机械原理第3章平面机构的运动分析
机械原理第三章 运动分析

例3-4 含三副构件的六杆机构运动分析
例3-5 已知图示机构各构件的尺寸及原动件1的角速度1,求 C点的速度vc及构件2和构件3的角速度2及 3;求E点的速度 vE 加速度aE 。 解: 1) 列矢量方程,分析 各矢量大小和方向。 2) 定比例尺,作矢量 图。 3) 量取图示尺寸,求 解未知量。 2 C
vB 3 vB 2 vB 3B 2
⊥BC ⊥AB ? lAB1
v ?
m/s mm
1
A
1
B
2
方向: 大小: 定比例尺 作矢量图.
∥BC
?
3 C 4
vB3B 2 v b2b3
p b3 b2
vB 3 v pb3 3 lBC lBC
顺时针方向
2) 求构件3的角加速度3 列方程:
机械原理 第三章 平面机构的运动分析
§3-1 概述
§3-2 速度瞬心及其在平面机构速度分析中的应用 §3-3 平面机构运动分析的矢量方程图解法 §3-4 平面机构运动分析的复数矢量法 §3-5 平面机构运动分析的杆组法
§3-1 概述
1.机构运动分析的内容 机构尺寸和原动件运动规律已知时,求转动构件上某点 或移动构件的位移、速度、加速度及转动构件的角位移、 角速度、角加速度。 2.机构运动分析的目的
绝对速度相等的重合点。用Pij表示。
若该点绝对速度为零——绝对瞬心。 若该点绝对速度不为零——相对瞬心。 二、瞬心的数目 设N 为组成机构的构件数(含机架),K为瞬心数,则
2 K CN =N ( N 1) / 2
三、瞬心的位置 1.两构件组成转动副 P12
1 2
以转动副相联,瞬心在其中心处。
P12、P13 的位置(绝对瞬心),P23
平面机构的运动分析

2
极点
c'
n ''
vB
p'
aB
b'
aE a p ' e '
n
e'
n'
加速度多边形
★加速度多边形的特性
2
极点
c'
n ''
p'
vB
aB
注意:速度影像和加速度影像只适用于 同一构件上的各点。
b'
n
e'
n'
加速度多边形
①由极点 p’ 向外放射的矢量代表构件相应点的绝对加速度;
2)确定直接联接构件的瞬心位置
3)用三心定理求非直接联接构件的瞬心位置 枚举法用于构件数较少的机构,构件较多用点元法求解。
《机械原理》
第三章 平面机构运动分析 ——利用瞬心法进行机构速度分析
例1:图示五杆机构,标出全部瞬心。
1、瞬心数目:
N n(n 1) 2
5 (5 1) 2
10
A1 (A2)
2
P12
② 已知任意两点A、B的相对速 度方向,求瞬心点位置
( 二)速度瞬心的分类
◆ 绝对瞬心( absolute instant centre): 该点的绝对速度为零。 ◆ 相对瞬心( relative instant centre): 该点的绝对速度不为零。
1 2
P12
1 2
P12
P23
相联
瞬
心
P12
2
位
3
4
P34
置
的
确
1
定
两构 件非 运动
N n(n 1) 4 (4 1) 6
第3章平面机构的运动分析

⒈1 同一构件上两点间的速度、加速度的关系
在图示的曲柄滑块机构中,C的速度为 vC vB vCB
式中 vCB 为点C相对于点B的相对速度,其大小
等于
vCB lBC
而点C的加速度 aC 为
式中
acanbC
与
aBaCt B
aCB
aB
aCnB
aCt B
分别为点C对于B的相对法向
加速度和相对切向加速度。
上式中 2 / 4 为该机构的原动件2与从动件4的瞬时角速度之比,
即为机构的传动比。而由上式可见,此传动比等于该两构件的绝对
瞬心( P12、 P14)至其相对瞬心( P24 )之距离的反比。此一关
系,可以推广到平面机构中任意两构件角速度之间的关系中。
如图3-6所示为一曲柄滑块机构。设各构件的尺寸为已知,又
第3章 平面机构的运动分析
§3-1 机构运动分析的目的和方法 §3-2 速度瞬心及其在平面机构速度分析 中的应用 §3-3用矢量方程图解法作机构的速度和加 速度分析 §3-4综合运用瞬心法和矢量方程图解法对 复杂机构进行速度分析 §3-5用解析法作机构的运动分析
