=0$ 或 $t=2$。

当 $t=0$ 时,$f(x)=0$,XXX;当 $t=2$ 时,$f(x)=2$,$\therefore x=1$。

综上所述,$x=1$。

由上例可得,要想求出 $g(f(x))=0$ 的根,则需要先将$f(x)$ 视为整体,先求出 $f(x)$ 的值,再求对应 $x$ 的解。

这种思路也用来解决复合函数零点问题。

先回顾零点的定义:4、函数的零点:设 $f(x)$ 的定义域为 $D$,若存在 $x\in D$,使得 $f(x)=0$,则称 $x$ 是 $f(x)$ 的一个零点。

5、复合函数零点问题的特点:考虑关于 $x$ 的方程$g(f(x))=0$ 的根的个数,在解此类问题时,要分为两层来分析。

第一层是解关于 $f(x)$ 的方程,观察有几个 $f(x)$ 的值使得等式成立;第二层是结合着第一层 $f(x)$ 的值求出每一个$f(x)$ 被几个 $x$ 对应,将 $x$ 的个数汇总后即为$g(f(x))=0$ 的根的个数。

复合函数常考题型

复合函数常考题型

复合函数常考题型复合函数常考的题型有: (1)求解定义域问题 (已知的定义域,求的定义域;已知的定义域,求的定义域;已知的定义域,求的定义域)遵循等位等效性原则。

(2)判定函数单调性问题:已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数 )(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增 函数.遵循同增异减原则。

一、复合函数定义域问题: (1)、已知的定义域,求的定义域例1. 设函数的定义域为(0,1),则函数的定义域为_____________。

解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f 对lnx 作用,作用范围不变,所以解得,故函数的定义域为(1,e )例2. 若函数,则函数的定义域为______________。

答案:(2)、已知的定义域,求的定义域 思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作用,作用范围不变,所以为的定义域。

例3. 已知的定义域为,则函数的定义域为_________。

解析:的定义域为,即,由此得所以f 的作用范围为,又f 对x 作用,作用范围不变,所以即函数的定义域为例4. 已知,则函数的定义域为______________。

答案:(3)、已知的定义域,求的定义域思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对作用,作用范围不变,所以,解得,F 为的定义域。

例5. 若函数的定义域为,则的定义域为____________。

解析:的定义域为,即,由此得的作用范围为又f 对作用,所以,解得即的定义域为。

二、复合函数单调性问题已知函数))((x g f y =.若)(x g u =在区间b a ,( )上是减函数,其值域为(c ,d),又函数)(u f y =在区间(c,d)上是减函数,那么,原复合函数))((x g f y =在区间b a ,( )上是增函数.例、证明:在区间b a ,()内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,()上是减函数,所以)()(21x g x g >,记)(11x g u =, )(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间(c,d)上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <,故函数))((x g f y =在区间b a ,()上是增函数.复合函数的单调性是由两个函数共同决定 “同向得增,异向得减”或“同增异减”. 复合函数))((x g f y =的单调性判断例1、 求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域 130322-<>⇒>--x x x x 或单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 则)32(log 121211--=x x y )32(l o g 222212--=x x y---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x∴)32(121--x x >)32(222--x x 又底数1210<<∴012<-y y 即 12y y <∴y 在),3(+∞上是减函数 同理可证:y 在)1,(--∞例2、讨论函数)123(log )(2--=x x x f a 的单调性.[解]由01232>--x x 得函数的定义域为}.31,1|{-<>x x x 或 则当1>a 时,若1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数.若31-<x ,∵1232--=x x u 为减函数.∴)123(log )(2--=x x x f a 为减函数。

2023年复合函数知识点总结例题分类讲解

2023年复合函数知识点总结例题分类讲解

复合函数旳定义域和解析式以及单调性【复合函数有关知识】1、复合函数旳定义假如y 是u 旳函数,u 又是x 旳函数,即()y f u =,()u g x =,那么y 有关x 旳 函数(())y f g x =叫做函数()y f u =(外函数)和()u g x =(内函数)旳复合函数,其中u 是中间变量,自变量为x 函数值为y 。

例如:函数212x y += 是由2u y =和21u x =+ 复合而成立。

阐明:⑴复合函数旳定义域,就是复合函数(())y f g x =中x 旳取值范围。

⑵x 称为直接变量,u 称为中间变量,u 旳取值范围即为()g x 旳值域。

⑶))((x g f 与))((x f g 表达不一样旳复合函数。

2.求有关复合函数旳定义域① 已知)(x f 旳定义域为)(b a ,,求))((x g f 旳定义域旳措施:已知)(x f 旳定义域为)(b a ,,求))((x g f 旳定义域。

实际上是已知中间变量旳u 旳取值范围,即)(b a u ,∈,)()(b a x g ,∈。

通过解不等式b x g a <<)(求得x 旳范围,即为))((x g f 旳定义域。

② 已知))((x g f 旳定义域为)(b a ,,求)(x f 旳定义域旳措施:若已知))((x g f 旳定义域为)(b a ,,求)(x f 旳定义域。

实际上是已知直接变量x 旳取值范围,即)(b a x ,∈。

先运用b x a <<求得)(x g 旳范围,则)(x g 旳范围即是)(x f 旳定义域。

3.求有关复合函数旳解析式①已知)(x f 求复合函数)]([x g f 旳解析式,直接把)(x f 中旳x 换成)(x g 即可。

②已知)]([x g f 求)(x f 旳常用措施有:配凑法和换元法。

配凑法:就是在)]([x g f 中把有关变量x 旳体现式先凑成)(x g 整体旳体现式,再直接把)(x g 换成x 而得)(x f 。

(完整word)复合函数知识总结及例题,推荐文档

(完整word)复合函数知识总结及例题,推荐文档

复合函数问题一、复合函数定义: 设y=f(u)的定义域为A ,u=g(x)的值域为B ,若A B ,则y 关于x 函数的⊇y=f [g(x)]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:(1)、已知的定义域,求的定义域f x ()[]fg x ()思路:设函数的定义域为D ,即,所以的作用范围为D ,又f 对作用,作用范f x ()x D ∈f g x ()围不变,所以,解得,E 为的定义域。

D x g ∈)(xE ∈[]f g x ()例1. 设函数的定义域为(0,1),则函数的定义域为_____________。

f u ()f x (ln )解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)f u ()u ∈()01,f 又f 对lnx 作用,作用范围不变,所以01<<ln x 解得,故函数的定义域为(1,e )x e ∈()1,f x (ln )例2. 若函数,则函数的定义域为______________。

f x x ()=+11[]f f x ()解析:先求f 的作用范围,由,知f x x ()=+11x ≠-1即f 的作用范围为,又f 对f(x)作用所以,即中x{}x R x ∈≠-|1f x R f x ()()∈≠-且1[]f f x ()应满足即,解得x f x ≠-≠-⎧⎨⎩11()x x ≠-+≠-⎧⎨⎪⎩⎪1111x x ≠-≠-12且故函数的定义域为[]f f x (){}x R x x ∈≠-≠-|12且(2)、已知的定义域,求的定义域[]f g x ()f x ()思路:设的定义域为D ,即,由此得,所以f 的作用范围为E ,又f 对x 作[]f g x ()x D ∈g x E ()∈用,作用范围不变,所以为的定义域。

x E E ∈,f x ()例3. 已知的定义域为,则函数的定义域为_________。

f x ()32-[]x ∈-12,f x ()解析:的定义域为,即,由此得f x ()32-[]-12,[]x ∈-12,[]3215-∈-x ,所以f 的作用范围为,又f 对x 作用,作用范围不变,所以[]-15,[]x ∈-15,即函数的定义域为例4. 已知,则函数的定义域为-------f x ()[]-15,f x x x ()lg 22248-=-f x ()解析:先求f 的作用范围,由,知f x x x ()lg 22248-=-x x 2280->解得,f 的作用范围为,又f 对x 作用,作用范围不变,所以,x 244->()4,+∞x ∈+∞()4,即的定义域为f x ()()4,+∞(3)、已知的定义域,求的定义域[]f g x ()[]f h x ()思路:设的定义域为D ,即,由此得,的作用范围为E ,又f 对[]f g x ()x D ∈g x E ()∈f 作用,作用范围不变,所以,解得,F 为的定义域。

