2011年高考真题解析数学(文科)19选修系列:不等式选讲

合集下载

2011年北京市高考数学试卷(文科)答案与解析

2011年北京市高考数学试卷(文科)答案与解析

2011年北京市高考数学试卷(文科)参考答案与试题解析一、选择题(共8小题,每小题5分,满分40分)1.(5分)(2011•北京)已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1]B.[1,+∞)C.[﹣1,1]D.(﹣∞,﹣1)∪(1,+∞)【考点】补集及其运算.【专题】集合.【分析】先求出集合P中的不等式的解集,然后由全集U=R,根据补集的定义可知,在全集R中不属于集合P的元素构成的集合为集合A的补集,求出集合P的补集即可.【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到C U P=(﹣∞,1)∪(1,+∞).故选D【点评】此题属于以不等式的解集为平台,考查了补集的运算,是一道基础题.2.(5分)(2011•北京)复数=()A.i B.﹣i C.D.【考点】复数代数形式的混合运算.【专题】数系的扩充和复数.【分析】将分子、分母同乘以1﹣2i,再按多项式的乘法法则展开,将i2用﹣1代替即可.【解答】解:==i故选A【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数;再按多项式的乘法法则展开即可.3.(5分)(2011•北京)如果那么()A.y<x<1 B.x<y<1 C.1<x<y D.1<y<x【考点】对数函数的单调性与特殊点.【专题】函数的性质及应用.【分析】本题所给的不等式是一个对数不等式,我们要先将不等式的三项均化为同底根据对数函数的单调性,即可得到答案.【解答】解:不等式可化为:又∵函数的底数0<<1故函数为减函数∴x>y>1故选D【点评】本题考查的知识点是对数函数的单调性与特殊点,其中根据对数函数的性质将对数不等式转化为一个整式不等式是解答本题的关键.4.(5分)(2011•北京)若p是真命题,q是假命题,则()A.p∧q是真命题B.p∨q是假命题C.﹁p是真命题D.﹁q是真命题【考点】复合命题的真假.【专题】简易逻辑.【分析】根据题意,由复合命题真假表,依次分析选项即可作出判断.【解答】解:∵p是真命题,q是假命题,∴p∧q是假命题,选项A错误;p∨q是真命题,选项B错误;¬p是假命题,选项C错误;¬q是真命题,选项D正确.故选D.【点评】本题考查复合命题的真假情况.5.(5分)(2011•北京)某四棱锥的三视图如图所示,该四棱锥的表面积是()A.32 B.16+16 C.48 D.16+32【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据所给的三视图得到四棱锥的高和底面的长和宽,首先根据高做出斜高,做出对应的侧面的面积,再加上底面的面积,得到四棱锥的表面积.【解答】解:由题意知本题是一个高为2,底面是一个长度为4的正方形的四棱锥,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,∴四个侧面积是,底面面积是4×4=16,∴四棱锥的表面积是16+16,故选:B.【点评】本题考查有三视图求表面积和体积,考查由三视图得到几何图形,考查简单几何体的体积和表面积的做法,本题是一个基础题.6.(5分)(2011•北京)执行如图所示的程序框图,若输入A的值为2,则输入的P值为()A.2 B.3 C.4 D.5【考点】循环结构.【专题】算法和程序框图.【分析】根据输入A的值,然后根据S进行判定是否满足条件S≤2,若满足条件执行循环体,依此类推,一旦不满足条件S≤2,退出循环体,求出此时的P值即可.【解答】解:S=1,满足条件S≤2,则P=2,S=1+=满足条件S≤2,则P=3,S=1++=满足条件S≤2,则P=4,S=1+++=不满足条件S≤2,退出循环体,此时P=4故选:C【点评】本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断.7.(5分)(2011•北京)某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x件,则平均仓储时间为天,且每件产品每天的仓储费用为1元.为使平均每件产品的生产准备费用与仓储费用之和最小,每批应生产产品()A.60件B.80件C.100件D.120件【考点】函数模型的选择与应用.【专题】函数的性质及应用.【分析】若每批生产x件,则平均仓储时间为天,可得仓储总费用为,再加上生产准备费用为800元,可得生产x件产品的生产准备费用与仓储费用之和是=元,由此求出平均每件的生产准备费用与仓储费用之和,再用基本不等式求出最小值对应的x值【解答】解:根据题意,该生产x件产品的生产准备费用与仓储费用之和是=这样平均每件的生产准备费用与仓储费用之和为(x为正整数)由基本不等式,得当且仅当时,f(x)取得最小值、可得x=80时,每件产品的生产准备费用与仓储费用之和最小故答案为B【点评】本题结合了函数与基本不等式两个知识点,属于中档题,运用基本不等式时应该注意取等号的条件,才能准确给出答案.8.(5分)(2011•北京)已知点A(0,2),B(2,0).若点C在函数y=x2的图象上,则使得△ABC的面积为2的点C的个数为()A.4 B.3 C.2 D.1【考点】抛物线的应用.【专题】函数的性质及应用.【分析】本题可以设出点C的坐标(a,a2),求出C到直线AB的距离,得出三角形面积表达式,进而得到关于参数a的方程,转化为求解方程根的个数(不必解出这个跟),从而得到点C的个数.【解答】解:设C(a,a2),由已知得直线AB的方程为,即:x+y﹣2=0点C到直线AB的距离为:d=,有三角形ABC的面积为2可得:=|a+a2﹣2|=2得:a2+a=0或a2+a﹣4=0,显然方程共有四个根,可知函数y=x2的图象上存在四个点(如上面图中四个点C1,C2,C3,C4)使得△ABC的面积为2(即图中的三角形△ABC1,△ABC2,△ABC3,△ABC4).故应选:A【点评】本题考查了截距式直线方程,点到直线的距离公式,三角形的面积的求法,就参数的值或范围,考查了数形结合的思想二、填空题(共6小题,每小题5分,满分30分)9.(5分)(2011•北京)在△ABC中.若b=5,,sinA=,则a=.【考点】正弦定理.【专题】解三角形.【分析】直接利用正弦定理,求出a 的值即可.【解答】解:在△ABC中.若b=5,,sinA=,所以,a===.故答案为:.【点评】本题是基础题,考查正弦定理解三角形,考查计算能力,常考题型.10.(5分)(2011•北京)已知双曲线(b>0)的一条渐近线的方程为y=2x,则b=2.【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用双曲线的标准方程写出其渐近线方程是解决本题的关键,根据已知给出的一条渐近线方程对比求出b的值.【解答】解:该双曲线的渐近线方程为,即y=±bx,由题意该双曲线的一条渐近线的方程为y=2x,又b>0,可以得出b=2.故答案为:2.【点评】本题考查根据双曲线方程求解其渐近线方程的方法,考查学生对双曲线标准方程和渐近线方程的认识和互相转化,考查学生的比较思想,属于基本题型.11.(5分)(2011•北京)已知向量=(,1),=(0,﹣1),=(k,).若与共线,则k=1.【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】利用向量的坐标运算求出的坐标;利用向量共线的坐标形式的充要条件列出方程,求出k的值.【解答】解:∵与共线,∴解得k=1.故答案为1.【点评】本题考查向量的坐标运算、考查向量共线的坐标形式的充要条件:坐标交叉相乘相等.12.(5分)(2011•北京)在等比数列{a n}中,a1=,a4=﹣4,则公比q=﹣2;a1+a2+…+a n=.【考点】等比数列的性质;等比数列.【专题】等差数列与等比数列.【分析】根据等比数列的性质可知,第4项比第1项得到公比q的立方等于﹣8,开立方即可得到q的值,然后根据首项和公比,根据等比数列的前n项和的公式写出此等比数列的前n项和S n的通项公式,化简后即可得到a1+a2+…+a n的值.【解答】解:q3==﹣8∴q=﹣2;由a1=,q=﹣2,得到:等比数列的前n项和S n=a1+a2+…+a n==.故答案为:﹣2;【点评】此题考查学生掌握等比数列的性质,灵活运用等比数列的前n项和公式化简求值,是一道基础题.13.(5分)(2011•北京)已知函数若关于x 的方程f(x)=k有两个不同的实根,则数k的取值范围是(0,1).【考点】根的存在性及根的个数判断.【专题】函数的性质及应用.【分析】要求程f(x)=k有两个不同的实根是数k的取值范围,根据方程的根与对应函数零点的关系,我们可以转化为求函数y=f(x)与函数y=k交点的个数,我们画出函数的图象,数形结合即可求出答案.【解答】解:函数的图象如下图所示:由函数图象可得当k∈(0,1)时方程f(x)=k有两个不同的实根,故答案为:(0,1)【点评】本题考查的知识点是根的存在性及根的个数判断,其中根据方程的根与对应函数零点的关系,将方程问题转化为函数问题是解答的关键.14.(5分)(2011•北京)设A(0,0),B(4,0),C(t+4,3),D(t,3)(t∈R).记N(t)为平行四边形ABCD内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N(0)=6,N(t)的所有可能取值为6、7、8.【考点】二元一次不等式(组)与平面区域.【专题】不等式的解法及应用.【分析】作出平行四边形,结合图象得到平行四边形中的整数点的个数.【解答】解:当t=0时,平行四边形ABCD内部的整点有(1,1);(1,2);(2,1);(2,2);(3,1);(3,2)共6个点,所以N(0)=6作出平行四边形ABCD将边OD,BC变动起来,结合图象得到N(t)的所有可能取值为6,7,8故答案为:6;6,7,8【点评】本题考查画可行域、考查数形结合的数学思想方法.