§3-1 机构运动分析的目的和方法
所谓机构的运动分析(Kinematic Analysis of Mechanisms) ,就是根据原动件的已知运动规律,求该 机构其他构件上某些点的位移、轨迹、速度和加速度, 以及这些构件的角位移、角速度和角加速度。上述内容, 无论是对于设计新的机械,还是了解现有机械的运动性 能,都是十分必要的。
故知两者相似,且其角标字母符号的顺序也是
一致的。
B ω1
A
E C
c'
n1'
n3'
机械原理第七版第三章

(二)、用解析法对平面连杆机构进行运动分析 用解析法对平面连杆机构进行运动分析又可分为:矢 量方程解析法、杆组法和矩阵法等。 矢量方程法是将机构中各种构件视为矢量,并构成封 闭矢量多边形,列出矢量方程,进而推导出未知量的表达 式。
复数矢量法 图示四杆机构,已知机构各构 件尺寸及原动件1的角位移θ 1和 角速度ω 1 ,现对机构进行位置、 速度、加速度分析 1、位置分析 矢量方程式:
第三章
平面机构的运动分析
§3-1 机构运动分析的任务、目的和方法 §3-2 用速度瞬心法作机构的速度分析
§3-3 用矢量方程图解法作机构的速度及 加速度分析
§3-4 综合运用瞬心法和矢量方程图解法 对复杂机构进行速度分析 §3-5 用解析法作机构的运动分析 返回
§3-1 机构运动分析的任务、目的和方法
i
2
l33e
i
3
l11 cos 1 l22 cos 2 l33 cos 3 l11 sin 1 l22 sin 2 l33 sin 3
3l3 sin( 3 2 ) 1l1 sin( 1 2 )
1L1 sin( 1 2 ) 3 L3 sin( 3 2 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
1L1 sin( 1 3 ) 2 L2 sin( 2 3 )
3、加速度分析
l11e i l22e i l33e i
1 2
3
2 i il1 1 e1
1
i l2 2e 2
1.任务 根据机构的尺寸及原动件已知运动规律,求构件中从动件上 某点的轨迹、位移、速度及加速度和构件的角位移、角速度及角 加速度。 2.目的 了解已有机构的运动性能,设计新的机械和研究机械动力性 能的必要前提。 3.方法 主要有图解法和解析法。图解法又有速度瞬心法和矢量方程 图解法(又称相对运动图解法)。 图解法: 形象、直观,用于平面机构简单方便,但精度 和求解效率较低。 解析法: 计算精度和求解效率高。可借助计算机计算。
机械原理第三章平面机构的运动分析

2 判定方法
通过违法副法、副移法或 推动法等方法进行判定。
3 应用举例
四连杆机构中的连杆2-连 杆3副是约束运动副。
运动副的数目
1
最大副数
运动副的最大数目取决于机构的自由度。
2
自由度
机构能够独立运动的最少块数。
3
计算方法
自由度 = 3 * (连杆总数 - 框架连杆数 - 3)
极迹法
极迹法是一种利用链接件的相对位置和运动方向进行运动分析的方法,通过 绘制链接件的轨迹,可以分析机构的运动特性。
机械原理第三章平面机构 的运动分析
平面机构是指运动发生在一个平面内的机械装置。本章将详细介绍平面机构 的分类、链接件运动、运动副的命名和判定以及优化设计等内容。
什么是平面机构
平面机构是运动发生在一个平面内的机械装置。它由链接件和运动副组成,可实现各种不同的运动效果。
平面机构的分类
四连杆机构
由四个连杆组成,可实现平面运动和转动。
由滑块和滑道组成的运动副。
键副
通过键配对组成的运动副。
独立运动副的判定
1 定义
独立运动副是能够单独实 现运动的副。
2 判定方法
通过遮挡法、违法副法或 推动法等方法进行判定。
3 应用举例
曲柄滑块机构中的曲柄-连 杆副是独立运动副。
约束运动副的判定
1 定义
约束运动副是通过其他副 的约束实现运动的副。
自由度的计算
自由度是机构能够独立运动的最少块数。通过计算机构的链接件数目和约束数目,可以确定机构的自由度。
平面机构的静力学分析