复合函数应用题

复合函数应用题

复合函数应用题在复合函数应用题中,我们需要考虑如何有效地运用函数的复合性质来解决问题。

复合函数是指一个函数的输入值是另一个函数的输出值,通过组合这两个函数可以得到一个新的函数。

在实际问题中,我们经常会遇到需要使用复合函数的情况,下面将通过几个例子来说明如何应用复合函数解决实际问题。

例题一:某人每个月工资为1000元,每个月的花销为其工资的30%,每年的收入为工资-花销。

求该人一年能存下多少钱?解:我们可以将该问题建立成一个复合函数的问题。

设x为月工资,则花销函数为f(x)=0.3x,收入为g(x)=x-f(x)。

将这两个函数进行复合得到h(x)=g(f(x))=(1-0.3)x=0.7x。

因此,该人一年能存下的钱为0.7*1000*12=8400元。

例题二:某商品原价为200元,商家打7折促销,顾客拿到一张优惠券再减20元,求顾客最终需要支付的金额。

解:同样,我们可以构建一个复合函数来解决这个问题。

设原价为x元,则折扣价为f(x)=0.7x,优惠券减价为g(x)=x-20。

最终顾客需要支付的金额为h(x)=g(f(x))=0.7x-20。

代入x=200,得到顾客最终需要支付的金额为0.7*200-20=140元。

通过以上例题,我们可以看出复合函数在实际问题中的应用是十分灵活多样的。

只要我们能够准确地建立函数之间的关系,并灵活运用复合函数的性质,就能够轻松解决各种复杂的应用题。

复合函数不仅可以帮助我们简化问题,还可以提高问题的解决效率,是数学中一个非常重要且有用的概念。

希望通过这些实例,大家能够更好地掌握复合函数的应用技巧,提升解题能力。

微专题27常见复合函数及其性质7种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题27常见复合函数及其性质7种常考题型总结(解析版)-人教A版2019必修第一册高一数学习题

微专题27 常见复合函数及其性质7种常考题型总结题型1 判断复合函数的单调性题型2 已知复合函数的单调性求参数题型3 求复合函数的值域或最值题型4 根据复合函数的值域或最值求参题型5 复合函数的奇偶性及应用题型6 与复合函数有关的不等式问题题型7 复合函数性质的综合应用1.复合函数定义:两个或两个以上的基本初等函数经过嵌套式复合成一个函数叫做复合函数。

复合函数形式:()[]x g f y =,令:()x g t =,则()()x g f y =转化为()()x g t t f y ==,其中t 叫作中间变量.()x g 叫作内层函数,()t f y =叫作外层函数.2.求复合函数单调性的步骤:①确定函数的定义域②将复合函数分解成两个基本函数 ()[]x g f y = 分解成()()x g t t f y ==,③分别确定这两个函数在定义域的单调性④再利用复合函数的”同增异减”来确定复合函数的单调性。