三、解答题(共6小题,满分80分)15.(13分)(2011•北京)已知函数.(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间上的最大值和最小值.【考点】三角函数的周期性及其求法;两角和与差的余弦函数;三角函数的最值.【专题】三角函数的图像与性质.【分析】(Ⅰ)利用两角和公式和二倍角公式对函数的解析式进行化简整理后,利用正弦函数的性质求得函数的最小正周期.(Ⅱ)利用x的范围确定2x+的范围,进而利用正弦函数的单调性求得函数的最大和最小值.【解答】解:(Ⅰ)∵,=4cosx()﹣1=sin2x+2cos2x﹣1=sin2x+cos2x=2sin(2x+),所以函数的最小正周期为π;(Ⅱ)∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=,即x=时,f(x)取最大值2,当2x+=﹣时,即x=﹣时,f(x)取得最小值﹣1.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的最值.解题的关键是对函数解析式的化简整理.16.(13分)(2011•北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(注:方差,其中的平均数)(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.【考点】茎叶图;众数、中位数、平均数;极差、方差与标准差.【专题】概率与统计.【分析】(1)根据所给的这组数据,利用求平均数的公式,把所有的数据都相加,再除以4,得到平均数,代入求方差的公式,做出方差.(2)本题是一个等可能事件的概率.分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,可以列举出共有4种结果,根据等可能事件的概率公式得到结果.【解答】解:(1)当X=8时,由茎叶图可知乙组同学的植树棵树是8,8,9,10,∴平均数是,方差是+=.(2)由题意知本题是一个等可能事件的概率.若X=9,分别从甲、乙两组中随机选取一名同学,共有16种结果,满足条件的事件是这两名同学的植树总棵数为19,包括:(9,10),(11,8),(11,8),(9,10)共有4种结果,∴根据等可能事件的概率公式得到P=.【点评】本题考查一组数据的平均数和方差,考查等可能事件的概率,考查利用列举法来列举出符合条件的事件数和满足条件的事件数,本题是一个文科的考试题目.17.(14分)(2011•北京)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB的中点.(Ⅰ)求证:DE∥平面BCP;(Ⅱ)求证:四边形DEFG为矩形;(Ⅲ)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【专题】空间位置关系与距离;立体几何.【分析】(Ⅰ)根据两个点是两条边的中点,得到这条线是两条边的中位线,得到这条线平行于PC,根据线面平行的判定定理,得到线面平行.(Ⅱ)根据四个点是四条边的中点,得到中位线,根据中位线定理得到四边形是一个平行四边形,根据两条对角线垂直,得到平行四边形是一个矩形.(Ⅲ)做出辅助线,证明存在点Q到四面体PABC六条棱的中点的距离相等,根据第二问证出的四边形是矩形,根据矩形的两条对角线互相平分,又可以证出另一个矩形,得到结论.【解答】证明:(Ⅰ)∵D,E分别为AP,AC的中点,∴DE∥PC,∵DE⊄平面BCP,∴DE∥平面BCP.(Ⅱ)∵D,E,F,G分别为AP,AC,BC,PB的中点,∴DE∥PC∥FG,DG∥AB∥EF∴四边形DEFG为平行四边形,∵PC⊥AB,∴DE⊥DG,∴四边形DEFG为矩形.(Ⅲ)存在点Q满足条件,理由如下:连接DF,EG,设Q为EG的中点,由(Ⅱ)知DF∩EG=Q,且QD=QE=QF=QG=EG,分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN,与(Ⅱ)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=EG,∴Q为满足条件的点.【点评】本题考查直线与平面平行的判定,考查三角形中位线定理,考查平行四边形和矩形的判定及性质,本题是一个基础题.18.(13分)(2011•北京)已知函数f(x)=(x﹣k)e x.(Ⅰ)求f(x)的单调区间;(Ⅱ)求f(x)在区间[0,1]上的最小值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(I)求导,令导数等于零,解方程,跟据f′(x)f(x)随x的变化情况即可求出函数的单调区间;(Ⅱ)根据(I),对k﹣1是否在区间[0,1]内进行讨论,从而求得f(x)在区间[0,1]上的最小值.【解答】解:(Ⅰ)f′(x)=(x﹣k+1)e x,令f′(x)=0,得x=k﹣1,f′(x)f(x)随x的变化情况如下:x (﹣∞,k﹣1)k﹣1 (k﹣1,+∞)f′(x)﹣0 +f(x)↓﹣e k﹣1↑∴f(x)的单调递减区间是(﹣∞,k﹣1),f(x)的单调递增区间(k﹣1,+∞);(Ⅱ)当k﹣1≤0,即k≤1时,函数f(x)在区间[0,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(0)=﹣k;当0<k﹣1<1,即1<k<2时,由(I)知,f(x)在区间[0,k﹣1]上单调递减,f(x)在区间(k﹣1,1]上单调递增,∴f(x)在区间[0,1]上的最小值为f(k﹣1)=﹣e k﹣1;当k﹣1≥1,即k≥2时,函数f(x)在区间[0,1]上单调递减,∴f(x)在区间[0,1]上的最小值为f(1)=(1﹣k)e;综上所述f(x)min=.【点评】此题是个中档题.考查利用导数研究函数的单调性和在闭区间上的最值问题,对方程f'(x)=0根是否在区间[0,1]内进行讨论,体现了分类讨论的思想方法,增加了题目的难度.19.(14分)(2011•北京)已知椭圆G:=1(a>b>0)的离心率为,右焦点为(2,0),斜率为1的直线l与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(﹣3,2).(Ⅰ)求椭圆G的方程;(Ⅱ)求△PAB的面积.【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(Ⅰ)根据椭圆离心率为,右焦点为(,0),可知c=,可求出a的值,再根据b2=a2﹣c2求出b的值,即可求出椭圆G的方程;(Ⅱ)设出直线l的方程和点A,B的坐标,联立方程,消去y,根据等腰△PAB,求出直线l方程和点A,B的坐标,从而求出|AB|和点到直线的距离,求出三角形的高,进一步可求出△PAB的面积.【解答】解:(Ⅰ)由已知得,c=,,解得a=,又b2=a2﹣c2=4,所以椭圆G的方程为.(Ⅱ)设直线l的方程为y=x+m,由得4x2+6mx+3m2﹣12=0.①设A,B的坐标分别为(x1,y1),(x2,y2)(x1<x2),AB的中点为E(x0,y0),则x0==﹣,y0=x0+m=,因为AB是等腰△PAB的底边,所以PE⊥AB,所以PE的斜率k=,解得m=2.此时方程①为4x2+12x=0.解得x1=﹣3,x2=0,所以y1=﹣1,y2=2,所以|AB|=3,此时,点P(﹣3,2).到直线AB:y=x+2距离d=,所以△PAB的面积s=|AB|d=.【点评】此题是个中档题.考查待定系数法求椭圆的方程和椭圆简单的几何性质,以及直线与椭圆的位置关系,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.20.(13分)(2011•北京)若数列A n:a1,a2,…,a n(n≥2)满足|a k+1﹣a k|=1(k=1,2,…,n﹣1),则称A n为E数列,记S(A n)=a1+a2+…+a n.(Ⅰ)写出一个E数列A5满足a1=a3=0;(Ⅱ)若a1=12,n=2000,证明:E数列A n是递增数列的充要条件是a n=2011;(Ⅲ)在a1=4的E数列A n中,求使得S(A n)=0成立得n的最小值.【考点】数列的应用.【专题】点列、递归数列与数学归纳法.【分析】(Ⅰ)根据题意,a2=±1,a4=±1,再根据|a k+1﹣a k|=1给出a5的值,可以得出符合题的E数列A5;(Ⅱ)从必要性入手,由单调性可以去掉绝对值符号,可得是A n公差为1的等差数列,再证充分性,由递增数列的性质得出不等式,再利用同向不等式的累加,可得a k+1﹣a k=1>0,A n是递增数列;(Ⅲ)由|a k+1﹣a k|=1,可得a k+1≥a k﹣1,再结合已知条件a1=4,可得n的最小值.【解答】解:(Ⅰ)0,1,0,1,0是一个满足条件的E数列A5(答案不唯一,0,﹣1,0,﹣1,0或0,±1,0,1,2或0,±1,0,﹣1,﹣2或0,±1,0,﹣1,0都满足条件的E数列A5)(Ⅱ)必要性:因为E数列A n是递增数列所以a k+1﹣a k=1(k=1,2, (1999)所以A n是首项为12,公差为1的等差数列.所以a2000=12+(2000﹣1)×1=2011充分性:由于a2000﹣a1999≤1a1999﹣a1998≤1…a2﹣a1≤1,所以a2000﹣a1≤1999,即a2000≤a1+1999又因为a1=12,a2000=2011所以a2000≤a1+1999故a k+1﹣a k=1>0(k=1,2,…,1999),即A n是递增数列.综上所述,结论成立.(Ⅲ)对首项为4的E数列A n,由于a2≥a1﹣1=3a3≥a2﹣1≥2…a8≥a7﹣1≥﹣3…所以a1+a2+…+a k>0(k=2,3,…,8),所以对任意的首项为4的E数列A n,若S(A n)=0,则必有n≥9,又a1=4的E数列A9:4,3,2,1,0,﹣1,﹣2,﹣3,﹣4满足S(A9)=0,所以n的最小值是9.【点评】本题以数列为载体,考查了不等式的运用技巧,属于难题,将题中含有绝对值的等式转化为不等式是解决此题的关键.。