静力学分析是研究机构在静力平衡条件下的受力分布和力矩平衡的方法。通过分析机构的关节受力和连杆力矩, 可以确定机构的静力学特性。
第三章第三章平面机构的运动分析平面机构的运动分析

若既有滚动又有滑 动, 则瞬心在高副接 触点处的公法线上。
三、机构中瞬心位置的确定 (续) ◆ 不直接相联两构件的瞬心位置确定
三心定理:三个彼此作平面平行运动的构 件的三个瞬心必位于同一直线上。 例题:试确定平面四杆机构在图示位置 时的全部瞬心的位置。 解: 机构瞬心数目为: K=6 瞬心P13、P24用 于三心定理来求 P24 P12 P23 2 3 4 P34 P13
e
n n' ①由极点p1向外放射的矢量代表构件相应点的绝对加速 度;
b' 注意:速度影像和加速度影像 只适用于构件。
②连接两绝对加速度矢量矢端的矢量代表构件上相应两 点间的相对加速度,其指向与加速度的下角标相反; ③也存在加速度影像原理。
三、两构件重合点间的速度和加速度的关系
已知图示机构尺寸和原动件1的运动。求重合点C的运动。 1. 依据原理 构件2的运动可以认为是随同构件1的牵连运动和构件2 相对于构件1的相对运动的合成。 2、依据原理列矢量方程式 vc2c1 B 2 C1、C2、C3 C 大小: ? √ ? 方向:⊥ CD ⊥AC ∥AB
vC 2 = vC 1 + vC 2C 1
ω1
1
ac1 4
3 大小: √ ? √ D vc1 √ ? C→D ⊥CD √ 方向:
n k r aC2 = aC3D +atC3D = aC1 +aC2C1 +aC2C1
√ ∥AB
A
a
k C 2 C1
= 2ω1vC 2C1
科氏加速度方向是将vC2C1沿 牵连角速度ω1转过90o的方向。
(1) 速度解题步骤:
★求VC ①由运动合成原理列矢量方程式
v C = v B + v CB
机械原理平面机构的运动分析
机械原理平面机构的运动分析机械原理是研究机械结构的运动、力学性能和设计规律的一门学科。
而平面机构是机械原理中的一个重要概念,指的是在同一平面内运动的机构。
平面机构广泛应用于工程领域,例如各种机床、汽车、船舶等。
对平面机构的运动分析,可以帮助我们理解机构的运动性能以及设计出更加高效的机构。
平面机构的运动分析通常包括以下几个方面:1.机构的自由度和约束度分析:机构的自由度指的是机构在运动中能够独立自由变动的数量,约束度指的是机构在运动中受限制的数量。
自由度和约束度的分析可以帮助我们确定机构的运动特性和受力情况,从而进行更加准确的运动分析。
2.运动学分析:运动学分析是研究机构在运动中各个点的速度和加速度分布的过程。
通过运动学分析,可以确定机构在运动中的速度和加速度的大小和方向,进而计算出关键部位的动力学参数,如惯性力、跟随误差等。
3.强度和刚度分析:机构在运动过程中会受到一定的力学载荷,为了确保机构的正常工作和安全性,需要对机构的强度和刚度进行分析。
强度分析可以帮助我们确定机构的承载能力和应力状态,而刚度分析可以帮助我们确定机构的变形情况和运动精度。
4.动力学分析:动力学分析是研究机构在运动中产生的动力学特性的过程。
通过动力学分析,可以确定机构在运动中的力学响应和响应频率,进而验证机构的设计是否符合运动要求和预期的性能。
对于平面机构的运动分析,需要掌握以下基本方法和步骤:1.给定机构的几何结构和运动要求,确定机构的自由度和约束度。
2.建立机构的运动学模型,包括机构的运动副和约束副。
3.分析机构的运动学闭链,通过运动副和约束副的条件,建立运动学方程组,进而求解各个点的速度和加速度。
4.根据机构的几何结构和质量分布,建立机构的动力学模型,包括质点的质量和惯量矩阵。
5.根据运动学方程组和动力学模型,得到机构的动力学方程组,进而求解力学响应和响应频率。
6.对机构的强度和刚度进行分析,确定机构的设计是否满足要求。
机械原理-机构的运动分析
3、加速度分析
aC aB aCB
a C a C aB a CB a CB
n t n t
a B 12l AB
F
1
1 A B 2 E C
大小 lCD32
?