))((x g f y =在),(b a 上的单调性如下表所示,简记为“同增异减”)(x g t =)(t f y =))((x g f y =增增增增减减减增减3.指数型复合函数值域的求法(1)形如()=xy f a (0>a ,且1¹a )的函数求值域:令=xa t ,将求原函数的值域转化为求()f t 的值域,但要注意“新元t ”的范围.(2)形如()=f x y a(0>a ,且1¹a )的函数求值域:令()=f x m ,先求出()=f x m 的值域,再利用=y am的单调性求出()=f x y a的值域.4.对数型复合函数值域的求法(1)形如(log )=a y f x (0>a ,且1¹a )的函数求值域:令log =a x t ,先求出log =a x t 的值域M ,再利用()=y f t 在M 上的单调性,再求出()=y f t 的值域.(2)形如()log =a y f x (0>a ,且1¹a )的函数的值域:令()=f x m ,先求出()=f x m 的值域,再利用log =ay m 的单调性求出()log =a y f x 的值域.题型1 判断复合函数的单调性【例1】函数()122(23)f x x x -=-++的单调递减区间为( )A .[]1,1-B .(],1-¥C .(]1,1-D .()1,3【答案】C【分析】令223t x x =-++,12u t -=,利用复合函数的单调性求解.【详解】解:由2230x x -++>,得2230x x --<,即()()130x x +-<,解得13x -<<,所以()f x 的定义域为{}|13x x -<<,令223t x x =-++,在(]1,1-上递增,在[1,3)上递减,又12u t -=,在()0,¥+上递减,所以()f x 在(]1,1-上递减,所以函数()f x 的单调递减区间为(]1,1-,故选:C【变式1】函数y =的单调递增区间是 .【答案】(),5-¥-【分析】先求出函数的定义域,在定义域内,根据二次函数、幂函数及复合函数的单调性即可求出该函数的增区间.【详解】由2450x x +->得5x <-或1x >,∴函数y =的定义域为()(),51,¥¥--È+.∵函数245y x x =+-在(),5-¥-上单调递减,在()1,+¥上单调递增,又∵函数y =在其定义域()0,¥+上单调递减,∴函数y =在(),5-¥-上单调递增,在()1,+¥上单调递减.故答案为:(),5-¥-.【变式2】已知函数24()2x x f x -=,则函数()f x 的递增区间为( )A .(4,)+¥B .(,0)-¥C .(,2)-¥D .(2,)+¥【答案】D【解析】令24u x x =-,则函数()u x 在(),2-¥上单调递减,在()2,+¥单调递增,而函数2u y =在R 上单调递增,所以函数()f x 在(),2-¥上单调递减,在()2,+¥单调递增.故选:D【变式3】函数21181722x xy æöæö=-×+ç÷ç÷èøèø的单调递增区间为.【答案】[)2,-+¥【解析】设12xt æö=ç÷èø,则()2281741y t t t =-+=-+,对称轴为4t =,当4t ≥,即142xæö≥ç÷èø,即2x -≥,即2x £-时,12xt æö=ç÷èø为减函数,函数()241y t =-+为增函数,则21181722x xy æöæö=-×+ç÷ç÷èøèø为减函数,即函数单调减区间为(],2-¥-;当4t £,即142xæö£ç÷èø,即2x -£,即2x ≥-时,12xt æö=ç÷èø为减函数,函数()241y t =-+为减函数,则21181722xxy æöæö=-×+ç÷ç÷èøèø为增函数,即函数单调增区间为[)2,-+¥.故答案为:[)2,-+¥【变式4】函数()()2lg 4f x x =-的单调递增区间为( )A .()0,¥+B .(),0¥-C .()2,+¥D .(),2-¥-【答案】C【分析】求出函数的定义域,由复合函数单调性求出答案.【详解】函数()f x 的定义域为()(),22,¥¥--È+.令24t x =-,其中t 在(),2-¥-上单调递减,在()2,+¥上单调递增.()lg f t t =Q 为单调递增函数,()f x \的单调递增区间为()2,+¥.故选:C【变式5】函数()2ln 56y x x =+-的单调递增区间为( )A .(,6)-¥-B .52æö-¥-ç÷èø,C .5,2æö-+¥ç÷èøD .(1,)+¥【答案】D【解析】由不等式2560x x +->,即(1)(6)0x x -+>,解得6x <-或1x >,又由函数256y x x =+-在(,6)-¥-单调递减,在(1,)+¥单调递增,因为ln y x =在定义域上为单调递增函数,结合复合函数单调性的判定方法,可得函数()2ln 56y x x =+-的单调递增区间为(1,)+¥.故选:D.【变式6】若()()2log 1f x x =-在区间M 上单调递增,则M 可以是( )A .(),2-¥-B .()2,1--C .()1,0-D .()0,1【答案】D【分析】根据复合函数的单调性可知函数2log (1)y x =-在(,1)-¥上单调递减,且过原点(0,0),进而得2()log (1)f x x =-在(0,1)上单调递增,即可求解.【详解】函数1y x =-在R 上单调递减,函数2log y x =在(0,)+¥上单调递增,又函数()f x 的定义域为(,1)-¥,所以函数2log (1)y x =-在(,1)-¥上单调递减,且过原点(0,0),所以函数2()log (1)f x x =-在(,0)-¥上单调递减,在(0,1)上单调递增.故选:D.【变式7】已知函数()112æ=ç÷èøf x ,则()f x 的单调递增区间为,值域为 .【答案】(,0]-¥(0,2]【分析】根据同增异减法则求出函数的单调区间;通过指数函数的单调性求出函数值域.【详解】令220x x ≥-,解得2x ≥或0x £,∴()f x 的定义域为(][),02,¥+¥U -,令1t =,则其在(,0]-¥上递减,在[2,)+¥上递增,又12ty æö=ç÷èø为减函数,故()f x 的增区间为(,0]-¥.∵11t ≥-,∴(]10,22tæöÎç÷èø,故()f x 的值域为(0,2].故答案为:(,0]-¥,(0,2].题型2 已知复合函数的单调性求参数【例2】函数()2232x ax f x --=在[)1,+¥上单调递增,则实数a 的取值范围是.【答案】(],1-¥【解析】设223u x ax =--,函数()2232xax f x --=在[)1,+¥上单调递增,函数2u y =在R 单调递增,故223u x ax =--在[)1,+¥上单调递增,故1a £.故答案为:(],1-¥.【变式1】已知函数()22321x x y a -+=-在区间[)1,+¥上是增函数,则a 的取值范围是( )A .()(),11,-¥-È+¥B .()1,1-C .()1,+¥D.(),-¥+¥U【答案】D【解析】由题意知函数()22321x x y a -+=-由22(1),23t y a t x x =-=-+复合而成,223t x x =-+在[)1,+¥上为增函数,由复合函数的同增异减性,可知2(1)t y a =-需为R 上的增函数,故211a ->,∴22a >,∴a >或a < D.【变式2】设0a >,函数()22()log f x ax x =-在区间(1,)+¥上单调递增,则实数a 的取值范围是( )A .01a <£B .102a <£C .1a ≥D .12a ≥【答案】C【分析】根据复合函数的单调性,列出关于a 的不等式,求解即可.【详解】因为函数()22()log f x ax x =-在区间(1,)+¥上单调递增,所以2y ax x =-在区间(1,)+¥上单调递增,且20ax x ->在(1,)x Î+¥上恒成立,所以011210a a a >ìïï£íï-≥ïî,解得1a ≥.故选:C【变式3】已知函数()2()lg 1f x x ax =-+-在[2,3)上单调递减,则实数a 的取值范围是( )A .(,4]-¥B .[6,)+¥C .10,43éùêúëûD .10,43æùçúèû【答案】C【解析】令2()1t x x ax =-+-,因为lg y t =为增函数,函数()2()lg 1f x x ax =-+-在[2,3)上单调递减,所以2()1t x x ax =-+-在[2,3)上单调递减,且(3)0t ≥,所以229310aa ì£ïíï-+-≥î,解得1043a ££,故选:C【变式4】若函数()()212log 65f x x x =-+-在区间()32,2m m -+内单调递增,则实数m 的取值范围为( )A .5,3éö+¥÷êëøB .5,33éùêúëûC .5,23éùêúëûD .5,23éö÷êëø【答案】D【解析】由已知得2650x x -+->,解之得()1,5x Î,即()f x 的定义域为()1,5,又()f x 在区间()32,2m m -+内单调递增,根据复合函数的单调性,可得:3233225m m m -≥ìí-<+£î,解得523m £<.故选:D【变式5】已知()21log 3af x x ax a=--(0a >且1a ¹)在区间(),1-¥-上为减函数,则实数a 的取值范围是( )A .(]1,2B .10,2æùçúèûC .1,12éö÷êëøD .[)2,+¥【答案】B【分析】依题意可得()()2log 3a f x x ax a =---,即可得到()2log 3a y x ax a =--在区间(),1-¥-上为增函数,结合二次函数及对数函数的性质计算可得.