主成分分析方法
主成分分析法全

• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
根据旋转变换的公式:
y y1 1 x1xc1soin sx2 xs2cio ns
y y 1 2 cs o in sc si o n s x x 1 2 U x
设有P维正交向量 a1 a11, a21,, ap1
F1 a11X1 L ap1X p aX
1
V
(F1)
a1a1
a1U
2
Ua1
p
1
a1
u1
,
u2
,L,
up
2
O
u1
u2 M
a1
p
up
p
iauiuia i1
p
i (aui )2 i1
1ip1(aui )2
1)贡献率:第i个主成分的方差在全部方差中所占
比重
i
p
i 1
i
,称为贡献率
,反映了原来P个指标多大
的信息,有多大的综合能力 。
2)累积贡献率:前k个主成分共有多大的综合能力, 用这k个主成分的方差和在全部方差中所占比重
k
p
i i
i1
i1
来描述,称为累积贡献率。
我们进行主成分分析的目的之一是希望用尽可能 少的主成分F1,F2,…,Fk(k≤p)代替原来的P个指 标。到底应该选择多少个主成分,在实际工作中,主 成分个数的多少取决于能够反映原来变量80%以上的信 息量为依据,即当累积贡献率≥80%时的主成分的个数 就足够了。最常见的情况是主成分为2到3个。
F 1
主 成
F2
•• • • •
分 分 析 的 几 何
主成分分析的步骤与实施方法

主成分分析的步骤与实施方法主成分分析(Principal Component Analysis,简称PCA)是一种常用的降维数据分析方法,常用于数据预处理和特征提取。
本文将介绍主成分分析的基本步骤以及实施方法,帮助读者了解并应用于实际问题。
1. 数据预处理在进行主成分分析之前,首先需要进行数据预处理。
数据预处理包括数据清洗、归一化等操作,以确保数据的准确性和可靠性。
常见的数据预处理方法有:(1)数据清洗:排除异常值和缺失值,保证数据的完整性和一致性;(2)数据归一化:将数据转化为同一尺度,消除因为数据量纲不同而导致的误差;(3)数据标准化:将数据按照均值为0,方差为1进行线性变换,使得数据服从标准正态分布。
2. 计算协方差矩阵主成分分析的核心是通过计算协方差矩阵来确定数据之间的相关性。
协方差矩阵可以帮助我们找到数据的主要变化方向,进而找到主要成分。
协方差矩阵的计算步骤如下:(1)假设我们有m个n维数据,将其组成m×n的矩阵X;(2)计算X的协方差矩阵C,公式为:C = (X - μ)(X - μ)T / m,其中μ为X的均值向量;(3)计算协方差矩阵C的特征值和特征向量。
3. 计算主成分通过计算协方差矩阵的特征值和特征向量,我们可以得到数据的主成分。
主成分是协方差矩阵的特征向量按对应的特征值从大到小排列后所得到的矩阵。
计算主成分的步骤如下:(1)选择特征值较大的前k个特征向量,其中k为需要降维的维数;(2)将选择出的k个特征向量组成一个投影矩阵P;(3)对原始数据进行降维处理,将原始数据矩阵X与投影矩阵P相乘,得到降维后的数据矩阵Y。
4. 数据重构主成分分析完成后,我们可以通过数据重构来验证主成分的有效性。
重构后的数据尽量保持与原始数据的一致性,以确保降维后的数据仍能保持原有信息的完整性。
数据重构的步骤如下:(1)根据降维后的数据矩阵Y和投影矩阵P,计算重构矩阵X',公式为:X' = YP' + μ,其中P'为投影矩阵的转置;(2)将重构矩阵X'与原始数据矩阵X进行对比,评估主成分提取的效果。
主成分分析方法

主成分分析方法
主成分分析方法是一种统计学技术,用于通过数据降低维数,它将多变量间的关系简化成少量的主成分,以把原来的多维变量映射到一维或者更少的维度空间。
主成分分析方法既可以用于对描述性数据的研究,也可以用于预测数据模型,它可以帮助估计定量指标与预测变量之间的关系,并降低多变量试验数据的维数。
主成分分析方法是一种数据处理技术,它主要用于减少维数,把原来的多变量压缩成少量的主成分。