2011年高考新课标卷文科数学试题(解析版)

2011年高考新课标卷文科数学试题(解析版)

2011年普通高等学校招生全国统一考试(新课标全国卷)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其他题为必考题第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{0,1,2,3,4}M =,{1,3,5}N =,P MN =,则P 的子集共有A .2个B .4个C .6个D .8个 【答案】B 【解析】P M N =={1,3},故P 的子集有224=个.2.复数5i12i=- A .2i - B .12i - C .2i -+ D .12i -+ 【答案】C 【解析】5i 5i(12i)2i 12i (12i)(12i)+==-+--+. 3.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是A .3y x =B .||1y x =+C .21y x =-+ D .||2x y -=【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,||2x y -=在(0,)+∞上为减函数,故选B .4.椭圆221168x y +=的离心率为A .13 B .12C D .2【答案】D【解析】由221168x y +=可知216a =,28b =,∴2228c a b =-=,∴22212c e a ==,∴22e =. 5.执行右面的程序框图,如果输入的N 是6,那么输出的p 是A .120B .720C .1440D .5040 【答案】B【解析】由程序框图可得,输出的123456720p =⨯⨯⨯⨯⨯=,选B6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A .13 B .12 C .23 D .34【答案】A【解析】记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此31()93P A ==. 7.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=A .45-B .35-C .35D .45【答案】B【解析】由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++,选B .8.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A【答案】D【解析】通过正视图及俯视图可看出该几何体为半个圆锥和一个三棱锥组合在一起,故侧视图为D .9.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于,A B 两点,||AB =12,P 为C 的准线上一点,则ABP ∆的面积为_____.A .18B .24C .36D .48 【答案】C【解析】设抛物线方程为22y px =,则焦点坐标为(,0)2p ,将2px =代入22y px =可得22y p =,||AB =12,即2p =12,∴p =6.点P 在准线上,到AB 的距离为p =6,所以ABP ∆面积为1612362⨯⨯=. 10.在下列区间中,函数()43xf x e x =+-的零点所在的区间为_____. A .1(,0)4- B .1(0,)4 C .11(,)42 D .13(,)24【答案】C【解析】因为114411()432044f e e =+⨯-=-<,112211()431022f e e =+⨯-=->,所以()43xf x e x =+-的零点所在的区间为11(,)42.11.设函数()sin(2)cos(2)44f x x x ππ=+++,则 A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称 B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称 C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称 D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【答案】D【解析】因为()sin(2)cos(2)44f x x x ππ=+++=2sin(2)2x π+=2cos 2x , 所以2cos 2y x =,在(0,)2π单调递减,对称轴为2x k π=,即2k x π=(k ∈Z ).12.已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有_____.A .10个B .9个C .8个D .1个 【答案】A【解析】画出两个函数图象可看出交点有10个.第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = .【答案】1【解析】∵+a b 与k -a b 垂直,∴(+a b )·(k -a b ) =0,化简得(1)(1)0k -⋅+=a b ,根据a 、b 向量不共线,且均为单位向量得10⋅+≠a b ,得10k -=,即1k =. 14.若变量x ,y 满足约束条件32969x y x y ≤+≤⎧⎨≤-≤⎩,则2z x y =+的最小值是_________.【答案】-6【解析】画出区域图知,当直线2z x y =+过239x y x y +=⎧⎨-=⎩的交点(4,-5)时,min 6z =-.15.ABC ∆中,120,7,5B AC AB =︒==,则ABC ∆的面积为_________.153【解析】根据sin sin AB ACC B=得5353sin sin 7AB C B AC === 25311cos 1()1414C =-=, 所以sin sin[()]sin cos sin cos A B C B C C B π=-+=+3111533321421414=⨯-⨯=. 因此ABC S ∆=1133153sin 7522144AB AC A ⨯⨯⨯=⨯⨯⨯= 16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 【答案】13【解析】设球心为1O ,半径为1r ,圆锥底面圆圆心为2O ,半径为2r ,则有22123416r r ππ⨯=,即212r r =,所以1122r O O ==, 设两个圆锥中,体积较小者的高与体积较大者的高分别为1h 、2h ,则1111211232r r h r h r -==+.三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=;(Ⅱ)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【解析】(Ⅰ)因为.31)31(311n n n a =⨯=- ,2311311)311(31nn n S -=--= 所以,21nn a S --(Ⅱ)n n a a a b 32313log log log +++=)21(n +++-=2)1(+-=n n 所以}{n b 的通项公式为.2)1(+-=n n b n18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.【解析】(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而222BD AD AB +=,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面P AD. 故 P A ⊥BD(Ⅱ)如图,作DE ⊥PB ,垂足为E .已知PD ⊥底面ABCD ,则PD ⊥BC .由(Ⅰ)知BD ⊥AD ,又BC //AD ,所以BC ⊥BD . 故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知,PD =1,则BD =3,PB =2,根据BE ·PB =PD ·BD ,得DE =23, 即棱锥D —PBC 的高为.2319.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到时下面试验结果:A 配方的频数分布表B 配方的频数分布表(Ⅰ)分别估计用A 配方,B 配方生产的产品的优质品率;(Ⅱ)已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩,估计用B 配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.【解析】(Ⅰ)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42.(Ⅱ)由条件知,用B 配方生产的一件产品的利润大于0当且仅当其质量指标值94t ≥,由试验结果知,质量指标值94t ≥的频率为0.96.所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元).20.(本小题满分12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交于,A B 两点,且OA OB ⊥,求a 的值. 【解析】(Ⅰ)曲线162+-=x x y 与y 轴的交点为(0,1),与x 轴的交点为().0,223(),0,223-+故可设C 的圆心为(3,t ),则有,)22()1(32222t t +=-+解得t =1.则圆C 的半径为.3)1(322=-+t 所以圆C 的方程为.9)1()3(22=-+-y x(Ⅱ)设A (11,y x ),B (22,y x ),其坐标满足方程组:⎪⎩⎪⎨⎧=-+-=+-.9)1()3(,022y x a y x 消去y ,得到方程.012)82(222=+-+-+a a x a x由已知可得,判别式.0416562>--=∆a a因此,,441656)28(22,1a a a x --±-=从而2120,422121+-=-=+a a x x a x x①由于OA ⊥OB ,可得,02121=+y y x x 又,,2211a x y a x y +=+=所以.0)(222121=+++a x x a x x②由①,②得1-=a ,满足,0>∆故.1-=a21.(本小题满分12分)已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a ,b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-. 【解析】(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =.(Ⅱ)由(Ⅰ)知ln 1f ()1x x x x=++,所以 )1ln 2(111ln )(22xx x x x x x f -+-=-=考虑函数()2ln h x x =+xx 12-(0)x >,则22222)1()1(22)(xx x x x x x h --=---=' 所以当1≠x 时,,0)1(,0)(=<'h x h 而故 当)1,0(∈x 时,;0)(11,0)(2>->x h x x h 可得当),1(+∞∈x 时,;0)(11,0)(2>-<x h xx h 可得从而当.1ln )(,01ln )(,1,0->>--≠>x xx f x x x f x x 即且请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.EB(Ⅰ)证明:,,,C B D E 四点共圆;(Ⅱ)若90A ∠=︒,且4,6,m n ==求,,,C B D E 所在圆的半径.【解析】(Ⅰ)连结DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=. 又DAE CAB ∠=∠,从而ADE ∆∽ACB ∆. 因此ADE ACB ∠=∠. 所以C ,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连结DH . 因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC ,从而5HF AG ==,()112252DF =-=. 故C ,B ,D ,E 四点所在圆的半径为23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数),M 为1C 上的动点,P 点满足2OP OM =,点P 的轨迹为曲线2C . (Ⅰ)求2C 的方程;ADB C GEM(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【解析】(Ⅰ)设(),P x y ,则由条件知,22x y M ⎛⎫⎪⎝⎭,由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩. 从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数).(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin 3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=,所以12AB ρρ=-=24.(本小题满分10分)选修4-5:不等式选讲设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x ≥+的解集.(Ⅱ)若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值. 【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为12x -≥由此可得3x ≥或1x ≤-,故不等式()32f x x ≥+的解集为{3x x ≥或}1x ≤-. (Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组 30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩即4x a a x ≥⎧⎪⎨≤⎪⎩或2x aa x ≤⎧⎪⎨≤-⎪⎩.由于0a >,所以不等式组的解集为2a x x ⎧⎫≤-⎨⎬⎭⎩.由题设可得12a-=-,故2a =.。