【详解】函数()()221log log 33a a f x x ax a x ax a==-----,因为()21log 3af x x ax a=--(0a >且1a ¹)在区间(),1-¥-上为减函数,则()2log 3a y x ax a =--在区间(),1-¥-上为增函数,所以23y x ax a =--在区间(),1-¥-上单调递减,且大于(等于)0恒成立,log a y x =为减函数,所以()20112130a aa a ì<<ïï≥-íïï-+-≥î,解得102a <£,即实数a 的取值范围是10,2æùçúèû.故选:B【变式6】已知函数21,01()2,12x ax ax a x f x x -+-££ìï=í<£ïî,若12,[0,2]x x "Î,12x x ¹,都有()()21210f x f x x x ->-成立,则a 的取值范围为( )A .(0,2]B .(,1]-¥C .(0,1]D .(0,)+¥【答案】C【分析】由题意,函数()f x 是增函数,利用分段函数单调递增的条件,列不等式求a 的取值范围.【详解】因为对于12,[0,2]x x "Î,12x x ¹,都有()()21210f x f x x x ->-成立,所以函数()f x 是增函数,则函数()101y ax a x =+-££和()2212x axy x -=<£均为增函数,且有112a -£,即10,1,221,a a a ->ìïï£íï≥ïî解得01a <£.故选:C .题型3 求复合函数的值域或最值【例3】函数2222x x y -+=,[]1,2x Î-的值域是( )A .RB .[]4,32C .[]2,32D .[)2,+¥【答案】C【分析】根据二次函数的性质求出指数的范围,再根据指数函数的性质即可得解.【详解】函数2222xx y -+=,是由2t y =和222t x x =-+,[]1,2x Î-复合而成,因为()222211t x x x -+==-+对称轴为1x =,开口向上,所以222t x x =-+在[)1,1-单调递减,在[]1,2单调递增,所以=1x -时,()()2max 12125t =--´-+=,1x =时,min 12121t =-´+=,所以15t ££,因为2t y =在R 上单调递增,所以15222232t y =£=£=,所以函数2222x x y -+=,[]1,2x Î-的值域是[]2,32.故选:C.【变式1】函数()()22log 22f x x x =++的值域为( )A .(),1-¥B .[)0,¥+C .[)0,1D .(],0-¥【答案】B【解析】函数()()22log 22f x x x =++的定义域为R ,令222t x x =++,则()2111t x =++≥,又2log y x =在[)1,+¥上单调递增,则22log log 10t ≥=,则函数()()22log 22f x x x =++的值域为[)0,¥+故选:B【变式2】函数()1422x x f x +=-+ 在11x -££时的值域是.【答案】[]1,2【解析】当11x -££时,1222x ££,函数22()(2)222(21)1x x x f x =-×+=-+,显然当21x =,即0x =时,min ()1f x =,当22x =,即1x =时,max ()2f x =,所以所求值域是[]1,2.故答案为:[]1,2【变式3】函数()()()22log 2log 4f x x x =×的值域为( )A .RB .1,24éö-+¥÷êëøC .1,4éö-+¥÷êëøD .3,2éö-+¥÷êëø【答案】C【分析】()()()221log 2log x x f x =++,设2log x t =,23124y t æö=+-ç÷èø,计算得到答案.【详解】()()()()()2222log 2log 41log 2log f x x x x x =×=++,设2log x t =,则()()223111232244y t t t t t æö=++=++=+-≥-ç÷èø,故函数的值域为1,4éö-+¥÷êëø.【变式4】已知函数()2m f x x-=,且()()415216f f -=.(1)求()f x 的解析式;(2)求函数()()2243g x f x x =-+在[]1,2-上的值域.【答案】(1)()4f x x=(2)11,2434éùêúëû【分析】(1)由题目条件代入即可求得2216m -=,从而求出24m -=,即可求出()f x 的解析式.(2)由(1)可知,()221111684g x x æö=-+ç÷èø,由二次函数求值域即可求出函数()g x 在[]1,2-上的值域.【详解】(1)因为()()415216f f -=,所以224152160m m ---´-=,整理得()()22216210m m ---+=,即2216m -=或221m -=-(舍去),则24m -=,故()4f x x =.(2)由(1)可知,()()2242222111164316431684g x x x xx x æö=-+=-+=-+ç÷èø.因为[]1,2x Î-,所以,[]20,4x Î,所以221111116,243844x æöéù-+Îç÷êúèøëû.故()g x 在[]1,2-上的值域为11,2434éùêúëû.题型4 根据复合函数的值域或最值求参【例4】已知4323x x y =-×+的值域为[]1,7,则x 的取值范围可以为( )A .[]2,4B .(),0¥-C .()[]0,12,4U D .(][],01,2¥-È【答案】D【分析】令2x t =,根据值域解不等式组可得t 的范围,然后解指数不等式可得.【详解】令2x t =,则233y t t =-+,由题知,22331337t t t t ì-+≥í-+£î,解得11t -££或24t ££,即121x -££或224x ££,解得0x £或12x ££.故选:D【变式1】已知函数()121x f x -=-在区间[]0,m 上的值域为[]0,3,则实数m 的值为.【答案】3【分析】根据图象的变换得到函数()121x f x -=-,然后根据函数图象求m 即可.【详解】作出函数()121x f x -=-的图象如图,函数()121x f x -=-在[]0,1上单减,在[)1,+¥上为增函数,又()01f =,()10f =,()33f =,\若函数()121x f x -=-在区间[]0,m 上的值域为[]0,3,则实数3m =.故答案为:3.【变式2】已知函数()log 4a af x x xæö=+-ç÷èø在(0,)+¥上的值域为R ,则实数a 的取值范围是( )A .()4,+¥B .(],4¥-C .(]0,4D .()(]0,11,4È【答案】D【解析】设()4ag x x x=+-,因为()log 4a a f x x x æö=+-ç÷èø的值域为R ,所以()min 0g x £,又0,1a a >¹,,()0x Î+¥,所以444a x x +-≥=-,即()min 40g x =£,解得:04a <£且1a ¹,所以实数a 的取值范围是()(]0,11,4È.故选:D.【变式3】若函数()()2log 23a f x x x =--+(0a >且1a ¹)的最小值为-4,则实数a 的值为 .【分析】结合复合函数的单调性、最值以及二次函数的性质即可求出.【详解】由题意知,2230x x --+>,解得31x -<<,因为()()()22log 23log 14a a f x x x x éù=--+=-++ëû,因为()3,1x Î-,则()20144x <-++£,又因为()f x 的最小值为-4,则01a <<,所以()2log 14log 4a a x éù-++≥ëû,即()min log 44a f x ==-,得44a -=,因为01a <<,所以a =.【变式4】已知函数()()()()log 3log 301a a f x x x a =-++<<.(1)求函数()f x 的定义域;(2)若函数()f x 的最小值为2-,求a 的值.【答案】(1)()3,3-(2)13【分析】(1)利用对数的真数大于零可得出关于实数x 的不等式组,即可解得函数()f x 的定义域;(2)求得()()2log 9a f x x =-,求出29x -的取值范围,利用对数函数的最值可得出关于实数a 的等式,结合01a <<可求得实数a 的值.【详解】(1)解:对于函数()()()()log 3log 301a a f x x x a =-++<<,有3030x x ->ìí+>î,解得33x -<<,因此,函数()f x 的定义域为()3,3-.(2)解:因为()()2log 9a f x x =-,且33x -<<,则2099x <-£,因为01a <<,则函数log a y u =为()0,¥+上的减函数,故()min log 92a f x ==-,可得29a -=,01a <<Q ,解得13a =.【变式5】已知函数()()()log 21log 82(0x xa a f x a =-+->且1)a ¹.(1)求函数()f x 的定义域;(2)是否存在实数a ,使得函数()f x 在区间[]1,2上的最大值为2?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)()0,3;(2)存在实数a =时,使得函数()f x 在区间[]1,2上的最大值为2.【分析】(1)由题意210820x xì->í->î解出x 即可;(2)利用换元法以及对数函数性质分析即可.【详解】(1)依题意210820x xì->í->î,即128x <<,所以03222,x <<即03x <<,所以函数()f x 的定义域为()0,3.