→A
lCB22 C→B
? ⊥CB
·
G
3
方向 C→D ⊥CD
取极点p’ ,按比例尺a作加速度图
1
4
D
' aC a p 'c ' aCB a b 'cc´
思考题:
P44 3-1
作业:
P44 3-3、3-6、3-8(b)
§3-3 用矢量方程图解法作机构的运动分析
一、矢量方程图解法的基本原理及作图法
1、基本原理 —— 相对运动原理 B(B1B2) 1
B
A
同一构件上两点间的运动关系
2
两构件重合点间的运动方程
vB v A vBA
aB a A aBA aA a
c´
aC a G e´
aCB
n2 ´ n2
p´
n3
aF
b´
加速度图分析小结: 1)p‘点代表所有构件上绝对加速度为零的影像点。 2)由p‘点指向图上任意点的矢量均代表机构图中对应点 的绝对加速度。 3)除 p′点之外,图中任意两个带“ ′”点间的连线 均代表机构图中对应两点间的相对加速度,其指向与加 速度的角标相反。 4)角加速度可用构件上任意两点之间的相对切向加速度 除于该两点之间的距离来求得,方向的判定采用矢量平 aCB b ' c ' 移法。 5)加速度影像原理:在加速度图上,同一构件上各点的 绝对加速度矢量终点构成的多边形与机构图中对应点构 成的多边形相似且角标字母绕行顺序相同。 6)加速度影像原理只能用于同一构件。
机械原理第3章平面机构的运动分析
机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理
机械原理典型例题(第三章运动分析)12-9-23
P14+∞
4
(P24 ) P12
P34
C 1
3
P13
4 C 3
M
P23 +∞ P13
2 3 B
P24+∞ P34
B P23
P14
νm
4 C
P12
A 1
2 P12
P24
1
P34+∞
P24
P14+∞
A
3-6:所示四杆机构中,LAB=60mm,LCD=90mm,LAD=LBC=120mm, ω2=10rad/S。试用瞬心法求:1)当φ =165°时,点C的速度VC; 2)当 VC=0时,φ 角之值; 3)当φ =165 °时,构件3的BC线上(或其延长线上)的 速度最小的一点E的位置及其速度。
例6:所示机构中,已知各构件的尺寸及点B的速度 ν B,试作出其在图示位置时的速度多变形。
VB D B C G F E A
F A B E VB D C
b f b d e
P(a,f)
d c
P (a,e )
c
g
3-8:所示机构中,已知各构件的尺寸及点B的速度 ν B,试作出其在图示位置时的速度多变形。
C
3
VE
4
E
VC= VC3= VC4
ω3=VB /LP23P13
P23B
ω2
2
VC
φ
P34
= ω3×LP34P13=ω4×LP34P14
D
=ω2×LP23P12 /LP23P13
P14
VB
P12
A
1
VC =ω2×LP23P12×LP34P13/LP2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
√ √ √ √ ? √ √ √ √ √
C B
p’
作图求解得: aC=μ ap’c’ 方向:p’ → c’ atCA=μ ac”’c’ 方向:c”’ → c’ atCB=μ ac’c” 方向:c” → c’
中南大学专用
? √ b’ b” c’
c”
作者:潘存云教授
a’
c”’
作者: 潘存云教授
角加速度:α =atBA/ lAB =μa b”b’ /μ l AB 方向:CW aBA= (atBA)2+ (anBA)2 =lAB α 2 +ω 4 =μ aa’b’ aCA= (atCA)2+ (anCA)2 =lCA α aCB= (at
作者:潘存云教授 作者:潘存云教授
中南大学专用
作者: 潘存云教授
速度多边形的用途: 由两点的速度可求任意点的速度。 例如,求BC中间点E的速度VE 时,bc上中间点e为E点的影 象,联接pe就是VE C A D a
作者:潘存云教授 作者:潘存云教授
E
B
思考题:连架杆AD的速度影像在何处?