它还可以用于描述多变量之间的关系,并降低有关模型之间的维数。
主成分分析方法的基本原理是,先把原来的n个变量分解成n个协方差矩阵,然后把它们求和,计算出协方差矩阵的特征值和特征向量,即主成分,接着,取出最大的特征值对应的特征向量,最后得到第一个主成分。
然后,用第一个主成分代替n个变量来表示n个变量,同时还可以利用空间的关系,把原来的n个变量转换成n-1个新变量,以此类推,一直到只有一个主成分为止。
主成分分析方法具有众多优势。
首先,它可以去除重复的信息,使用降维后的特征向量可以有效减少重复信息。
其次,它可以降低原始数据的数量,因为原始数据的降维,数据量就会减少。
此外,主成分分析方法可以有效去除噪声,因为它可以提取一组准确的特征。
最后,主成分分析方法还可以用于模型预测,它可以帮助估计定量指标与预测变量之间的关系,从而提高预测的准确性。
总之,主成分分析方法具有简单、快速、有效的特点,可以有效
地减少多变量之间的维度,及其在统计学和机器学习领域的广泛应用,极大地提升了研究成果的准确性和可信度。
主成分分析法

主成分分析法1. 主成份分析:主成份分析是最经典的基于线性分类的分类系统。
这个分类系统的最⼤特点就是利⽤线性拟合的思路把分布在多个维度的⾼维数据投射到⼏个轴上。
如果每个样本只有两个数据变量,这种拟合就是其中和分别是样本的两个变量,⽽和则被称为loading,计算出的P值就被称为主成份。
实际上,当⼀个样本只有两个变量的时候,主成份分析本质上就是做⼀个线性回归。
公式本质上就是⼀条直线。
插⼊⼀幅图(主成份坐标旋转图,来⾃:PLS⼯具箱参考⼿册)如果⼀个样本有n个变量,那主成份就变为:其中PC1 称为第⼀主成份,⽽且,我们还可以获得⼀系列与PC这个直线正交的其它轴,如:被称为第⼆主成份以此类推,若令,此时向量A称为主成份的载荷(loading),计算出的主成份的值PC称为得分(score)。
1. 主成份分析举例作为⼀个典型的降维⽅法,主成份分析在数据降维⽅⾯⾮常有⽤,⽽且也是所有线性降维⽅法的基础。
很多时候,如果我们拿着⼀个⾮常复杂的数据不知所措的话,可以先考虑⽤主成份分析的⽅法对其进⾏分解,找出数据当中的种种趋势。
在这⾥,我们利⽤数据挖掘研究当中⾮常常见的⼀个数据集对主成份分析的使⽤举例如下:1996年,美国时代周刊(Times)发表了⼀篇关于酒类消费,⼼脏病发病率和平均预期寿命之间关系的科普⽂章,当中提到了10个国家的烈酒,葡萄酒和啤酒的⼈均消费量(升/年)与⼈均预期寿命(年)⼀级⼼脏病发病率(百万⼈/年)的数据,这些数据单位不⼀,⽽且数据与数据之间仅有间接关系。
因此直接相关分析不能获得重要且有趣的结果。
另外⼀⽅⾯,总共只有10个国家作为样本,各种常见的抽样和假设检验在这⽅⾯也没有⽤武之地,我们看看⽤何种⽅法能够从这个简单的数据表中获得重要知识作为数据挖掘的第⼀步,⾸先应该观察数据的总体分布情况。
⽆论是EXCEL软件,还是R语⾔,我们都能够很⽅便的从下表中获得表征数据分布的条形图。
从图中可以看出,总共10个国家,有5类数据,由于各类数据性质各不相同,因此数值上⼤⼩也很不相同。
主成分分析法

主成分分析法主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。
在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。
依次类推,I个变量就有I个主成分。
其中Li为p维正交化向量(Li*Li=1),Zi之间互不相关且按照方差由大到小排列,则称Zi为X的第I个主成分。
10本词条无基本信息模块, 欢迎各位编辑词条,额外获取10个积分。
目录1基本定义2分析目的3分析步骤4因子旋转5应用问题个主成分Zi所对应的系数向量Li,而Zi的方差贡献率定义为λi/Σλj,通常要求提取的主成分的k满足Σλk/Σλj>0.85。