(2)()()()()()log 21log 82log 2182x x x xa a a f x éù=-+-=--ëû,令()()()2,18xt g t t t ==--,则()()log a f x g t =,][1,22,4x t éùÎ\ÎëûQ .易知二次函数()g t 的图像开口向下,对称轴为直线18922t +==,所以函数()g t 在[]2,4上单调递增,所以()()min max ()26,()412g t g g t g ====.假设存在满足题意的实数a ,当1a >时,函数log a y x =单调递增,max ()log 122a f x \==,解得a =或a =-(舍去),当01a <<时,函数log a y x =单调递减,max ()log 62a f x \==,解得a =综上,存在实数a =时,使得函数()f x 在区间[]1,2上的最大值为2.【变式6】已知函数()()()25112a x a x f x --+-=的值域为()0,¥+,()()23log 85g x x x b =-+的值域为[)2,+¥,则a b -=( )A .0B .1C .3D .5【答案】A【解析】因为函数2(5)(1)1()2a xa x f x --+-=的值域为(0,)+¥,所以函数2(5)(1)1y a x a x =--+-的值域为R ,所以50a -=,解得5a =,因为23()log (85)g x x x b =-+的值域为[2,)¥+,所以()22854516y x x b x b =-+=-+-的最小值为9,所以5169b -=,解得5b =,所以0a b -=.故选:A .题型5 复合函数的奇偶性及应用【例5】已知3()31xx f x a =+-是奇函数,则=a ( )A .12-B .12C .1-D .1【答案】A【解析】由函数3()31x x f x a =+-,可得31()3131x x x f x a a ---=+=-+--,因为()f x 是奇函数,所以()()0f x f x +-=,即3103131x x x a a +-+=--,解得12a =-.故选:A.【变式1】函数lnx ay x a-=+(a 为常数)的奇偶性为( )A .奇函数B .偶函数C .非奇非偶函数D .都不是【答案】A【解析】根据题意,设()lnx af x x a-=+,其定义域为{}x x a ¹±,()()lnln x a x af x f x x a x a--+-===--+-所以函数f (x )为奇函数,故选:A .【变式2】已知函数()222e ex x f x -+=+,则( )A .()1f x +为奇函数B .12f x æö+ç÷èø为偶函数C .()1f x -为奇函数D .12f x æö-ç÷èø为偶函数【答案】B【分析】方法一:可得()()1f x f x -=,即可得到函数()f x 关于12x =对称,从而得到12f x æö+ç÷èø为偶函数;方法二:求出12f x æö+ç÷èø的解析式,即可判断.【详解】方法一:因为()222e e x x f x -+=+,所以()()2221ee xx f x f x --=+=,所以函数()f x 关于12x =对称,将()f x 的函数图象向左平移12个单位,关于y 轴对称,即12f x æö+ç÷èø为偶函数.方法二:因为()2121221ee e e e 2x x x xf x +-+-æö+=+=+ç÷èø,x ÎR ,则()2211e e e22x xf x f x -æöæö-+=+=+ç÷ç÷èøèø,所以12f x æö+ç÷èø为偶函数;又()2221ee x xf x +-+=+,故()022111e e e f ==++-+,()422411e e e 1e f -=+++=,所以()()1111f f -+¹+,()()1111f f -+¹-+,故()1f x +为非奇非偶函数;又()22241ee x xf x --+-=+,故()466411e ee 1e f -=-=+-+,()022111e e e f ==+-+,所以()()1111f f --¹-,()()1111f f --¹--,故()1f x -为非奇非偶函数;又21231e e 2x x f x --+æö-=+ç÷èø,故533511e 1e e 2e f -æö--=+=+ç÷èø,11e e 2e 2f æö-=+÷è=çø,所以111122f f æöæö--¹-ç÷ç÷èøèø,111122f f æöæö--¹--ç÷ç÷èøèø,故12f x æö-ç÷èø为非奇非偶函数.故选:B题型6 与复合函数有关的不等式问题A .1,1010æöç÷èøB .()1,10C .()1,11,1010æöç÷èøU D .()10,10,10¥æöÈ+ç÷èø【答案】D【分析】先得到函数定义域和奇偶性,由复合函数单调性得到()21log 1f x x æö=++ç÷èø(0)+¥,上单调递减,结合(1)3f =,从而得到|lg |1x >,求出解集.【详解】()f x 的定义域为(0)(0)-¥+¥U ,,,又()()2211log 1log 1f x f x x x æöæö-=+=++=ç÷ç÷ç÷ç÷-èøèø,故()f x 为偶函数,当0x >时,()21log 1f x x æö=++ç÷èø因为11t x =+,213u x=+在()0,¥+上单调递减,又()()2,log t h u g t ==在()0,¥+上单调递增,根据复合函数单调性可知,()21log 1f x x æö=++ç÷èø(0)+¥,上单调递减;又2(1)log 223f =+=,(lg )3f x <可化为(lg )(1)f x f <,即(|lg |)(1)f x f <,得|lg |1x >,即lg 1x >或lg 1x <-,解得10(10)10æö+¥ç÷èøU ,,.故选:D.【变式1】已知定义域为R 的函数()22x x f x -=-,则满足条件()()22100f t t f t ++->的实数t 的取值范围是 .【答案】2t >或5t <-.【分析】首先判断函数的奇偶性和单调性,再变形不等式,即可求解.【详解】()()22x xf x f x --=-=-,所以函数为奇函数,且()22x xf x -=-为单调递增函数,所以不等式()()()()222100102f t t f t f t t f t ++->Û+>-,则2102t t t +>-,即23100t t +->,解得:2t >或5t <-.故答案为:2t >或5t <-【变式2】若函数()32e 1xf x x =-+,则()()()()()21012f f f f f -+-+++的值为 .;不等式()()212f x f x +->-的解集为 .【答案】5-1,3æö+¥ç÷èø【分析】根据函数的解析式,由()()2f x f x +-=-求得()()()()()21012f f f f f -+-+++的值,根据函数的单调性化简不等式()()212f x f x +->-,从而求得不等式的解集.【详解】∵()()()33222e 1e 1x x f x f x x x -+-=-+--=-++且()01f =-,∴()()()()()210125f f f f f -+-+++=-;又不等式()()212f x f x +->-可化为:()()()()21f x f x f x f x +->+-,即()()21f x f x ->-,且由基本初等函数知()f x 在R 上单调递增,∴()()21f x f x ->-,即21x x ->-,∴13x >.故答案为:5-;1,3æö+¥ç÷èø【变式3】函数()lg(931)x x f x a =×+-.(1)如果()0,1x Î时,()f x 有意义,求实数a 的取值范围;(2)当0a £时,()f x 值域为R ,求实数a 的值;(3)在(2)条件下,()()101f x g x =+.解关于x 的不等式()22(2)g x tx t g x +-≥.【答案】(1)[)0,¥+(2)0(3)答案见解析【分析】(1)变换1193x x a æöæö>-ç÷ç÷èøèø,令13xu æö=ç÷èø,计算最值得到答案.(2)令()931x xh x a =×+-,()h x 的值域包含()0,¥+,考虑0a =和a<0两种情况,计算得到答案.(3)确定()3x g x =,函数单调递增,得到2220x tx t x +-≥>,考虑2t <-,2t =-,02t >>-,0t ≥几种情况,解得答案.【详解】(1)()0,1x Î,9310xxa ×+->,即1193x xa æöæö>-ç÷ç÷èøèø,令13xu æö=ç÷èø,113u <<,则2a u u >-恒成立,221124u u u æö-=--ç÷èø,()2max110u u-<-=,故0a ≥,a 的取值范围为[)0,¥+.(2)令()931x xh x a =×+-,()h x 的值域包含()0,¥+,①0a =时,()31xh x =-,其值域为()1,-+¥,满足条件;②a<0时,()931xxh x a =×+-,令3x t =,0t >,22111124y at t a t a a æö=+-=+--ç÷èø,函数为开口向下的抛物线,()h x 的值域为1,14a æö-¥--ç÷èø,不满足条件;综上所述:0a =.(3)()lg(31)x f x =-,定义域为()0,¥+,()()1013f x x g x =+=,函数单调递增,2(2)(2)g x tx t g x +-≥,即2220x tx t x +-≥>,即()()()22220x t x t x x t +--=-+≥,且0x >,①当2t <-时,解集为{02x x <£或}x t >-;②当2t =-时,解集为{}0x x >;③当02t >>-时,解集为{0x x t <£-或}2x ≥;④当0t ≥时,解集为{}2x x ≥;【变式4】已知函数 ()221x xaf x -+=+是定义域为R 的奇函数.