e
c
p
b
中南大学专用
方向: b” → aBA=μ ab’ a’
中南大学专用
b’
b” a’
b’
方向:
a’ →b’
作者: 潘存云教授
同理: aC=aA + anCA+ atCA 不可解! 大小: ? √ ω 2lCA ? 方向: ? √ C→A ⊥CA 又: aC= aB + anCB+ atCB 不可解! 大小: ? √ ω 2lCB ? A 方向: ? √ C→B ⊥CB 联立方程: aC=aA + anCA+ atCA = aB + anCB+ atCB
1 ∞
n=4
P13
4
3
中南大学专用
2
P24 P23 P12 1
3 P34
P14
作者:潘存云教授
2
4
作者: 潘存云教授
举例:求图示六杆机构的速度瞬心。 解:瞬心数为:N=n(n-1)/2=15 n=6 1.作瞬心多边形圆
2.直接观察求瞬心
3.三心定律求瞬心
P24
P15
∞
1 6 2 3 P13 4
中南大学专用作者: 潘源自云教授2) 加速度关系 设已知角速度ω ,A点加速度和aB的方向 A B两点间加速度之间的关系有: aB=aA + anBA+ atBA 大小: ? √ ω 2lAB ? 方向:√ √ B→A ⊥BA
C
作者:潘存云教授
aB
A
aA
B
p’
选加速度比例尺μ a m/s2/mm, 在任意点p’作图使aA=μ ap’a’ 求得:aB=μ ap’b’ atBA=μ ab”b’
中南大学专用
P13 n
VP23
相对瞬心位于两绝对瞬心之间,两构件转向相反。
作者: 潘存云教授
3.求传动比 定义:两构件角速度之比传动比。 ω 3 /ω 2 = P12P23 / P13P23 P12 ω 2 推广到一般: 1 ω i /ω j =P1jPij / P1iPij
2
P233 ω 3 P13
P36
P26 P35
P34 P25
作者:潘存云教授
5
P12 P46 作者:潘存云教授 P45 4 P14 1
2
P23
3 ∞ P16
5 P56
6
作者: 潘存云教授
四、速度瞬心在机构速度分析中的应用 1.求线速度 解: ①直接观察求瞬心P13、 P23 。 ②根据三心定律和公法线 n-n求瞬心的位置P12 。
3 P23 n2 ∞
已知凸轮转速ω 1,求推杆的速度。
ω 11
P13 V2 P12 n
③求瞬心P12的速度 。 V2=V P12=μ l(P13P12)· 1 ω
长度P13P12直接从图上量取。
中南大学专用 作者: 潘存云教授
2.求角速度 a)铰链机构 已知构件2的转速ω 2,求构件4的角速度ω 4 。 解:①瞬心数为 6个 ②直接观察能求出 4个
4
作者:潘存云教授
ω4
P14
相对瞬心位于两绝对瞬心的同一侧,两构件转向相同
作者: 潘存云教授
b)高副机构 已知构件2的转速ω 2,求构件3的角速度ω 3 。 解: 用三心定律求出P23 。
求瞬心P23的速度 :
n
P12 ω 2
1 2 3ω3 P23
VP23=μ l(P23P12)· 2 ω
VP23=μ l(P23P13)· 3 ω ∴ω 3=ω 2· 13P23/P12P23) (P 方向: CCW, 与ω 2相反。
中南大学专用
P12 P23
4 6
5 10
6 15
8 28
作者: 潘存云教授
3)机构瞬心位置的确定
1.直接观察法 适用于求通过运动副直接相联的两构件瞬心位置。
P12 P12 2 ∞ 1 n 1 2 n
1
2
1
2
P12
t
t
V12
2.三心定律 定义:三个彼此作平面运动的构件共有三个瞬 心,且它们位于同一条直线上。此法特别适用 于两构件不直接相联的场合。
中南大学专用 作者: 潘存云教授
P21 A2
VB2 B2 A’2 VA2
D3 VD3 P32
2
E’3 VE3 E3 3
作者:潘存云教授
P31
1