2011年辽宁高考数学文科试卷带详解

2011年辽宁高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试(辽宁卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x 1|>x },B ={x 21|<<-x },则A B = ( )A. {x 21|<<-x }B. {x 1|->x }C. {x 11|<<-x }D. {x 21|<<x } 【测量目标】集合的基本运算(交集).【考查方式】集合的表示(描述法),求集合的交集. 【参考答案】D【试题解析】利用数轴可以得到A B ={x 1|>x } {x 21|<<-x }={x 21|<<x }. 2.i 为虚数单位,3571111i i i i+++= ( ) A. 0B. 2iC. 2i -D. 4i【测量目标】复数代数形式的四则运算.【考查方式】结合复数代数形式和方幂来考查四则运算. 【参考答案】A 【试题解析】3571111i i i i 0i i i i +++=-+-+=. 3.已知向量(2,1)=a ,(1,)k =-b ,(2)0-=a a b ,则=k ( )A. 12-B. 6-C. 6D. 12【测量目标】平面向量的数量积的综合应用.【考查方式】给出两向量数量积为零的条件,求待定参数. 【参考答案】D【试题解析】因为(2,1),(1,)k ==-a b ,所以2(5,2)k -=-a b .(步骤1) 又(2)0⋅-=a a b ,所以0)2(152=-⨯+⨯k ,得12=k .(步骤2)4.已知命题P :∃n ∈N ,2n>1000,则P ⌝为 ( )A. ∀n ∈N ,2n≤1000 B. ∀n ∈N ,2n>1000 C. ∃n ∈N ,2n≤1000 D. ∃n ∈N ,2n<1000【测量目标】全称命题和特称命题的否定. 【考查方式】结合不等式考查特称命题的否定. 【参考答案】A【试题解析】特称命题的否定是全称命题,“>”的否定是“≤”,故正确答案是A 5.若等比数列{a n }满足a n a n +1=16n,则公比为 ( )A. 2B. 4C. 8D. 16 【测量目标】等比数列的性质.【考查方式】给出相邻两项数列积的规律,化简得出数列的公比. 【参考答案】B【试题解析】设等比数列{a n }的公比为q ,116n n n a a +=,11216n n n a a +++∴=,(步骤1)∴216,4q q ==(步骤2) 6.若函数))(12()(a x x xx f -+=为奇函数,则a = ( )A.21 B. 32 C. 43D. 1 【测量目标】函数奇偶性的综合应用.【考查方式】利用奇函数的原点对称性,代入特殊点求出函数中的未知数. 【参考答案】A【试题解析】∵ 函数))(12()(a x x xx f -+=为奇函数,∴(2)(2),f f -=2(41)(2)a --+--即2=(41)(2)a +-,解得12a =.7.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为 ( )A.34B. 1C.54D.74【测量目标】抛物线的简单几何性质.【考查方式】给出焦点弦的线段关系,间接求解点到坐标轴的距离. 【参考答案】C【试题解析】设 A ,B 两点的横坐标分别为,m n 则由=3AF BF +及抛物线的定义可知132m n ++=, (步骤1) ∴1,2m n +=5.24m n +=(步骤2)即线段AB 的中点到y 轴的距离为5.4(步骤3)8.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 ( )A. 4B.32C. 2D.3【测量目标】由三视图求几何体的表面积与体积.【考查方式】给出正三棱柱的体积和线段的长度,转化为求对应平面的面积. 【参考答案】B【试题解析】设棱长为a ,由体积为32可列等式=⋅a a 24332,2=a ,(步骤1) 所求矩形的底边长为323=a ,这个矩形的面积是3223=⨯.(步骤2) 9.执行下面的程序框图,如果输入的n 是4,则输出的p 是 ( )A. 8B. 5C. 3D. 2【测量目标】选择结构的程序框图.【考查方式】考查循环结构的流程图, 注意循环条件的设置,以及循环体的构成,特别是注意最后一次循环的k 的值. 【参考答案】C【试题解析】若输入n =4,则执行s =0,t =1,k =1,p =1,判断1<4成立,进行第一次循环;(步骤1)p =2,s =1,t =2,k =2,判断2<4成立,进行第二次循环;(步骤2) p =3,s =2,t =2,k =3,判断3<4成立,进行第三次循环;(步骤3) p =4,s =2,t =4,k =4,判断4<4不成立,故输出p =4(步骤4).10.已知球的直径4SC A B =,,是该球球面上的两点,2AB =,45ASC BSC ∠=∠=,则棱锥S ABC -的体积为( )A.33 B. 233 C.433 D.533【测量目标】球体和三棱锥的体积.【考查方式】给出球体内部三棱锥的线段关系,利用线面垂直的关系求出对应三棱锥的体积. 【参考答案】C【试题解析】设球心为O ,则BO AO ,是两个全等的等腰直角三角形斜边上的高,斜边,4=SO 故2==BO AO ,(步骤1)且有SC AO ⊥,SC BO ⊥. ∴1()3S ABC S AOB C AOB AOB V V V S SO OC ---=+=+△=3344243312=⨯⨯⨯.(步骤2) 11.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为 ( )A.(1-,1)B.(1-,+∞)C.(∞-,1-)D.(∞-,+∞)【测量目标】函数的单调性、导函数的性质和不等式的应用.【考查方式】给出函数值和导函数满足的条件,将不等式转化为函数的值域,进而求出对应的解集. 【参考答案】B【试题解析】设()()(24)g x f x x =-+ , ()()2g x f x ''-=. (步骤1)因为对任意x ∈R ,2)(>'x f ,所以对任意x ∈R ,()0g x '>,则函数g (x )在R 上单调递增. (步骤2)又因为g (-1)=(1)(24)0f ---+=,故()0g x >,即()24f x x >+的解集为(1,)-+∞(步骤3)12.已知函数)(x f =A tan (ωx +ϕ)(π0,||2ωϕ><),y =)(x f 的部分图像如下图,则π()24f = ( )A. 2+3B.3C.33D.23- 【测量目标】)(x f =A tan (ωx +ϕ)的图象及性质.【考查方式】结合正切函数的图象,在给定范围内求出周期,进而得出解析式和函数值. 【参考答案】B 【试题解析】如图可知3ππ288T =-,即ππ24ω=,所以2=ω,(步骤1) 再结合图像可得ππ2π,82k k ϕ⨯+=+∈Z ,即πππ42k ϕ=+<,所以4143<<-k ,(步骤2)只有0=k ,所以π4ϕ=,又图像过点(0,1),代入得A tan π4=1,所以A =1,函数的解析式为π()tan(2)4f x x =+,则ππ()tan 3246f ==. (步骤3)第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为___________. 【测量目标】圆的方程,直线方程,直线与圆的位置关系.【考查方式】由圆上的两点坐标确定出过圆心的直线,进而求出圆的方程. 【参考答案】22(2)10x y -+=【试题解析】直线AB 的斜率是311152AB k -==--,中点坐标是(3,2).故直线AB 的中垂线方程()223y x -=-,(步骤1)由()223,0,y x y -=-⎧⎪⎨=⎪⎩得圆心坐标(2,0)C ,||r AC ==223110+=,故圆的方程为22(2)10x y -+=.(步骤2)14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元. 【测量目标】回归直线方程的实际应用.【考查方式】由回归直线方程中系数的意义可直接求解. 【参考答案】0.254【试题解析】由于321.0254.0ˆ+=x y,当x 增加1万元时,年饮食支出y 增加0.254万元.15.S n 为等差数列{a n }的前n 项和,S 2=S 6,a 4=1,则a 5=____________. 【测量目标】等差数列的综合应用.【考查方式】给出等差数列的某几项和之间的关系,通过待定系数法求出等差数列通项公式和某一项. 【参考答案】1-【试题解析】设等差数列的公差为d ,解方程组1116526,231,a d a d a d ⨯⎧+=+⎪⎨⎪+=⎩得2d =-, (步骤1)541.a a d =+=-(步骤2)16.已知函数()e 2xf x x a =-+有零点,则a 的取值范围是___________.【测量目标】函数的零点,单调性,极值,导数的性质,函数的零点与方程根的联系.. 【考查方式】通过函数有零点转化为方程有根,将里面的参数提取出来作为函数值来处理,应用导数和极值求出其参数的取值范围.【参考答案】(],2ln 22-∞-【试题解析】函数()e 2xf x x a =-+有零点等价于()0,f x =即e 2xx a -+有解. 等价于2e xa x =-有解. (步骤1) 令()2e x g x x =-,∴()2e x g x '=-.当ln 2x >时,()0g x '<;当ln 2x <时,()0g x '>.(步骤2) ∴当l n 2x =时,()2e x g x x =-取到最大值2ln 22-,∴a 的取值范围是(],2ln 22-∞-.(步骤3)三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(I )求ba; (II )若c 2=b 2+3a 2,求B .【测量目标】正弦定理和余弦定理.【考查方式】给出三角形中边和角满足的等式关系,由正弦定理和余弦定理求出相应的边和角.【试题解析】(I )由正弦定理得,22sin sin sin cos 2sin B A B A A +=,即22sin (sin cos )2sin B A A A += (步骤1)故sin 2sin ,B A =所以2.ba=(步骤2)………………6分 (II )由余弦定理和222(13)3,cos .2ac b a B c+=+=得(步骤1) 由(I )知222,b a =故22(23).c a =+(步骤2)可得21cos ,2B =又cos 0,B >故2cos ,2B =所以45B =. (步骤3) …………12分 18.