2分析目的是希望用较少的变量去解释原来资料中的大部分变量,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中变量的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
3分析步骤数据标准化;求相关系数矩阵;一系列正交变换,使非对角线上的数置0,加到主对角上;得特征根xi(即相应那个主成分引起变异的方差),并按照从大到小的顺序把特征根排列;求各个特征根对应的特征向量;用下式计算每个特征根的贡献率Vi;Vi=xi/(x1+x2+........)根据特征根及其特征向量解释主成分物理意义。
4因子旋转在对社会调查数据进行分析时,除了把相关的问题综合成因子并保留大的因子,研究者往往还需要对因子与测度项之间的关系进行检验,以确保每一个主要的因子(主成分)对应于一组意义相关的测度项。
为了更清楚的展现因子与测度项之间的关系,研究者需要进行因子旋转。
常见的旋转方法是VARIMAX旋转。
旋转之后,如果一个测度项与对应的因子的相关度很高(>0.5)就被认为是可以接受的。
主成分分析方法

主成分分析方法在经济问题的研究中,我们常常会遇到影响此问题的很多变量,这些变量多且又有一定的相关性,因此我们希望从中综合出一些主要的指标,这些指标所包含的信息量又很多。
这些特点,使我们在研究复杂的问题时,容易抓住主要矛盾。
那么怎样找综合指标?主成分分析是将原来众多具有一定相关性的指标重新组合成一组新的相互无关的综合指标来代替原来指标的统计方法,也是数学上处理降维的一种方法. 一. 主成分分析法简介主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。
在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。
但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。
人们自然希望变量个数较少而得到的信息较多。
在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。
主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。
信息的大小通常用离差平方和或方差来衡量。
主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(P F F F ,,,21 )。
其中1F 是“信息最多”的指标,即原指标所有线性组合中使)var(1F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即0),cov(21 F F 且)var(2F 最大,称为第二主成分;依次类推。
易知P F F F ,,,21 互不相关且方差递减。
实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。
主成分的几何意义:设有n 个样品,每个样品有两个观测变量,,21X X 二维平面的散点图。
n 个样本点,无论沿着1X 轴方向还是2X 轴方向,都有较大的离散性,其离散程度可以用1X 或2X 的方差表示。
主成分分析法
四、主成份分析法旳环节
1)数据归一化处理:数据原则化(Z) 2)Βιβλιοθήκη 算有关系数矩阵R: 3)计算特征值;
特征值越大阐明主要程度越大。
4)计算主成份贡献率及方差旳合计贡献率; 5)计算主成份载荷与特征向量:
主成份旳负荷值大小反应了主成份因子对可测变量旳影响程 度;载荷值越大阐明此变量对主成份旳解释越多,及贡献越大。
• 因子分析 优点:第一它不是对原有变量旳取舍,而是根据原始变 量旳信息进行重新组合,找出影响变量旳共同因子,化简 数据;第二,它经过旋转使得因子变量更具有可解释性, 命名清楚性高。 缺陷 :在计算因子得分时,采用旳是最小二乘法,此法 有时可能会失效。
总之,主成份分析是因子分析旳一种特例。
谢 谢 观 看!