结论: P21 、 P 31 、 P 32 位于同一条直线上。
中南大学专用
作者: 潘存云教授
举例:求曲柄滑块机构的速度瞬心。 解:瞬心数为:N=n(n-1)/2=6 1.作瞬心多边形圆 2.直接观察求瞬心 3.三心定律求瞬心
中南大学专用 作者: 潘存云教授
§3-3 用矢量方程图解法作机构速度和加速度分析 一、基本原理和方法 1.矢量方程图解法 设有矢量方程: D= A + B + C 因每一个矢量具有大小和方向两个参数,根据已 知条件的不同,上述方程有以下四种情况: D= A + B + C 大小:? √ √ √ 方向:? √ √ √ D= A + B + C 大小:√ ? ? √ 方向:√ √ √ √ B A
P13
中南大学专用
余下的2个用三心定律求出。 P23 3 VP24 ③求瞬心P24的速度 。 2 ω2 1 VP24=μ l(P24P12)· 2 ω P24 P12 VP24=μ l(P24P14)· 4 ω ω 4 =ω 2· 24P12)/ P24P14 (P 方向: CW, 与ω 2相同。
P34
第三章 平面机构的运动分析
§3-1机构运动分析的目的与方法 §3-2速度瞬心及其在机构速度分析中的应用 §3-3用矢量方程图解法作机构速度和加速度 分析 §3-4综合运用瞬心法和矢量方程图解法对复 杂机构进行速度分析 §3-5用解析法作机构的运动分析
中南大学专用 作者: 潘存云教授
§3-1 机构运动分析的目的与方法
B A
D
中南大学专用
C
D
C
作者: 潘存云教授
D= A + B + C 大小:√ √ √ √ 方向:√ √ ? ?
B
D= A + B + C 大小:√ ? √ √ 方向:√ √ ? √
B
A
D
C
A
D
C
中南大学专用
作者: 潘存云教授
2.同一构件上两点速度和加速度之间的关系 1) 速度之间的关系
VB=VA+VBA 设已知大小: ? √ ? 方向: √ √ ⊥BA
结论:
①两构件的角速度之比等于绝对瞬心至相对 瞬心的距离之反比。 ②角速度的方向为:
相对瞬心位于两绝对瞬心之间时,两构件转向相反。
中南大学专用 作者: 潘存云教授
相对瞬心位于两绝对瞬心的同一侧时,两构件转向相同。
4.用瞬心法解题步骤 ①绘制机构运动简图; ②求瞬心的位置; ③求出相对瞬心的速度; ④求构件绝对速度V或角速度ω 。 瞬心法的优缺点: ①适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过程复杂。 ②有时瞬心点落在纸面外。 ③仅适于求速度V,使应用有一定局限性。
同理有: VC=VB+VCB 大小: ? √ ? 方向: ? √ ⊥CB 联立方程有: VC=VA+VCA =VB+VCB 大小: ? √ ? 方向: ? √ ⊥CA √ ? √ ⊥CB
不可解!
C A a B
作图得:VC=μ
v
pc
v
方向:p → c
方向: a → c 方向: b → c
VCA=μ
ac
CB
2
2
+ω
+ω
4 =μ
4 =μ
a’c’ a
b’c’ a C
作者:潘存云教授
) 2+
(an
CB
)2
=lCB α
得:a’b’/ lAB=b’c’/ lBC= a’ c’/ lCA ∴ △a’b’c’∽△ABC 称p’a’b’c’为加速度多边形 (或速度图解), p’-极点 加速度多边形的特性: ①联接p’点和任一点的向量代表该 点在机构图中同名点的绝对加速 度,指向为p’→该点。
中南大学专用
作者: 潘存云教授
2.速度分析 ①通过分析,了解从动件的速度变化规律是否满足 工作要求。如牛头刨
②为加速度分析作准备。
3.加速度分析的目的是为确定惯性力作准备。
方法:
图解法-简单、直观、精度低、求系列位置时繁琐。 解析法-正好与以上相反。 实验法-试凑法,配合连杆曲线图册,用于解决 实现预定轨迹问题。