(本小题满分12分)如图,四边形ABCD 为正方形, QA ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD . (I )证明:PQ ⊥平面DCQ ;(II )求棱锥Q ABCD -的的体积与棱锥P DCQ -的体积的比值.【测量目标】空间点、线、面之间的位置关系,线线、线面、面面垂直的性质与判定,三棱锥的体积.【考查方式】线线垂直⇒线面垂直, 给定线段间比例关系由此求出三棱锥体积. 【试题解析】(I )由条件知四边形PDAQ 为直角梯形因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD .又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC . (步骤1)在直角梯形PDAQ 中可得DQ =PQ =22PD ,则PQ ⊥QD (步骤2) 所以PQ ⊥平面DCQ . (步骤3) ………………6分 (II )设AB =a .由题设知AQ 为棱锥Q ABCD -的高,所以棱锥Q ABCD -的体积311.3V a = (步骤1)由(I )知PQ 为棱锥P DCQ -的高,而PQ =2a ,△DCQ 的面积为222a , 所以棱锥P DCQ -的体积为321.3V a =(步骤2) 故棱锥Q ABCD -的体积与棱锥P DCQ -的体积的比值为1 (步骤3).……12分 19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =2,求第一大块地都种植品种甲的概率;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位:kg/hm 2)如下表:品种甲 403 397 390 404 388 400 412 406 品种乙 419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.【测量目标】简单随机抽样,随机事件的概率,用平均数和方差估计总体的数字特征. 【考查方式】列出基本事件数,从而得出概率; 根据两类个体的平均数和方差来相互比较作出优化选择. 【试题解析】(I )设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A =“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个; (1,2),(1,3),(1,4),(2,3),(2,4),(3,4).(步骤1) 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(步骤2)………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:1(403397390404388400412406)400,8x =+++++++=甲2222222221(3(3)(10)4(12)0126)57.25.8S =+-+-++-+++=甲(步骤1) ………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:1(419403412418408423400413)412,8x =+++++++=乙2222222221[7(9)06(4)11(12)1]56.8S =+-+++-++-+=乙(步骤2) ………………10分 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. (步骤3) 20.(本小题满分12分)设函数)(x f =x +ax 2+b ln x ,曲线y =)(x f 过P (1,0),且在P 点处的切斜线率为2. (I )求a ,b 的值;(II )证明:()22f x x -….【测量目标】函数的单调性和导数的关系,极值,不等式的证明.【考查方式】给出点坐标和切点斜率代入解析式中求出各参数,利用函数的单调性和导数来证明不等式. 【试题解析】 (I )()12.bf x ax x'=++0x ≠(步骤1) …………2分 由已知条件得(1)0,(1) 2.f f =⎧⎨'=⎩即10,12 2.a ab +=⎧⎨++=⎩解得1, 3.a b =-=(步骤2) ………………5分(II )()(0,)f x +∞的定义域为,由(I )知2()3ln .f x x x x =-+(步骤1)设2()()(22)23ln ,g x f x x x x x =--=--+则3(1)(23)()12.x x g x x x x-+'=--+=-(步骤2) 01,()0;1,()0.x g x x g x ''<<>><当时当时所以()g x 在(0,1)单调增加,在(1,)+∞单调减少.而(1)0,0,()0,()2 2.g x g x f x x =>-剟故当时即(步骤3) …………12分21.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l MN ⊥,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.【测量目标】椭圆方程,直线斜率,直线与椭圆的位置关系,直线与直线的平行,不等式的应用.【考查方式】给出两椭圆之间的线段关系,进而设出椭圆和直线方程,求出对应线段的比例关系;将平行直线转化为斜率相等的条件,代入式后求出离心率的范围.【试题解析】(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>> 设直线:(||)l x t t a =<,分别与C 1,C 2的方程联立,求得2222(,),(,).a b A t a t B t a t b a-- (步骤1)………………4分 当13,,,22A B e b a y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === (步骤2)………………6分 (II )t =0时的l 不符合题意.0t ≠时,BO //AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即2222,b a a t a t a b t t a--=- 解得222221.ab e t a a b e-=-=-- (步骤1) 因为2212||,01,1, 1.2e t a e e e-<<<<<<又所以解得 所以当202e <…时,不存在直线l ,使得BO //AN ; 当212e <<时,存在直线l 使得BO //AN . (步骤2) ………………12分 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED . (I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F【测量目标】直线与圆的位置关系,直线的平行.【考查方式】根据圆的性质和直线的位置关系证明出线段的平行;结合圆和三角形中的角度关系证明圆上各点对应关系.【试题解析】(I )因为EC =ED ,所以∠EDC =∠ECD .(步骤1)因为A ,B ,C ,D 四点在同一圆上,所以∠EDC =∠EBA .(步骤2)故∠ECD =∠EBA ,所以CD //AB . (步骤3)…………5分(II )由(I )知,AE =BE ,因为EF =EG ,故∠EFD =∠EGC从而∠FED =∠GEC . (步骤1)连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE =∠GBE ,(步骤2)又CD //AB ,∠EDC =∠ECD ,所以∠FAB =∠GBA .所以∠AFG +∠GBA =180°.故A ,B ,G ,F 四点共圆 (步骤3)…………10分23.(本小题满分10分)选修4-4:坐标系统与参数方程 在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=π2时,这两个交点重合. (I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=π4时,l 与C 1,C 2的交点分别为A 1,B 1,当α=π4-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.【测量目标】圆和椭圆的参数方程,梯形的面积.【考查方式】根据射线与圆和椭圆的位置关系求出参数方程中各参数,进而求出交点横坐标由此得出梯形的面积.(I )C 1是圆,C 2是椭圆.(步骤1)当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当π2α=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(步骤2)(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和(步骤1) 当π4α=时,射线l 与C 1交点A 1的横坐标为22x =,与C 2交点B 1的横坐标为 310.10x '= 当π4α=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,(步骤2) 因此,四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= (步骤3)…………10分 24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|2x -||-5x -|.(I )证明: 3()3f x -剟; (II )求不等式)(x f ≥x 28-x +15的解集.【测量目标】不等式的证明,分段函数和集合的基本运算.【考查方式】对绝对值函数的分段讨论,进而得出不等式的解集.【试题解析】(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -⎧⎪=---=-<<⎨⎪⎩……(步骤1)当25,327 3.x x <<-<-<时所以3() 3.f x -剟 (步骤2)………………5分(II )由(I )可知,当22,()815x f x x x -+时剠的解集为空集;当225,()815{|535+3}x f x x x x x <<-+-时的解集为≤厔; 当25,()815{|26}x f x x x x x -+时的解集为厖剟.(步骤1)综上,不等式2()815{|536}.f x x x x x -+-的解集为厔? (步骤2)…………10分。