旋转后旳主成份因子载荷矩阵
景区满意度旋转前后成份矩阵图对比
5、碎石图分析
选用主成份旳个数,急转处是拟定主成份旳个数处。
景区满意度碎石图
八、与因子分析法旳区别
1、基本概念
➢ 主成份分析就是将多项指标转化为少数几项综合 指标,用综合指标来解释多变量旳方差- 协方差构 造。综合指标即为主成份。所得出旳少数几种主 成份,要尽量多地保存原始变量旳信息,且彼此 不有关。
注意:进行主成份旳变量之间必须要有有关性, 经过分析后变量之间独立。
二、主成份分析法基本原理
主成份分析就是设法将原来众多具有一定有关性 旳变量(如p个变量),重新组合成一组新旳相互无 关旳综合变量来替代原来变量。怎么处理?
一般数学上旳处理就是将原来p个变量作线性组合 作为新旳综合变量。怎样选择?
假如将选用旳第一种线性组合即第一种综合变量 记为F1,自然希望F1尽量多旳反应原来变量旳信 息。怎样反应?
主成分分析方法
主成分分析方法主成分分析(Principal Component Analysis, PCA)是一种常用的数据降维和特征提取方法,它可以将高维数据转换为低维数据,同时保留数据的主要特征。
在实际应用中,主成分分析方法被广泛应用于数据挖掘、模式识别、图像处理、生物信息学等领域。
本文将介绍主成分分析的基本原理、算法步骤以及应用实例。
1. 基本原理。
主成分分析的基本思想是通过线性变换将原始数据映射到一个新的坐标系中,使得在新的坐标系下,数据的方差最大化。
换句话说,主成分分析就是找到一组新的基,使得数据在这组新的基下的方差最大。
这样做的目的是为了尽可能保留原始数据的信息,同时去除数据之间的相关性,从而达到降维的效果。
2. 算法步骤。
主成分分析的算法步骤可以简单概括为以下几步:(1)数据标准化,对原始数据进行标准化处理,使得各个特征具有相同的尺度。
(2)计算协方差矩阵,对标准化后的数据计算协方差矩阵。
(3)特征值分解,对协方差矩阵进行特征值分解,得到特征值和特征向量。
(4)选择主成分,按照特征值的大小,选择最大的k个特征值对应的特征向量作为主成分。
(5)数据映射,将原始数据映射到所选的主成分上,得到降维后的数据。
3. 应用实例。
主成分分析方法在实际应用中有着广泛的应用,下面以一个简单的实例来说明主成分分析的应用过程。
假设我们有一个包含多个特征的数据集,我们希望对这些特征进行降维处理,以便更好地进行数据分析。
我们可以利用主成分分析方法对这些特征进行降维处理,得到新的特征空间。
在新的特征空间中,我们可以更好地观察数据之间的关系,找到数据的主要特征,从而更好地进行数据分析和建模。
总结。
主成分分析是一种常用的数据降维和特征提取方法,它通过线性变换将原始数据映射到一个新的坐标系中,使得数据的方差最大化。
通过对协方差矩阵进行特征值分解,我们可以得到主成分,并将原始数据映射到主成分上,实现数据的降维处理。
在实际应用中,主成分分析方法有着广泛的应用,可以帮助我们更好地理解和分析数据。
主成分分析方法
主成分分析方法主成分分析(Principal Component Analysis,PCA)是一种常用的多变量统计分析方法,它可以帮助我们发现数据中的主要模式和结构。
主成分分析的基本思想是通过线性变换将原始变量转换为一组新的互相无关的变量,这些新变量被称为主成分,它们能够尽可能多地保留原始数据的信息。
在实际应用中,主成分分析通常用于降维和数据可视化,以及发现变量之间的潜在关联。
主成分分析的数学原理比较复杂,但是在实际应用中,我们只需要了解其基本步骤和注意事项即可进行分析。
下面我们将介绍主成分分析的基本方法及其应用。
1. 数据标准化。
在进行主成分分析之前,我们首先需要对数据进行标准化处理,以消除变量之间的量纲差异对分析结果的影响。
通常采用的标准化方法包括Z-score标准化和min-max标准化。
Z-score标准化将原始数据转换为均值为0,标准差为1的标准正态分布,而min-max标准化将原始数据缩放到一个特定的区间内,通常是[0, 1]或[-1, 1]。
2. 计算协方差矩阵。