(1)求()f x 并判断 ()f x 的单调性;(2)解关于 x 的不等式()()()()22log 2log 20f x f x ++->.【答案】(1)21()21x x f x -+=+,()f x 在R 上单调递减;(2).【解析】(1)由题意1(0)011af -+==+,1a =,此时21()21x x f x -+=+,2112()()2112x xx xf x f x ---+-+-===-++,()f x 是奇函数,设任意两个实数12,x x 满足12x x <,则122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以2122x x >,所以21220x x ->,又12120,120x x +>+>,所以12())0(f x f x ->,即12()()f x f x >,所以()f x 在R 上单调递减;(2)因为()f x 是奇函数,因此原不等式化为()()()()22log 2log 2f x f x +>--,又()f x 在R 上单调递减,所以不等式化为22log (2)log (2)x x +<--,即22log (4)0x -<,所以2041x <-<,又20,20x x ->+>,故解得2x <<所以原不等式的解集为.题型7 复合函数性质的综合应用数()f x 图像有5个交点,其横坐标从左到右依次为1x ,2x ,3x ,4x ,5x ,则51i i x ==å( ).A .0B .5C .6D .10【答案】B 【分析】由题意可得,函数()g x 与函数()f x 的图像都关于点()1,0对称,有152x x +=,242x x +=,31x =,可求和.【详解】∵()1f x +为奇函数,函数图像关于原点对称,且()1f x +是由()f x 向左平移1个单位长度得到,∴()f x 的图像关于点()1,0对称,对于函数())ln =h x x ,定义域为R ,有()()))ln ln ln10h x h x x x -+=+==,∴函数()h x 为奇函数,其图像关于原点对称,∴函数()()()1ln 1g x h x x ù=-=-úû的图像关于点()1,0对称,∴152x x +=,242x x +=,31x =,∴515i i x ==å.故选:B .【变式1】【多选】已知函数()f x 的定义域为R ,()2f x +为偶函数,()1f x +为奇函数,则下列结论一定成立的是( )A .()10f =B .()30f =C .()20f =D .()00f =【答案】AB【分析】由条件判断函数的对称性,即可判断选项.【详解】由条件可知,()()22f x f x -=+,函数关于2x =对称,()()11f x f x -+=-+,所以函数关于点()10,对称,因为函数的定义域为R ,所以()10f =,因为函数关于直线2x =对称,所以()30f =,所以AB 正确.故选:AB【变式2】【多选】已知函数()f x 的定义域为R ,()1f x +为奇函数,()f x 为偶函数,当[]0,1x Î时,()21f x x =-+,则以下结论正确的有( )A .点()1,0-不是()f x 的图象的对称中心B .x "ÎR ,()()4f x f x +=C .当[]5,7x Î时,()21235f x x x =-+D .91053f æö=ç÷èø【答案】BCD【分析】利用函数对称性和奇偶性可得出()()20f x f x ++-=,进一步推导可判断B 选项;利用()()()2f x f x f x -=-=--结合函数对称性的定义可判断A 选项;利用函数对称性和周期性求出函数()f x 在[]5,7上的解析式,可判断C 选项;利用周期性计算可得出103f æöç÷èø的值,可判断D 选项.【详解】对于B 选项,因为()1f x +为奇函数,则()()11f x f x -=-+,即()()110f x f x -++=,()()20f x f x ++-=,又因为()f x 为偶函数,则()()20f x f x ++=,即()()2f x f x +=-,所以,()()()42f x f x f x +=-+=,B 对;对于A 选项,()()()2f x f x f x -=-=--,即()()20f x f x -+-=,所以,点()1,0-是()f x 的图象的对称中心,A 错;对于C 选项,当10x -£<时,01x <-£,则()()()2211f x f x x x =-=--+=-+,所以,对任意的[]1,1x Î-,()21f x x =-+,所以,当[]1,3x Î时,121x -£-£,则()()()()2222121f x f x x x =--=--=--,故当[]5,7x Î时,[]41,3x -Î,所以,()()()224611235f x f x x x x =-=--=-+,C 对;对于D 选项,210102254133339f f f æöæöæöæö=-=-=--=ç÷ç÷ç÷ç÷èøèøèøèø,D 对.故选:BCD.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复合函数问题一、复合函数定义:设y=f<u>的定义域为A,u=g<x>的值域为B,假如A ⊇B,如此y 关于x 函数的y=f [g<x>]叫做函数f 与g 的复合函数,u 叫中间量.二、复合函数定义域问题:<1>、f x ()的定义域,求[]f g x ()的定义域思路:设函数f x ()的定义域为D,即x D ∈,所以f 的作用X 围为D,又f 对g x ()作用,作用X 围不变,所以D x g ∈)(,解得x E ∈,E 为[]f g x ()的定义域.例1.设函数f u ()的定义域为〔0,1〕,如此函数f x (ln )的定义域为_____________. 解析:函数f u ()的定义域为〔0,1〕即u ∈()01,,所以f 的作用X 围为〔0,1〕 又f 对lnx 作用,作用X 围不变,所以01<<ln x 解得x e ∈()1,,故函数f x (ln )的定义域为〔1,e 〕例2. 假如函数f x x ()=+11,如此函数[]f f x ()的定义域为______________. 解析:先求f 的作用X 围,由f x x ()=+11,知x ≠-1即f 的作用X 围为{}x R x ∈≠-|1,又f 对f<x>作用所以f x R f x ()()∈≠-且1,即[]f f x ()中x 应满足x f x ≠-≠-⎧⎨⎩11()即x x ≠-+≠-⎧⎨⎪⎩⎪1111,解得x x ≠-≠-12且故函数[]f f x ()的定义域为{}x R x x ∈≠-≠-|12且 〔2〕、[]f g x ()的定义域,求f x ()的定义域思路:设[]f g x ()的定义域为D,即x D ∈,由此得g x E ()∈,所以f 的作用X 围为E,又f 对x 作用,作用X 围不变,所以x E E ∈,为f x ()的定义域.例3. f x ()32-的定义域为[]x ∈-12,,如此函数f x ()的定义域为_________. 解析:f x ()32-的定义域为[]-12,,即[]x ∈-12,,由此得[]3215-∈-x , 所以f 的作用X 围为[]-15,,又f 对x 作用,作用X 围不变,所以[]x ∈-15,即函数f x ()的定义域为[]-15,例4. f x x x ()lg 22248-=-,如此函数f x ()的定义域为-------解析:先求f 的作用X 围,由f x x x ()lg 22248-=-,知x x 2280-> 解得x 244->,f 的作用X 围为()4,+∞,又f 对x 作用,作用X 围不变,所以x ∈+∞()4,,即f x ()的定义域为()4,+∞〔3〕、[]f g x ()的定义域,求[]f h x ()的定义域思路:设[]f g x ()的定义域为D,即x D ∈,由此得g x E ()∈,f 的作用X 围为E,又f 对h x ()作用,作用X 围不变,所以h x E ()∈,解得x F ∈,F 为[]f h x ()的定义域.例5. 假如函数f x()2的定义域为[]-11,,如此f x (log )2的定义域为____________.解析:f x()2的定义域为[]-11,,即[]x ∈-11,,由此得2122x ∈⎡⎣⎢⎤⎦⎥,f 的作用X 围为122,⎡⎣⎢⎤⎦⎥,又f 对log 2x 作用,所以log 2122x ∈⎡⎣⎢⎤⎦⎥,,解得[]x ∈24,即f x (log )2的定义域为[]24,评注:函数定义域是自变量x 的取值X 围〔用集合或区间表示〕f 对谁作用,如此谁的X 围是f 的作用X 围,f 的作用对象可以变,但f 的作用X 围不会变.利用这种理念求此类定义域问题会有"得来全不费功夫〞的感觉,值得大家探讨.三、复合函数单调性问题〔1〕引理证明函数))((x g f y =.假如)(x g u =在区间b a ,(〕上是减函数,其值域为<c,d>,又函数)(u f y =在区间<c,d>上是减函数,那么,原复合函数))((x g f y =在区间b a ,(〕上是增函数.