不等式选讲(2011-2015全国卷文科)

不等式选讲(2011-2015全国卷文科)

不等式选讲(2011-2015全国卷文科)(一)新课标卷1.(2011.全国新课标24)(本小题满分10分)选修4-5:不等式选讲 设函数()||3f x x a x =-+,其中0a >.(I )当a =1时,求不等式()32f x x ≥+的解集.(II )若不等式()0f x ≤的解集为{x |1}x ≤-,求a 的值.2.(2012.全国新课标24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。

(二)全国Ⅰ卷1.(2013.全国1卷24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)= ∣2x-1∣+∣2x+a ∣,g(x)=x+3.(Ⅰ)当a=2时,求不等式f(x) <g(x)的解集;(Ⅱ)设a >-1,且当x ∈[21,2a -)时,f(x) ≤g(x),求a 的取值范围.2.(2014.全国1卷24)(本小题满分10分)选修4-5;不等式选讲若,0,0>>b a 且ab b a =+11 (I )求33b a +的最小值;(II )是否存在b a ,,使得632=+b a ?并说明理由.3.(2015.全国1卷24)(本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.(三)全国Ⅱ卷1.(2013.全国2卷24)(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且a +b +c =1.证明:(1) ab +bc +ca ≤13; (2)222a b c b c a++≥1.2.(2014.全国2卷24)(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|x+a1|+|x-a|(a>0)。

2011年新课标高考数学文科试卷带详解

2011年新课标高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试文科数学一、选择题1.设集合U ={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =()I ðM N ( )A.{}12,B.{}23,C.{}2,4D.{}1,4【测量目标】集合的基本运算(交集、并集).【考查方式】已知全集和两个集合,求两个集合交集的补集.【参考答案】D【试题解析】{2,3},(){1,4}U M N M N =∴=ðQ I I2.函数0)y x =…的反函数为 ( ) A.2()4x y x =∈R B.2(0)4x y x =… C.24y x =()x ∈R D.24(0)y x x =…【测量目标】反函数.【考查方式】给出函数解析式,求其反函数.【参考答案】B【试题解析】由原函数反解得24y x =,又原函数的值域为0y …,所以函数0)y x =…的反函数为2(0)4x y x =…. 3.设向量a ,b 满足||||1==a b ,12=-a b g ,则2+=a b ( )【测量目标】向量的模,向量的数量积.【考查方式】已知两向量的模及其数量积,求模.【参考答案】B【试题解析】2221|2|||4414()432+=++=+⨯-+=a b a a b b g ,所以2+=a b4.若变量x ,y 满足约束条件6321x y x y x +⎧⎪--⎨⎪⎩………,则=23z x y +的最小值为 ( )A.17B.14C.5D.3【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,求出目标函数在此区域的最小值.【参考答案】C【试题解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线1x =与332y -=-的交点(1,1)时取得最小值,所以最小值为5.5.下面四个条件中,使a b >成立的充分而不必要的条件是 ( )A.1a b >+B.1a b >-C.22a b >D.33a b >【测量目标】充分、必要条件.【考查方式】结合不等式的性质考查充分、必要条件.【参考答案】A【试题解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A.8B.7C.6D.5【测量目标】等差数列的前n 项和.【考查方式】已知等差数列的首项、公差和关于前k 项和与前k +2项和的关系,求出k 值.【参考答案】D 【试题解析】解法一:2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二:221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =. 7.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于 ( ) A.13B.3C.6D.9 【测量目标】三角函数图象变换.【考查方式】根据三角函数图象平移后的特点求参数值.【参考答案】C【试题解析】由题意将()y f x =的图像向右平移π3个单位长度后,所得的图像与原图像重合,说明了π3是此函数周期的整数倍,得2ππ()3k k ω⨯=∈Z ,解得6k ω=,又0ω>,令1k =,得min 6ω=.8.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD =( )【测量目标】二面角.【考查方式】通过给出二面角,相关线段的长度,利用线面垂直的性质,求出CD 的长度.【参考答案】C【试题解析】因为l αβ--是直二面角,AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=9. 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A. 12种B. 24种C. 30种D.36种【测量目标】乘法原理,组合数的应用.【考查方式】根据题目的要求,利用排列与组合,求出其中的不同选法.【参考答案】A【试题解析】解本题分两步进行:第一步选出2人选修课程甲有24C 6=种方法,第二步安排剩余两人从乙、丙中各选1门课程有22A 2=种选法,根据分步计数原理,有6212⨯=种选法.10. 设()f x 是周期为2的奇函数,当01x 剟时,()f x =2(1)x x -,则5()2f -= ( )A.12-B.14- C .14 D.12【测量目标】函数的奇偶性,周期性.【考查方式】已知函数的周期、奇偶性及在某区间的解析式,求另一区间内的函数值.【参考答案】A【试题解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1).2222222f f f f -=-+=-=-=-⨯⨯-=-11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = ( )A.4B.【测量目标】圆的方程与两点间的距离公式.【考查方式】给出两圆的位置关系和通过相同的点,计算圆心的距离.【参考答案】C【试题解析】由题意知:圆心在直线y x =上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.12.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 ( )A.7πB.9πC.11πD.13π【测量目标】二面角的概念与球的性质.【考查方式】给出平面与圆的位置关系,圆与圆的位置关系,求出圆的面积.【参考答案】D【试题解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =在Rt OMN △中,30OMN ︒∠=, ∴12ON OM ==,故圆N 的半径r ==,∴圆N 的面积为2π13πS r ==.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试卷上作答无效........) 13.10(1)x -的二项展开式中,x 的系数与9x 的系数之差为 .【测量目标】二项式定理.【考查方式】直接给出二项式,利用二项式展开式的通项公式,求出系数的差.【参考答案】0【试题解析】由11010C ()(1)C r r r r r r T x x +=-=-得x 的系数为10-,9x 的系数为910C 10-=-,所以x 的系数与9x 的系数之差为0.14.已知3π(π,)2α∈,tan 2α=,则cos α= . 【测量目标】同角三角函数的基本关系式.【考查方式】已知正切值,在α角范围的条件下,求出余弦值.【参考答案】【试题解析】3π(π,)2α∈,sin tan =2cos ααα==,因为3π(π,)2α∈时,cos α小于零,所以cos α=15.已知正方体1111ABCD A BC D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 .【测量目标】异面直线所成角.【考查方式】给出正方体,求出在正方体中异面直线所成角的余弦值. 【参考答案】23【试题解析】取11A B 的中点M 连接EM ,AM ,AE ,则AEM ∠就是异面直线AE 与BC所成的角.设正方形的边长为x ,在△AEM 中,222(2)(3)52cos 2233x x x AEM x x +-∠==⨯ . 16.已知1F 、2F 分别为双曲线C : 221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF = .【测量目标】双曲线的简单几何性质.【考查方式】已知双曲线的方程、点的坐标和角的平分线,通过双曲线的第一定义,求出2||AF 的值.【参考答案】6【试题解析】Q AM 为12F AF ∠的平分线,∴2211||||41||||82AF MF AF MF === ∴12||2||AF AF = 又点A C ∈,由双曲线的第一定义得12222||||2||||||26AF AF AF AF AF a -=-===.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分l0分)(注意:在试题卷上作答无效.........) 设等比数列{}n a 的前n 项和为n S .已知26,a =13630,a a +=求n a 和n S .【测量目标】等比数列的通项和前n 项的和.【考查方式】直接给出2a 的大小和13a a 和的关系,求出n a 和n s .【试题解析】设{}n a 的公比为q ,由题设得12116630a q a a q =⎧⎨+=⎩解得132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,(步骤1) 当13,2a q ==时,132,3(21)n n n n a S -=⨯=⨯-;(步骤2)当12,3a q ==时,123,31n n n n a S -=⨯=-.(步骤3)18.(本小题满分12分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a b c 、、.已知s i n s 2s i n s i na A c a Cb B +=. (Ⅰ)求B ;(Ⅱ)若75,2,A b ︒==a c 求,.【测量目标】正弦定理和余弦定理.【考查方式】通过给出三角形的边、关于边与角的正弦余弦的等式,求出未知量.【试题解析】(I)由正弦定理得222a c b += (步骤1)由余弦定理得2222cos b a c ac B =+-.故cos B =,因此45B = (步骤2) (II )sin sin(3045)A =+sin 30cos 45cos30sin 45=+= (步骤3) 故sin 1sin A a b B =⨯==sin sin 602sin sin 45C c b B =⨯=⨯=(步骤4) 19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【测量目标】独立事件的概率、对立事件的概率、互斥事件的概率及次独立重复试验发生k 次的概率.【考查方式】考查了独立事件、对立事件、互斥事件的的相互关系,以及独立重复试验发生k 次的概率的应用.【试题解析】记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买;E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(I)()0.5P A =, ()0.3P B =, C A B =+(步骤1)()()()()0.8P C P A B P A P B =+=+= (步骤2)(II)D =C ,P (D )=1-P (C )=1-0.8=0.2, (步骤3)P (E )=123C 0.20.80.384⨯⨯=. (步骤4)20.(本小题满分l2分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中,AB P CD ,BC CD ⊥,侧面SAB 为等边三角形.2,1AB BC CD SD ====.(I)证明:SD ⊥平面SAB . (II) 求AB 与平面SBC 所成角的大小.【测量目标】线面垂直的判定和线面角的计算、空间直角坐标系.【考查方式】通过给出四棱锥,利用等边三角形SAB 这个条件,作出有关辅助线.【试题解析】解法一:(Ⅰ)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,2DE CB ==,连结SE ,则SE AB ⊥,SE =又1SD =,故222ED SE SD =+,所以DSE ∠为直角.(步骤1)由AB DE ⊥,AB SE ⊥,DE SE E =I ,得AB ⊥平面SDE ,所以AB SD ⊥.SD 与两条相交直线AB 、SE 都垂直.所以SD ⊥平面SAB .(步骤2)解法二:由已知易求得,1,SD AD =2,SA =于是222SA SD AD +=.可知SD SA ⊥,同理可得SD SB ⊥,又SA SB S =I .所以SD ⊥平面SAB .(步骤3) (Ⅱ)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF DE ⊥,垂足为F ,则SF ⊥平面ABCD ,SD SE SF DE ⨯==. 作FG BC ⊥,垂足为G ,则1FG DC ==.连结SG ,则SG BC ⊥.又,BC FG SG FG G ⊥=I ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG .(步骤4) 作FH SG ⊥,H 为垂足,则FH ⊥平面SBC .SF FG FH SG ⨯==,即F 到平面SBC 的距离为7.由于ED BC P ,所以ED P 平面SBC ,E 到平面SBC 的距离d 也为7.设AB 与平面SBC 所成的角为α,则sin 7d EB α==,arcsin 7α=.(步骤5) 解法二:以C 为原点,射线CD 为x 轴的正半轴,建立如图所示的空间直角坐标系C xyz -. 设(1,0,0)D ,则(2,2,0)A 、(0,2,0)B .又设(,,)S x y z ,则0,0,0x y z >>>.(Ⅰ)(2,2,),(,2,),(1,,)AS x y z BS x y z DS x y z =--=-=-u u r u u r u u u r ,由||||AS BS =u u r u u r 得=故1x =.(步骤1)由||1DS =u u u r 得221y z +=,又由||2BS =u u r 得222(2)4x y z +-+=,即22410y z y +-+=,故1,2y z ==(步骤2)于是1331(1,(1,(1,(0,2222S AS BS DS =--=-=uu r uu r uu u r , 0,0DS AS DS BS ==u u u r u u r u u u r u u r g g .故,DS AS DS BS ⊥⊥,又AS BS S =I ,所以SD ⊥平面SAB . (步骤3)(Ⅱ)设平面SBC 的法向量(,,)m n p =a ,则,,0,0BS CB BS CB ⊥⊥==a a a a u u r u u r u u r u u r g g .又3(1,(0,2,0)2BS CB =-=uu r uu r ,故30,2220m n p n ⎧-+=⎪⎨⎪=⎩(步骤4) 取2p =得(=a ,又(2,0,0),AB =-u u u r所以,cos ,||||AB AB AB <>==a a a uu u r uu u r g uu u r g 故AB 与平面SBC所成的角为arcsin 7. (步骤5) 21.(本小题满分l2分)(注意:在试题卷上作答无效.........). 已知函数()32()3(36)+124f x x ax a x a a =++--∈R(Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得最小值,0(1,3)x ∈,求a 的取值范围.【测量目标】导数的几何意义,利用导数判断参数的范围.【考查方式】直接利用导数的几何意义,求出切线的斜率,然后易写出切线方程.第(II )问是含参问题,对方程()0f x '=的判别式进行分类讨论.【试题解析】解:(I )2()3636f x x ax a '=++-(步骤1)由(0)124,(0)36f a f a '=-=-得曲线()y f x =在0x =处的切线方程为(36)124y a x a =-+-,由此知曲线()y f x =在0x =处的切线过点(2,2)(步骤2)(II )由()0f x '=得22120x ax a ++-=.(i )当11a剟时,()f x 没有极小值;(步骤3)(ii)当1a >或1a <时,由()0f x '=得12x a x a =-=-+故02x x =,由题设知13a <-,(步骤4)当1a >时,不等式13a <-<无解;当1a <时,解不等式13a <-<得512a -<<综合(i)(ii)得a 的取值范围是5(,1)2-.(步骤5) 22.(本小题满分l2分)(注意:在试题卷上作答无效.........).已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F 且斜率为的直线l 与C 交与A 、B 两点,点P 满足0OA OB OP ++=u u r u u u r u u u r r .(I)证明:点P 在C 上;(II)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【测量目标】椭圆的简单几何性质、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件.【考查方式】根据给出的椭圆方程与直线方程的关系,平面向量的坐标运算,求出曲线交点坐标和四点共圆的条件.【试题解析】(I)(0,1)F ,l 的方程为1y =+,代入2212y x +=并化简得2410x --=. (步骤1)设112233(,),(,),(,)A x y B x y P x y ,则12x x ==121212)21,x x y y x x +=+=++=(步骤2)由题意得312312()()1,x x x y y y =-+==-+=-所以点P 的坐标为(1)2--.经验证点P 的坐标(1)2--满足方程2212y x +=,故点P 在椭圆C 上(步骤3)(II)由P (1)2--和题设知,Q (2,PQ 的垂直平分线1l 的方程为y x =. ①设AB 的中点为M ,则1)2M ,AB 的垂直平分线2l 的方程为124y x =+. ②由①、②得1l 、2l 的交点为1()88N -.(步骤4)||NP ==21||||2AB x x=-=||4AM=,||MN==,||NA==(步骤5)故||||NP NA=,又||||NP NQ=, ||||NA NB=,所以||||||||NA NP NB NQ===,由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上.(步骤6)(II)法二:22tan11PA PBPA PBk kAPBk k-∠==+214()3x x-==(步骤1)同理22tan11QB QAQA QBk kAQBk k-∠==++214()3x x-==-(步骤2)所以,APB AQB ∠∠互补,因此A 、P 、B 、Q 四点在同一圆上.(步骤3)。