在数据标准化之后,我们需要计算变量之间的协方差矩阵。
协方差矩阵可以反映变量之间的线性关系,它是主成分分析的基础。
通过对协方差矩阵进行特征值分解,我们可以得到特征值和特征向量,进而求得主成分。
3. 提取主成分。
根据特征值的大小,我们可以选择保留的主成分个数。
一般来说,我们会选择特征值较大的前几个主成分,因为它们能够较好地保留原始数据的信息。
通过将原始数据投影到所选择的主成分上,我们可以得到新的主成分得分,从而实现数据的降维。
4. 解释主成分。
在主成分分析的结果中,我们通常会对每个主成分进行解释,以了解它们所代表的含义。
通过观察主成分的载荷(即主成分与原始变量之间的相关系数),我们可以发现主成分与原始变量之间的关系,从而解释主成分所反映的数据模式。
5. 应用主成分分析。
主成分分析可以应用于各种领域,如金融、生物、地理等。
在金融领域,主成分分析常用于股票投资组合的优化和风险管理;在生物领域,主成分分析常用于基因表达数据的分析和分类;在地理领域,主成分分析常用于气候数据的降维和可视化。
主成分分析方法
主成分分析方法主成分分析方法是常用的一种统计分析方法,主要用于进行数据压缩或减少数据的维数[2]。
它是对一组相关的变量进行线性变换,得到一组维数不变但彼此互不相关的变量,亦即一组主成分。
由于各主成分是不相关的,因此可以认为它们是一组独立变量。
一般图像的线性变换可用下式表示:Y=TX (1)式中:X为待变换图像数据矩阵,Y为变换后的数据矩阵;T为实现这一线性变换的变换矩阵。
如果变换矩阵T是正交矩阵,并且它是由原始图像数据矩阵X的协方差矩阵S的特征向量所组成,则(1)式的线性变换称为主成分分析,并且变换后的数据矩阵的每一行矢量为主成分分析的一个主成分。
主成分分析的优点是消除了波段间的相互关系,减少了各波段提供信息的交叉和冗余,有利于分析。
同时,在分析过程中得到主要波段的合理权重,具有很好的客观性。
主成分分析法的主要步骤如下:(1)根据原始图像数据矩阵X,求出它的协方差矩阵S 以矩阵的形式表示多波段图像的原始数据如下:X=x11x12,x1nx21x22,x2ns s s sxn1xn1,xnn=[xij]m@n(2)矩阵X中,m,n分别为波段数和每幅图像中的像元数,矩阵中的每一行矢量表示一个波段的图像。
矩阵X的协方差矩阵S为:S=1n[X-Xl][X-Xl]T(3)式中:l=[1 1 , 1]1@n(4)X=[x1 x2 , x3]T(5)xi=1nEnk=1xik(第i波段的均值) (6)(2)求协方差矩阵S的特征值Ki和特征向量Ui,并组成变换矩阵T 求解特征方程(KI-S)U=0; 然后将特征值Ki按由小到大的顺序排列,求出对应特征值的单位特征向量Ui,以Ui为列构成矩阵U,U矩阵的转置矩阵,即UT为所求的变换矩阵T。
经过主成分变换后得到的新变量的各个行向量依次被称为第一主成分、第二主成分,,第m主成分,这时将新变量恢复为二维图像,便得到m个主成分图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表3.5.3 主成分载荷
占方差的百分数
z1
z2
z3
(%)
x1
0.739 -0.532 -0.0061
82.918
x2
0.123
0.887 -0.0028
80.191
x3
-0.964 0.0096 0.0095
1540.29 926.35 1501.24 897.36 911.24 103.52 968.33 957.14 824.37 1255.42 1251.03 1246.47 814.21 1124.05 805.67 1313.11
216.39 291.52 225.25 196.37 226.51 217.09 181.38 194.04 188.09 211.55 220.91 242.16 193.46 228.44 175.23 236.29
x2 -0.33 1 -0.035 0.644 0.42 0.255 0.009 -0.078 0.094