证明:在区间b a ,(〕内任取两个数21,x x ,使b x x a <<<21因为)(x g u =在区间b a ,(〕上是减函数,所以)()(21x g x g >,记)(11x g u =, )(22x g u =即),(,21,21d c u u u u ∈>且因为函数)(u f y =在区间<c,d>上是减函数,所以)()(21u f u f <,即))(())((21x g f x g f <, 故函数))((x g f y =在区间b a ,(〕上是增函数. 〔2〕.复合函数单调性的判断复合函数的单调性是由两个函数共同决定.为了记忆方便,我们把它们总结成一个图表:以上规律还可总结为:"同向得增,异向得减〞或"同增异减〞. 〔3〕、复合函数))((x g f y =的单调性判断步骤: ⅰ确定函数的定义域;ⅱ将复合函数分解成两个简单函数:)(u f y =与)(x g u =. ⅲ分别确定分解成的两个函数的单调性;ⅳ假如两个函数在对应的区间上的单调性一样〔即都是增函数,或都是减函数〕,如此复合后的函数))((x g f y =为增函数;假如两个函数在对应的区间上的单调性相异〔即一个是增函数,而另一个是减函数〕,如此复合后的函数))((x g f y =为减函数.〔4〕例题演练例1、 求函数)32(log 221--=x x y 的单调区间,并用单调定义给予证明解:定义域 130322-<>⇒>--x x x x 或单调减区间是),3(+∞ 设2121),3(,x x x x <+∞∈且 如此---)32(121x x )32(222--x x =)2)((1212-+-x x x x∵312>>x x ∴012>-x x 0212>-+x x ∴)32(121--x x >)32(222--x x 又底数1210<< ∴012<-y y 即 12y y < ∴y 在),3(+∞上是减函数同理可证:y 在)1,(--∞上是增函数[例]2、讨论函数)123(log )(2--=x x x f a 的单调性. [解]由01232>--x x 得函数的定义域为如此当1>a 时,假如1>x ,∵1232--=x x u 为增函数,∴)123(log )(2--=x x x f a 为增函数. 假如31-<x ,∵1232--=x x u 为减函数.∴)123(log )(2--=x x x f a 为减函数.当10<<a 时,假如1>x ,如此)123(log )(2--=x x x f a 为减函数,假如31-<x ,如此)123(log )(2--=x x x f a 为增函数.例3、.y=a log <2-xa >在[0,1]上是x 的减函数,求a 的取值X 围. 解:∵a >0且a ≠1当a >1时,函数t=2-xa >0是减函数由y=a log <2-xa >在[0,1]上x 的减函数,知y=a log t 是增函数, ∴a >1由x ∈[0,1]时,2-xa ≥2-a >0,得a <2, ∴1<a <2当0<a<1时,函数t=2-xa >0是增函数由y=a log <2-xa >在[0,1]上x 的减函数,知y=a log t 是减函数, ∴0<a<1由x ∈[0,1]时,2-xa ≥2-1>0, ∴0<a<1 综上述,0<a<1或1<a <2例4、函数2)3()2(2-+--=-a x a ax x f 〔a 为负整数〕的图象经过点R m m ∈-),0,2(,设)()()()],([)(x f x pg x F x f f x g +==.问是否存在实数)0(<p p 使得)(x F 在区间)]2(,(f -∞上是减函数,且在区间)0),2((f 上是减函数?并证明你的结论. [解析]由0)2(=-m f ,得02)3(2=-+--a m a am , 其中.0,≠∈a R m ∴0≥∆即09232≤--a a , 解得.37213721+≤≤-a ∵a 为负整数,∴.1-=a∴1)2(34)2(2+--=-+-=-2x x x x f ,即.1)(2+-=x x f 242221)1()]([)(x x x x f f x g +-=++--==, ∴.1)12()()()(24+-+-=+=x p px x f x pg x F 假设存在实数)0(<p p ,使得)(x F 满足条件,设21x x <,∴].12)()[()()(2221222121-++--=-p x x p x x x F x F ∵3)2(-=f ,当)3,(,21--∞∈x x 时,)(x F 为减函数,∴0)()(21>-x F x F ,∴.012)(,022212221>-++->-p x x p x x ∵3,321-<-<x x ,∴182221>+x x , ∴11612)(2221-->-++-p p x x p ,∴.0116≥--p ①当)0,3(,21-∈x x 时,)(x F 增函数,∴.0)()(21<-x F x F∵02221>-x x ,∴11612)(2221--<-++-p p x x p , ∴0116≤--p . ②由①、②可知161-=p ,故存在.161-=p 一.指数函数与对数函数.同底的指数函数xy a =与对数函数log a y x =互为反函数;〔二〕主要方法:1.解决与对数函数有关的问题,要特别重视定义域;2.指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论; 3.比拟几个数的大小的常用方法有:①以0和1为桥梁;②利用函数的单调性;③作差. 〔三〕例题分析:例1.〔1〕假如21a b a >>>,如此log bba,log b a ,log a b 从小到大依次为; 〔2〕假如235x y z ==,且x ,y ,z 都是正数,如此2x ,3y ,5z 从小到大依次为; 〔3〕设0x >,且1x x a b <<〔0a >,0b >〕,如此a 与b 的大小关系是〔〕 〔A 〕1b a <<〔B 〕1a b <<〔C 〕1b a <<〔D 〕1a b <<解:〔1〕由21a b a >>>得b a a <,故log b ba<log b a 1<<log a b .〔2〕令235x y z t ===,如此1t >,lg lg 2t x =,lg lg 3t y =,lg lg 5tz =,∴2lg 3lg lg (lg9lg8)230lg 2lg3lg 2lg3t t t x y ⋅--=-=>⋅,∴23x y >; 同理可得:250x z -<,∴25x z <,∴325y x z <<.〔3〕取1x =,知选〔B 〕.例2.函数2()1x x f x a x -=++(1)a >,求证:〔1〕函数()f x 在(1,)-+∞上为增函数;〔2〕方程()0f x =没有负数根. 证明:〔1〕设121x x -<<,如此1212121222()()11xx x x f x f x a a x x ---=+--++ 121212*********()11(1)(1)x x x x x x x x a a a a x x x x ---=-+-=-+++++,∵121x x -<<,∴110x +>,210x +>,120x x -<,∴12123()0(1)(1)x x x x -<++; ∵121x x -<<,且1a >,∴12x xa a <,∴120x x a a -<,∴12()()0f x f x -<,即12()()f x f x <,∴函数()f x 在(1,)-+∞上为增函数; 〔2〕假设0x 是方程()0f x =的负数根,且01x ≠-,如此000201xx a x -+=+,即00000023(1)31111x x x ax x x --+===-+++, ① 当010x -<<时,0011x <+<,∴0331x >+,∴03121x ->+,而由1a >知01x a <, ∴①式不成立;当01x <-时,010x +<,∴0301x <+,∴03111x -<-+,而00x a >, ∴①式不成立.综上所述,方程()0f x =没有负数根.例3.函数()log (1)xa f x a =-〔0a >且1a ≠〕.求证:〔1〕函数()f x 的图象在y 轴的一侧;〔2〕函数()f x 图象上任意两点连线的斜率都大于0.证明:〔1〕由10x a ->得:1x a >,∴当1a >时,0x >,即函数()f x 的定义域为(0,)+∞,此时函数()f x 的图象在y 轴的右侧; 当01a <<时,0x <,即函数()f x 的定义域为(,0)-∞,此时函数()f x 的图象在y 轴的左侧. ∴函数()f x 的图象在y 轴的一侧;〔2〕设11(,)A x y 、22(,)B x y 是函数()f x 图象上任意两点,且12x x <,如此直线AB 的斜率1212y y k x x -=-,1122121log (1)log (1)log 1x x x a a a x a y y a a a --=---=-,当1a >时,由〔1〕知120x x <<,∴121x x a a <<,∴12011x xa a <-<-,∴121011x xa a -<<-,∴120y y -<,又120x x -<,∴0k >; 当01a <<时,由〔1〕知120x x <<,∴121x x a a >>,∴12110x xa a ->->, ∴12111x xa a ->-,∴120y y -<,又120x x -<,∴0k >. ∴函数()f x 图象上任意两点连线的斜率都大于0.同步练习〔二〕同步练习:1、函数)x (f 的定义域为]1,0[,求函数)x (f 2的定义域.答案:]1,1[-2、函数)x 23(f -的定义域为]3,3[-,求)x (f 的定义域. 答案:]9,3[-3、函数)2x (f y +=的定义域为)0,1(-,求|)1x 2(|f -的定义域.答案:)23,1()0,21(⋃- 4、设()x x x f -+=22lg,如此⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为〔 〕A.