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年高考试题与答案(全国卷文科数学)答案与解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数2(0)y x x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=A .2B .3C .5D .74.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2B .3C .2D .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .42C .8D .8212.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为 A .7π B .9π C .11π D .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2011年全国统一高考数学试卷(文科)(新课标版)答案与解析

2011年全国统一高考数学试卷(文科)(新课标版)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2011•新课标)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【考点】交集及其运算.【专题】计算题.【分析】利用集合的交集的定义求出集合P;利用集合的子集的个数公式求出P的子集个数.【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n个元素,则其子集的个数是2n.2.(5分)(2011•新课标)复数=()A.2﹣i B.1﹣2i C.﹣2+i D.﹣1+2i【考点】复数代数形式的混合运算.【专题】计算题.【分析】将分子、分母同时乘以1+2i,再利用多项式的乘法展开,将i2用﹣1 代替即可.【解答】解:=﹣2+i故选C【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数.3.(5分)(2011•新课标)下列函数中,既是偶函数又在(0,+∞)单调递增的函数是()A.y=x3 B.y=|x|+1 C.y=﹣x2+1 D.y=2﹣|x|【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】常规题型.【分析】首先由函数的奇偶性排除选项A,然后根据区间(0,+∞)上y=|x|+1=x+1、y=﹣x2+1、y=2﹣|x|=的单调性易于选出正确答案.【解答】解:因为y=x3是奇函数,y=|x|+1、y=﹣x2+1、y=2﹣|x|均为偶函数,所以选项A错误;又因为y=﹣x2+1、y=2﹣|x|=在(0,+∞)上均为减函数,只有y=|x|+1在(0,+∞)上为增函数,所以选项C、D错误,只有选项B正确.故选:B.【点评】本题考查基本函数的奇偶性及单调性.4.(5分)(2011•新课标)椭圆=1的离心率为()A.B.C.D.【考点】椭圆的简单性质.【专题】计算题.【分析】根据椭圆的方程,可得a、b的值,结合椭圆的性质,可得c的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程=1,可得a=4,b=2,则c==2;则椭圆的离心率为e==,故选D.【点评】本题考查椭圆的基本性质:a2=b2+c2,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)(2011•新课标)执行程序框图,如果输入的N是6,那么输出的p是()A.120 B.720 C.1440 D.5040【考点】程序框图.【专题】图表型.【分析】通过程序框图,按照框图中的要求将几次的循环结果写出,得到输出的结果.【解答】解:经过第一次循环得到经过第二次循环得到经过第三次循环得到;经过第四次循环得经过第五次循环得;输出结果此时执行输出720,故选B【点评】本题考查解决程序框图中的循环结构的输出结果问题时,常采用写出几次的结果找规律.6.(5分)(2011•新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【专题】概率与统计.【分析】本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.【解答】解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)(2011•新课标)已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=()A.﹣B.﹣C.D.【考点】二倍角的余弦;直线的图象特征与倾斜角、斜率的关系.【专题】计算题.【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tanθ的值,然后根据同角三角函数间的基本关系求出cosθ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cosθ的平方代入即可求出值.【解答】解:根据题意可知:tanθ=2,所以cos2θ===,则cos2θ=2cos2θ﹣1=2×﹣1=﹣.故选:B.【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)(2011•新课标)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【考点】简单空间图形的三视图.【专题】作图题.【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选D.【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)(2011•新课标)已知直线l过抛物线C的焦点,且与C的对称轴垂直.l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为()A.18 B.24 C.36 D.48【考点】直线与圆锥曲线的关系.【专题】数形结合法.【分析】首先设抛物线的解析式y2=2px(p>0),写出次抛物线的焦点、对称轴以及准线,然后根据通径|AB|=2p,求出p,△ABP的面积是|AB|与DP乘积一半.【解答】解:设抛物线的解析式为y2=2px(p>0),则焦点为F(,0),对称轴为x轴,准线为x=﹣∵直线l经过抛物线的焦点,A、B是l与C的交点,又∵AB⊥x轴∴|AB|=2p=12∴p=6又∵点P在准线上∴DP=(+||)=p=6∴S△ABP=(DP•AB)=×6×12=36故选C.【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)(2011•新课标)在下列区间中,函数f(x)=e x+4x﹣3的零点所在的区间为()A.(﹣,0)B.(0,)C.(,)D.(,)【考点】函数零点的判定定理.【专题】计算题.【分析】分别计算出f(0)、f(1)、f()、f()的值,判断它们的正负,再结合函数零点存在性定理,可以得出答案.【解答】解:∵f(0)=e0﹣3=﹣2<0 f(1)=e1+4﹣3>0∴根所在的区间x0∈(0,1)排除A选项又∵∴根所在的区间x0∈(0,),排除D选项最后计算出,,得出选项C符合;故选C.【点评】e=2.71828…是一个无理数,本题计算中要用到等的值,对计算有一定的要求.11.(5分)(2011•新课标)设函数,则f(x)=sin(2x+)+cos(2x+),则()A.y=f(x)在(0,)单调递增,其图象关于直线x=对称B.y=f(x)在(0,)单调递增,其图象关于直线x=对称C.y=f(x)在(0,)单调递减,其图象关于直线x=对称D.y=f(x)在(0,)单调递减,其图象关于直线x=对称【考点】正弦函数的对称性;正弦函数的单调性.【专题】三角函数的图像与性质.【分析】利用辅助角公式(两角和的正弦函数)化简函数f(x)=sin(2x+)+cos(2x+),然后求出对称轴方程,判断y=f(x)在(0,)单调性,即可得到答案.【解答】解:因为f(x)=sin(2x+)+cos(2x+)=sin(2x+)=cos2x.由于y=cos2x的对称轴为x=kπ(k∈Z),所以y=cos2x的对称轴方程是:x=(k∈Z),所以A,C错误;y=cos2x的单调递减区间为2kπ≤2x≤π+2kπ(k∈Z),即(k∈Z),函数y=f(x)在(0,)单调递减,所以B错误,D正确.故选D.【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)(2011•新课标)已知函数y=f(x)的周期为2,当x∈[﹣1,1]时f(x)=x2,那么函数y=f(x)的图象与函数y=|lgx|的图象的交点共有()A.10个B.9个C.8个D.1个【考点】对数函数的图像与性质;函数的周期性.【专题】压轴题;数形结合.【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值估算即可.【解答】解:作出两个函数的图象如上∵函数y=f(x)的周期为2,在[﹣1,0]上为减函数,在[0,1]上为增函数∴函数y=f(x)在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数,在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数,且函数在每个单调区间的取值都为[0,1],再看函数y=|lgx|,在区间(0,1]上为减函数,在区间[1,+∞)上为增函数,且当x=1时y=0;x=10时y=1,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A.【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2011•新课标)已知a与b为两个垂直的单位向量,k为实数,若向量+与向量k﹣垂直,则k=1.【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k值.【解答】解:∵∴∵垂直∴即∴k=1故答案为:1【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方.14.(5分)(2011•新课标)若变量x,y满足约束条件则z=x+2y的最小值为﹣6.【考点】简单线性规划.【专题】计算题.【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数z=x+2y变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,目标函数z=x+2y,变化为y=﹣x+,当直线沿着y轴向上移动时,z的值随着增大,当直线过A点时,z取到最小值,由y=x﹣9与2x+y=3的交点得到A(4,﹣5)∴z=4+2(﹣5)=﹣6故答案为:﹣6.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)(2011•新课标)△ABC中,∠B=120°,AC=7,AB=5,则△ABC的面积为.【考点】正弦定理的应用;余弦定理.【专题】解三角形.【分析】先利用余弦定理和已知条件求得BC,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知cosB==﹣,求得BC=﹣8或3(舍负)∴△ABC的面积为•AB•BC•sinB=×5×3×=故答案为:【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)(2011•新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.【考点】旋转体(圆柱、圆锥、圆台);球的体积和表面积.【专题】计算题;压轴题.【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:2;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形由此可以求得球心到圆锥底面的距离是,所以圆锥体积较小者的高为:4﹣2=2,同理可得圆锥体积较大者的高为:4+2=6;所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:.故答案为:【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型.三、解答题(共8小题,满分70分)17.(12分)(2011•新课标)已知等比数列{a n}中,a1=,公比q=.(Ⅰ)S n为{a n}的前n项和,证明:S n=(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{b n}的通项公式.【考点】等比数列的前n项和.【专题】综合题.【分析】(I)根据数列{a n}是等比数列,a1=,公比q=,求出通项公式a n和前n项和S n,然后经过运算即可证明.(II)根据数列{a n}的通项公式和对数函数运算性质求出数列{b n}的通项公式.【解答】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n=又∵==S n∴S n=(II)∵a n=∴b n=log3a1+log3a2+…+log3a n=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)=﹣∴数列{b n}的通项公式为:b n=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质.18.(12分)(2011•新课标)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D﹣PBC的高.【考点】直线与平面垂直的性质;棱柱、棱锥、棱台的体积.【专题】计算题;证明题;综合题.【分析】(Ⅰ)因为∠DAB=60°,AB=2AD,由余弦定理得BD=,利用勾股定理证明BD⊥AD,根据PD⊥底面ABCD,易证BD⊥PD,根据线面垂直的判定定理和性质定理,可证PA⊥BD;(II)要求棱锥D﹣PBC的高.只需证BC⊥平面PBD,然后得平面PBC⊥平面PBD,作DE⊥PB于E,则DE⊥平面PBC,利用勾股定理可求得DE的长.【解答】解:(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面PAD.故PA⊥BD.(II)解:作DE⊥PB于E,已知PD⊥底面ABCD,则PD⊥BC,由(I)知,BD⊥AD,又BC∥AD,∴BC⊥BD.故BC⊥平面PBD,BC⊥DE,则DE⊥平面PBC.由题设知PD=1,则BD=,PB=2.根据DE•PB=PD•BD,得DE=,即棱锥D﹣PBC的高为.【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)(2011•新课标)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为y=从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)【考点】随机抽样和样本估计总体的实际应用;众数、中位数、平均数;离散型随机变量的期望与方差.【专题】计算题;综合题.【分析】(I)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(II)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为∴用B配方生产的产品的优质品率的估计值为0.42;(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题20.(12分)(2011•新课标)在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.【考点】圆的标准方程;直线与圆相交的性质.【专题】直线与圆.【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程;法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数,(Ⅱ)利用设而不求思想设出圆C与直线x﹣y+a=0的交点A,B坐标,通过OA⊥OB建立坐标之间的关系,结合韦达定理寻找关于a的方程,通过解方程确定出a的值.【解答】解:(Ⅰ)法一:曲线y=x2﹣6x+1与y轴的交点为(0,1),与x轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C为(3,t),则有32+(t﹣1)2=(2)2+t2,解得t=1,故圆C的半径为,所以圆C的方程为(x﹣3)2+(y﹣1)2=9.法二:圆x2+y2+Dx+Ey+F=0x=0,y=1有1+E+F=0y=0,x2 ﹣6x+1=0与x2+Dx+F=0是同一方程,故有D=﹣6,F=1,E=﹣2,即圆方程为x2+y2﹣6x﹣2y+1=0(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足方程组,消去y,得到方程2x2+(2a﹣8)x+a2﹣2a+1=0,由已知可得判别式△=56﹣16a﹣4a2>0.在此条件下利用根与系数的关系得到x1+x2=4﹣a,x1x2=①,由于OA⊥OB可得x1x2+y1y2=0,又y1=x1+a,y2=x2+a,所以可得2x1x2+a(x1+x2)+a2=0②由①②可得a=﹣1,满足△=56﹣16a﹣4a2>0.故a=﹣1.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型.21.(12分)(2011•新课标)已知函数f(x)=+,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)证明:当x>0,且x≠1时,f(x)>.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【专题】综合题;压轴题;分类讨论;转化思想.【分析】(I)据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a,b的值.(II)构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:(I).由于直线x+2y﹣3=0的斜率为﹣,且过点(1,1)所以解得a=1,b=1(II)由(I)知f(x)=所以考虑函数,则所以当x≠1时,h′(x)<0而h(1)=0,当x∈(0,1)时,h(x)>0可得;当从而当x>0且x≠1时,【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)(2011•新课标)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.【考点】圆周角定理;与圆有关的比例线段.【专题】计算题;证明题.【分析】(I)做出辅助线,根据所给的AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x+mn=0的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.(II)根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH,根据四点共圆得到半径的大小.【解答】解:(I)连接DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即又∠DAE=∠CAB,从而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四点共圆.(Ⅱ)m=4,n=6时,方程x2﹣14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.∵C,B,D,E四点共圆,∴C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=(12﹣2)=5.故C,B,D,E四点所在圆的半径为5【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.(2011•新课标)在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.【考点】简单曲线的极坐标方程;轨迹方程.【专题】计算题;压轴题.【分析】(I)先设出点P的坐标,然后根据点P满足的条件代入曲线C1的方程即可求出曲线C2的方程;(II)根据(I)将求出曲线C1的极坐标方程,分别求出射线θ=与C1的交点A的极径为ρ1,以及射线θ=与C2的交点B的极径为ρ2,最后根据|AB|=|ρ2﹣ρ1|求出所求.【解答】解:(I)设P(x,y),则由条件知M(,).由于M点在C1上,所以即从而C2的参数方程为(α为参数)(Ⅱ)曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=8sinθ.射线θ=与C1的交点A的极径为ρ1=4sin,射线θ=与C2的交点B的极径为ρ2=8sin.所以|AB|=|ρ2﹣ρ1|=.【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.(2011•新课标)设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【考点】绝对值不等式的解法.【专题】计算题;压轴题;分类讨论.【分析】(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.直接求出不等式f(x)≥3x+2的解集即可.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0分x≥a和x≤a推出等价不等式组,分别求解,然后求出a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得﹣=﹣1,故a=2【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。

2011年高考全国卷文科数学解析版

2011年高考(全国卷)文科数学解析版第Ⅰ卷一、选择题(1)设集合{}1,2,3,4U =,{}1,2,3M =,{}2,3,4N =。

则()=U C M N(A ){}1,2 (B ){}2,3 (C ){}2,4 (D ){}1,4 [答案](D )[解析]依题意知答集中的元素不在集合M N 中,2M N ∈ ,∴排出(A )、(B )、(C ),故选(D )。

(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2()4x y x =≥0 (C )()24y x x R =∈ (D )24()y x x =≥0[答案](B )[解析]依题意知原函数的值域不会是负数,即反函数的定义域是x ≥0,∴排出(A )、(C ),又点()1,2在原函数上,∴点()2,1必在反函数上,再排出(D ),故选(B )(3)设向量a 、b 满足1a b == ,12a b ⋅=- ,则2a b +=(A(B(C(D[答案](B )[解析]运用公式得:()22222222()(2)2244a b a ba b a b a b a b +=+=++⋅=++⋅1423=+-=2a b ∴+=,故选(B )(4)若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为(A )17 (B )14 (C )5 (D )3[答案](C )[解析](如图)显然当目标函数23z x y =+过直线1x =与32x y -=-的交点(1,1) 时取得最小值5,故选(C )(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >[答案](A )[解析] 1a b b a b >+>⇒> ,而反之不成立,故选(A )(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5[答案](D )[解析] 21211242422241112115k k k k k k S S a a a a k k +++++-=⇒+=⇒+=⇒=⇒+=⇒=故选(D )(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 [答案](C )[解析]因为,()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合 所以,函数()cos (0)f x x ωω=>的周期的整数倍是3π即,2()63k k Z k ππωω⋅=∈⇒=,又0ω>,1k ∴=时,ω取得最小值6。