x3 -0.71 -0.035 1 0.07 -0.74 -0.755 -0.93 -0.109 -0.924
x4 -0.34 0.644 0.07 1 0.383 0.069 -0.05 -0.031 0.073
累积贡献率(%) 51.791 75.007 86.596 92.234 95.736 97.876 99.147 99.65 100
(3)对于特征值=4.6610,
=2.0890,=1.0430分别求出其
特征向量e1,e2,e3,再用公式 (3.5.5)计算各变量x1, x2,…,x9在主成分z1,z2,z3上 的载荷(表3.5.3)。
8.128 8.135 18.352 16.861 18.279 19.793 4.005 9.11 19.409 11.102 4.383 10.706 11.419 9.521 18.106 26.724
4.065 4.063 2.645 5.176 5.643 4.881 4.066 4.484 5.721 3.133 4.615 6.053 6.442 7.881 5.789 7.162
定义:记x1,x2,…,xP为原变量指标,z1, z2,…,zm(m≤p)为新变量指标
z1 l11 x1 l12 x2 l1p x p
z
2
l21 x1
l22 x2
l2p xp
zm lm1 x1 lm2 x2 lmp x p
第五节 主成分分析方法 Principal Component Analysis
(PCA)
主成分分析的基本原理 主成分分析的计算步骤 主成分分析方法应用实例
问题的提出:
多变量问题是经常会遇到的。变量太多,无疑 会增加分析问题的难度与复杂性,而且在许多 实际问题中,多个变量之间是具有一定的相关 关系的。因此,人们会很自然地想到,能否在 相关分析的基础上,用较少的新变量代替原来 较多的旧变量,而且使这些较少的新变量尽可 能多地保留原来变量所反映的信息?
•事实上,这种想法是可以实现的,主成分
分析方法就是综合处理这种问题的一种强
有力的工具。
主成分分析就是设法将原来指标重新组合 成一组新的互相无关的几个综合指标来代 替原来指标。同时根据实际需要从中可取 几个较少的综合指标尽可能多地反映原来 的指标的信息。
从数学角度来看,这是一种降维处理技术。
一、主成分分析的基本原理
从系数的大小、系数的符号上进行分析。 系数绝对值较大,则表明该主成分主要
综合了绝对值大的变量。 正号表示变量与主成分作用同方向,负
号表示原变量与主成分作用反方向。 如果变量分组较有规则,则从特征向量
各分量数值作出组内组间对比分析。
三、 主成分分析方法应用实例
我们根据表3.4.5给出的数据,对 某农业生态经济系统做主成分分析,
k 1
(i 1,2,, p)
一般取累计贡献率达85—95%的特征值 1, 2 ,, m 所对应的第一、第二、…、第m(m≤p) 个主成分。
六、主成分模型中各统计量的意义
i
1、主成分的方差贡献率: p
i
i 1
这个值越大,表明第i主成分综合信息的
能力越强。 2、主成分的累计贡献率
x8 0.156 -0.078 -0.109 -0.031 0.098 0.222 -0.03 1
0.29
x9 0.744 0.094 -0.924 0.073 0.747 0.707 0.89 0.29
1
(2)由相关系数矩阵计算特征值, 以及各个主成分的贡献率与累计贡 献率(见表3.5.2)。 由表3.5.2可知,第一,第二,第三 主成分的累计贡献率已高达 86.596%(大于85%),故只需要 求出第一、第二、第三主成分z1, z2,z3即可。
则新变量指标z1,z2,…,zm分别称为原 变量指标x1,x2,…,xP的第一,第 二,…,第m主成分。
从以上的分析可以看出,主成分分
析的实质就是确定原来变量xj(j=1, 2 ,…, p)在诸主成分zi(i=1, 2,…,m)上的荷载 lij( i=1,
2,…,m; j=1,2 ,…,p)。
(3.5.2)
系数lij的确定原则:
① zi与zj(i≠j;i,j=1,2,…,m)相互 无关;