()()4,00,4 -B.()()4,11,4 --C.()()2,11,2 --D.()()4,22,4 --解:选C.由202x x +>-得,()f x 的定义域为{}|22x x -<<.故22,222 2.xx⎧-<<⎪⎪⎨⎪-<<⎪⎩,解得()()4,11,4x ∈--.故⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛x f x f 22的定义域为()()4,11,4--5、函数)(x f 的定义域为)23,21(-∈x ,求)0)(()()(>+=a ax f ax f x g 的定义域.[解析]由,有⎪⎪⎩⎪⎪⎨⎧<<-<<-⇒⎪⎪⎩⎪⎪⎨⎧<<-<<-.232,2321,2321,2321a x a ax a a x ax 〔1〕当1=a 时,定义域为}2321|{<<-x x ; 〔2〕当a a 2323>,即10<<a 时,有221a a ->-, 定义域为}232|{a x a x <<-;〔3〕当a a 2323<,即1>a 时,有221aa -<-,定义域为}2321|{ax a x <<-.故当1≥a 时,定义域为}2321|{a x a x <<-;当10<<a 时,定义域为}.232|{a x a x <<-[点评]对于含有参数的函数,求其定义域,必须对字母进展讨论,要注意思考讨论字母的方法. 练习二〔5〕同步练习:1.函数y =21log 〔x 2-3x +2〕的单调递减区间是〔 〕A .〔-∞,1〕B .〔2,+∞〕C .〔-∞,23〕D .〔23,+∞〕 解析:先求函数定义域为〔-o ,1〕∪〔2,+∞〕,令t 〔x 〕=x 2+3x +2,函数t 〔x 〕在〔-∞,1〕上单调递减,在〔2,+∞〕上单调递增,根据复合函数同增异减的原如此,函数y =21log 〔x 2-3x +2〕在〔2,+∞〕上单调递减.答案:B2找出如下函数的单调区间.〔1〕)1(232>=++-a a y x x ; 〔2〕.2322++-=x x y答案:<1>在]23,(-∞上是增函数,在),23[+∞上是减函数. 〔2〕单调增区间是]1,1[-,减区间是]3,1[.3、讨论)0,0(),1(log ≠>-=a a a y xa 且的单调性.答案:,1>a 时),0(+∞为增函数,01>>a 时,)0,(-∞为增函数. 4.求函数y =31log 〔x 2-5x +4〕的定义域、值域和单调区间.解:由μ〔x 〕=x 2-5x +4>0,解得x >4或x <1,所以x ∈〔-∞,1〕∪〔4,+∞〕,当x ∈〔-∞,1〕∪〔4,+∞〕,{μ|μ=x 2-5x +4}=R +,所以函数的值域是R +.因为函数y =31log 〔x 2-5x +4〕是由y=31log μ〔x 〕与μ〔x 〕=x 2-5x +4复合而成,函数y =31log μ〔x 〕在其定义域上是单调递减的,函数μ〔x 〕=x 2-5x +4在〔-∞,25〕上为减函数,在[25,+∞]上为增函数.考虑到函数的定义域与复合函数单调性,y =31log 〔x 2-5x +4〕的增区间是定义域内使y =31log μ〔x 〕为减函数、μ〔x 〕=x 2-5x +4也为减函数的区间,即〔-∞,1〕;y =31log 〔x 2-5x +4〕的减区间是定义域内使y =31log μ〔x 〕为减函数、μ〔x 〕=x 2-5x +4为增函数的区间,即〔4,+∞〕. 变式练习 一、选择题1.函数f 〔x 〕=)1(log 21-x 的定义域是〔 〕A .〔1,+∞〕B .〔2,+∞〕C .〔-∞,2〕D .]21(, 解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,所以⎪⎩⎪⎨⎧≥0)1(log 0121->-x x 解得1<x ≤2.答案:D2.函数y =21log 〔x 2-3x +2〕的单调递减区间是〔 〕A .〔-∞,1〕B .〔2,+∞〕C .〔-∞,23〕D .〔23,+∞〕 解析:先求函数定义域为〔-o ,1〕∪〔2,+∞〕,令t 〔x 〕=x 2+3x +2,函数t 〔x 〕在〔-∞,1〕上单调递减,在〔2,+∞〕上单调递增,根据复合函数同增异减的原如此,函数y =21log 〔x 2-3x +2〕在〔2,+∞〕上单调递减. 答案:B3.假如2lg 〔x -2y 〕=lg x +lg y ,如此xy的值为〔 〕 A .4B .1或41 C .1或4D .41错解:由2lg 〔x -2y 〕=lg x +lg y ,得〔x -2y 〕2=xy ,解得x =4y 或x =y ,如此有x y =41或y x =1.答案:选B正解:上述解法忽略了真数大于0这个条件,即x -2y >0,所以x >2y .所以x =y 舍掉.只有x =4y . 答案:D4.假如定义在区间〔-1,0〕内的函数f 〔x 〕=a 2log 〔x +1〕满足f 〔x 〕>0,如此a 的取值X 围为〔 〕 A .〔0,21〕B .〔0,1〕 C .〔21,+∞〕D .〔0,+∞〕 解析:因为x ∈〔-1,0〕,所以x +1∈〔0,1〕.当f 〔x 〕>0时,根据图象只有0<2a <l,解得0<a <21〔根据本节思维过程中第四条提到的性质〕. 答案:A 5.函数y =lg 〔x-12-1〕的图象关于〔 〕 A .y 轴对称B .x 轴对称 C .原点对称D .直线y =x 对称解析:y =lg 〔x -12-1〕=x x -+11lg ,所以为奇函数.形如y =x x -+11lg 或y =xx -+11lg 的函数都为奇函数. 答案:C 二、填空题y =a log 〔2-ax 〕在[0,1]上是x 的减函数,如此a 的取值X 围是__________.解析:a >0且a ≠1⇒μ〔x 〕=2-ax 是减函数,要使y =a log 〔2-ax 〕是减函数,如此a >1,又2-ax >0⇒a <x2〔0<x <1〕⇒a <2,所以a ∈〔1,2〕. 答案:a ∈〔1,2〕7.函数f 〔x 〕的图象与g 〔x 〕=〔31〕x的图象关于直线y =x 对称,如此f 〔2x -x 2〕的单调递减区间为______.解析:因为f 〔x 〕与g 〔x 〕互为反函数,所以f 〔x 〕=31log x如此f 〔2x -x 2〕=31log 〔2x -x 2〕,令μ〔x 〕=2x -x 2>0,解得0<x <2.μ〔x 〕=2x -x 2在〔0,1〕上单调递增,如此f [μ〔x 〕]在〔0,1〕上单调递减; μ〔x 〕=2x -x 2在〔1,2〕上单调递减,如此f [μ〔x 〕]在[1,2〕上单调递增. 所以f 〔2x -x 2〕的单调递减区间为〔0,1〕. 答案:〔0,1〕8.定义域为R 的偶函数f 〔x 〕在[0,+∞]上是增函数,且f 〔21〕=0, 如此不等式f 〔l og 4x 〕>0的解集是______.解析:因为f 〔x 〕是偶函数,所以f 〔-21〕=f 〔21〕=0.又f 〔x 〕在[0,+∞]上是增函数,所以f 〔x 〕在〔-∞,0〕上是减函数.所以f 〔l og 4x 〕>0⇒l og 4x >21或l og 4x <-21.解得x >2或0<x <21.答案:x >2或0<x <21三、解答题9.求函数y =31log 〔x 2-5x +4〕的定义域、值域和单调区间.. 解:由μ〔x 〕=x 2-5x +4>0,解得x >4或x <1,所以x ∈〔-∞,1〕∪〔4,+∞〕,当x ∈〔-∞,1〕∪〔4,+∞〕,{μ|μ=x 2-5x +4}=R +,所以函数的值域是R +.因为函数y =31log 〔x 2-5x +4〕是由y =31log μ〔x 〕与μ〔x 〕=x 2-5x +4复合而成,函数y =31log μ〔x 〕在其定义域上是单调递减的,函数μ〔x 〕=x 2-5x +4在〔-∞,25〕上为减函数,在[25,+∞]上为增函数.考虑到函数的定义域与复合函数单调性,y =31log 〔x 2-5x +4〕的增区间是定义域内使y =31log μ〔x 〕为减函数、μ〔x 〕=x 2-5x +4也为减函数的区间,即〔-∞,1〕;y =31log 〔x 2-5x +4〕的减区间是定义域内使y =31log μ〔x 〕为减函数、μ〔x 〕=x 2-5x +4为增函数的区间,即〔4,+∞〕. 10.设函数f 〔x 〕=532+x +xx 2323lg +-, 〔1〕求函数f 〔x 〕的定义域;〔2〕判断函数f 〔x 〕的单调性,并给出证明;〔3〕函数f 〔x 〕的反函数f -1〔x 〕,问函数y =f -1〔x 〕的图象与x 轴有交点?假如有,求出交点坐标;假如无交点,说明理由.解:〔1〕由3x +5≠0且x x 2323+->0,解得x ≠-35且-23<x <23.取交集得-23<x <23. 〔2〕令μ〔x 〕=532+x ,随着x 增大,函数值减小,所以在定义域内是减函数; x x 2323+-=-1+x236+随着x 增大,函数值减小,所以在定义域内是减函数. 又y =lg x 在定义域内是增函数,根据复合单调性可知,y =x x 2323lg +-是减函数,所以f 〔x 〕=532+x +x x 2323lg +-是减函数. 〔3〕因为直接求f 〔x 〕的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解.设函数f 〔x 〕的反函数f -1〔x 〕与工轴的交点为〔x 0,0〕.根据函数与反函数之间定义域与值域的关系可知,f 〔x 〕与y 轴的交点是〔0,x 0〕,将〔0,x 0〕代入f 〔x 〕,解得x 0=52.所以函数y =f -1〔x 〕的图象与x 轴有交点,交点为〔52,0〕.。

相关文档
最新文档