② z1是x1,x2,…,xP的一切线性组合中方 差最大者,z2是与z1不相关的x1,x2,…, xP的所有线性组合中方差最大者; …… zm是与z1,z2,……,zm-1都不相关的x1, x2,…xP, 的所有线性组合中方差最大者。
表3.4.5 某农业生态经济系统各区域单元的有关数据
样本 序号
x1:人 x2:人均 x3:森林 口密度 耕地面积 覆盖率
(人/km2) (ha)
(%)
x4:农民 人均纯收 入(元/人)
x5:人均 粮食产量
(kg/人)
x6:经济 作物占农 作物播面 比例(%)
x7:耕地 占土地面 积比率(%)
x8:果 园与林 地面积 之比(%)
② 分别求出对应于特征值
的特征向量
i
p
ei (i 1,2,, p) ,要求 ei =1即
ei2j 1,
其中 eij表示向量 ei 的第j个分量。 j1
③ 计算主成分贡献率及累计贡献率
▲贡献率:
i
p
k
k 1
(i 1,2,, p)
▲累计贡献率:
i
k
k 1
p
k
x9:灌溉 田占耕地 面积之比
(%)
1 363.912 0.352 16.101 192.11 295.34 26.724
18.492 2.231 26.262
2 141.503 1.684 24.301 1752.35 452.26 32.314
14.464 1.455 27.066
3 100.695 1.067 65.601 1181.54 270.12 18.266
rij
n
(xki xi )(xkj x j )
k 1
n
n
(xki xi )2 (xkj x j )2
k 1
k 1
(3.5.4)
(二)计算特征值与特征向量:
① 解特征方程 I R 0 ,常用雅可比法 (Jacobi)求出特征值,并使其按大小顺序排 列 1 2 , p 0 ;
0.011 0.012 0.034 0.055 0.076 0.001 0.015 0.002 5.055 0.01 0.011 0.154 0.012 0.069 0.048 0.092
4.861 4.862 3.201 6.167 4.477 6.165 5.402 5.79 8.413 3.425 5.593 8.701 12.945 12.654 8.461 10.078
从数学上可以证明,它们分别是的
相关矩阵的m个较大的特征值所对
应的特征向量。
二、计算步骤
(一)计算相关系数矩阵
r11 r12 r1p
R
r21
r22
r2
p
rp1
rp2
rpp
(3.5.3)
rij(i,j=1,2,…,p)为原变量xi与xj
的相关系数, rij=rji,其计算公式为:
2.032 0.801 1.652 0.841 0.812 0.858 1.041 0.836 0.623 1.022 0.654 0.661 0.737 0.598 1.245 0.731
76.204 71.106 73.307 68.904 66.502 50.302 64.609 62.804 60.102 68.001 60.702 63.304 54.206 55.901 54.503 49.102
x5 0.309 0.42 -0.74 0.383 1
0.734 0.672 0.098 0.747
x6 0.408 0.255 -0.755 0.069 0.734
1 0.658 0.222 0.707
x7 0.79 0.009 -0.93 -0.046 0.672 0.658 1 -0.03 0.89
Spss实现:
1.analyze-description statistic-descriptionsave standardized as variables 2.analyze-data reduction-factor 3.指定参与分析的变量 4.运行factor 过程
九、解析主成分的实际经济意义
步骤如下:(1)将表3.4.5中的数据作标准 差标准化处理,然后将它们代入公式(3.5.4) 计算相关系数矩阵(见表3.5.1)。