2011年高考真题——文科数学(河北省) Word版含解析

2011年普通高等学校招生全国统一考试文科数学(必修+选修II)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题1.设集合{}1,2,3,4U=,{}1,2,3,M ={}2,3,4,N =则()U MN =( )A.{}12, B.{}23,C.{}2,4D.{}1,4 【答案】D【解析1】直接法.因为{1,2,3}{2,3,4}{2,3}M N ==,所以(){1,4}UM N =.【解析2】反演律.(){4}{1}{1,4}UUUM N MN ===.【解析3】韦恩图法.2.函数0)y x =≥的反函数为( )A.2()4x y x R =∈B.2(0)4x y x =≥C.24y x =()x R ∈D.24(0)y x x =≥【答案】B【解析1】直接法.由0)y x =≥解得,2(0)4y x y =≥,所以0)y x =≥的反函数为2(0)4x y x =≥.【解析2】特值法.在原函数2(0)y x x =≥的图像上取一点(1,2)A ,则点(2,1)B 必在反函数上,排除选项C 、D .在函数2()4x y x R =∈的图像上取一点(2,1)C -,但(1,2)D -不在函数2(0)y x x =≥的图形上,排除选项A .【解析3】图像法.先画出函数2(0)y x x =≥的图像,再根据对称性画出2(0)y x x =≥的反函数的图像,函数2(0)y x x =≥的图像及其反函数图像如右图.观察图像可排除选项A 、C ,因为原函数与反函数的图像都经过点4,4(),故选B .3.设向量a ,b 满足||||1a b ==,12a b ⋅=-,则2a b +=( ) A.2B.3C.5D.7【答案】B【解析1】解析法.因为||||1a b ==,12a b ⋅=-,所以2222(2)443a b a b a a b b +=+=++=. 【解析2】数形结合法.如右图所示,设a OA =,b OB =,2OC b =,由||||1a b ==,12a b ⋅=-,知,120a b <>=,则2222cos603a b OD OC CD OC CD +==+-⋅=4.若变量x 、y 满足约束条件6,32,1,x y x y x +≤⎧⎪-≤-⎨⎪≥⎩则23z x y =+的最小值为( )A.17B.14C.5D.3 【答案】C【解析1】顶点法直线6,32,1x y x y x +=-=-=的交点分别为(1,1),(1,5),(4,2),代入目标函数得:(1,1)21315z =⨯+⨯=,(1,5)213517z =⨯+⨯=,(4,2)243214z =⨯+⨯=,所以z 的最小值为5.CAB OD【解析2】注:线性规划问题的简易解法(网址/p-84234607.html ) 5.下面四个条件中,使a b >成立的充分而不必要的条件是( )A.1a b >+B.1a b >-C.22a b >D.33a b > 【答案】A【解析1】1a b >+a b ⇒>,且a b >⇒1a b >+.6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( ) A.8B.7C.6D.5【答案】D【解析1】由224k k S S +-=,得11(2)(1)(1)[(2)][]2422k k k k k a d ka d ++-++-+=,解得5k =.【解析2】22112(21)24k k k k S S a a a k d +++-=+=++=,又因为11a =,公差2d =,所以5k =. 7.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于( ) A.13B.3C.6D.9【答案】C【解析1】由题意得cos cos ()3x x πωω=-,显然ω为6的整数倍.【解析2】由题2()3k k Z ππω=⋅∈,解得6k ω=,令1k =,即得min 6ω=.8.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,点B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则CD =( )A.2D.1【答案】C【解析1】向量法由22222()AB AC CD DB AC CD DB =++=++,得2222CD AB AC DB =--,所以CD =【解析2】公式法.2CD ==9.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A.12种B.24种C.30种D.36种 【答案】B【解析1】分步计数原理.第一步,先从4位同学中选2位同学选修课程甲,方法数为246C =种;第二步,剩下的两位同学选修课程乙或丙,方法数为224=种;总的方法数为224224C =种.10.设()f x 是周期为2的奇函数,当01x ≤≤时,()2(1)f x x x =-,则5()2f -=( )A.12-B.14-C.14D.12【答案】A【解析1】5111111()(2)()()2(1)2222222f f f f -=--=-=-=-⨯-=-. 11.设两圆1C 、2C 都和两坐标轴相切,且都过点41(,),则两圆心的距离12C C =( )A.4B.C.8D.【答案】C【解析1】设1(,)C a a ,2(,)C b b ,则222(4)(1)a a a =-+-,222(4)(1)b b b =-+-,不妨设a b <,则5a =-5b =+128C C =.12.已知平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为( )A.7πB.9πC.11πD.13π 【答案】D【解析1】因为圆M 的面积为4π,所以圆M 的半径2r =.设球心为O ,则OM =sin 303ON OM ==N 的半径R ==N 的面积为13π.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码.请认真核准条形码卜的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.第Ⅱ卷共l0小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上(注意:在试卷上作答无效) 13.10(1)x -的二项展开式中,x 的系数与9x 的系数之差为 . 【答案】0【解析1】因为1111010()T C x C x =-=-,999991010()T C x C x =-=-,所以x 的系数与9x 的系数之差为0.14.已知3(,)2παπ∈,tan 2α=,则cos α= . 【答案】55-【解析1】公式法.由22tan2tan tan(2)221tan 2αααα=⨯==-,解得15tan 2α+=,所以221tan 52cos 51tan 2ααα-==-+. 【解析2】图示法如右图所示,设α的终边为OA ,过点A 做AB y ⊥轴于点B .因为tan 2α=,所以可设2AB =,1OB =,显然5cos OB OA α=-=. 15.已知正方体1111ABCD A B C D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 . 【答案】23【解析1】欧几里得法因为BC AD ∥,所以DAE ∠为异面直线AE 与BC 所成角,xO AyB2cos3ADDAEAE∠====.【解析2】坐标法以点D为坐标原点,以射线DA为x轴的正半轴,以射线DC为y轴的正半轴,以射线1DD为z轴的正半轴,设1DA=建立空间直角坐标系D xyz-.则(1,0,0)A,1(0,,1)2E,(1,1,0)B,(0,1,0)C,所以1(1,,1)2AE=-,(1,0,0)BC=-.12cos,33||||12AE BCAE BCAE BC⋅<>===⋅⨯.16.已知1F、2F分别为双曲线C:221927x y-=的左、右焦点,点A C∈,点M的坐标为(2,0),AM为12F AF∠的平分线.则2||AF= .【答案】6【解析1】根据角平分线定理,有1122824F A F MF A F M===,又因为12236F A F A-=⨯=,所以2||6AF=.三.解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤17.(本小题满分l0分)(注意:在试题卷上作答无效.........)设数列{}n a的前n项和为n S,已知26a=,12630a a+=,求na和nS.【解析1】基本量法.设{}n a的公比为q,由题设得12116,630.a qa a q=⎧⎨+=⎩解得13,2,aq=⎧⎨=⎩或12,3,aq=⎧⎨=⎩当13a=,2q=时,132nna-=⨯,3(21)nnS=⨯-;当12a=,3q=时,123nna-=⨯,31nnS=-.18.(本小题满分l2分)(注意:在试题卷上作答无效.........)△ABC的内角A、B、C的对边分别为a、b、c.己知sin csin sin sina A C Cb B+=,(Ⅰ)求B;(Ⅱ)若75A =,2b=,求a和c.【解析1】(Ⅰ)设R为△ABC的外接圆的半径.sin csin sin sina A C Cb B+=,利用正弦定理得2222222a c bR R R R+-=,整理得22222a c bac+-=,即cos2B=,所以45B =.(Ⅱ)sin75sin(4530)sin45cos30cos45sin33221=+=+=+,sin sin751sin2ba AB=⋅===,sin sin(1807545)sin22bc CB==⋅=--=⋅19.(本小题满分l2分)(注意:在试题卷上作答无效.........)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(Ⅰ)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(Ⅱ)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解析1】(Ⅰ)设事件A={购买甲种保险},B={购买乙种保险},C={至少购买甲、乙两种保险中的1种}.因为()()()0.3P AB P A P B==,()0.5P A=,所以0.3()0.60.5P B==.()()()()()0.50.60.50.60.8P C P A B P A P B P AB==+-=+-⨯=.另解:()1()1(10.5)(10.6)0.8P C P AB=-=---=.(Ⅱ)12223()()3()()()30.50.40.80.384P C P AB P C P A P B P C===⨯⨯⨯=.20.(本小题满分l2分)(注意:在试题卷上作答无效.........)如图,四棱锥S ABCD-中,AB CD∥,BC CD⊥,侧面SAB为等边三角形,2AB BC==,1CD SD==.(Ⅰ)证明:SD SAB⊥平面;(Ⅱ)求AB与平面SBC所成角的大小.【解析1】(Ⅰ)取AB中点E,连接DE,则四边形BCDE为矩形,2DE CB==,连接SE,则SE AB⊥,SE=又1SD=,故222ED SE SD=+,所以DSE∠为直角.ASD CB由AB DE ⊥,AB SE ⊥,DE SE E =,得AB SDE ⊥平面,所以AB SD ⊥. SD 与两条相交直线AB 、SE 都垂直,所以SD SAB ⊥平面.(Ⅱ)由AB SDE ⊥平面知,ABCD SDE ⊥平面平面.作SF DE ⊥,垂足为F ,则SF ABCD ⊥平面,2SD SE SF DE ⨯==.作FG BC ⊥,垂足为G ,则1FG DC ==.连接SG ,则SG BC ⊥.又BC FG ⊥,SG FG G =,故BC SFG ⊥平面,SBC SFG ⊥平面平面.作FH SG ⊥,H 为垂足,则FH SBC ⊥平面.SF FG FH SG ⨯==即F 到平面SBC 的. 由于BC ED ∥,所以ED ∥平面SBC ,E 到平面SBC的距离7d =设AB 与平面SBC 所成的角为α,则sin 7d EB α==,sin 7arc α=. 【解析2】以C 为坐标原点,射线CD 为x 轴的正半轴,建立如图所示的空间坐标系C xyz -. 设(1,0,0)D ,则(2,2,0)A ,(0,2,0)B ,又设(,,)S x y z ,则0x >,0y >,0z >. (Ⅰ)(2,2,)AS x y z =--,(,2,)BS x y z =-,(1,,)DS x y z =-,由||||AS BS =得=解得1x =,由||1DS =得221y z +=,又由||2BS =得222(2)4x y z +-+=,即22410y z y +-+=,故12y =,2z =.于是1(1,,22S ,3(1,,)22AS =--,3(1,,22BS =-,1(0,,22DS =,0DS AS ⋅=,EAS D CB FGH0DS BS ⋅=.故DS AS ⊥,DS BS ⊥,又ASBS S =,所以SD SAB ⊥平面.(Ⅱ)设平面SBC 的法向量(,,)a m n p =,则a BS ⊥,a CB ⊥,0a BS ⋅=,0a CB ⋅=,又3(1,,22BS =-,(0,2,0)CB =,故30,2220.m n p n ⎧-+=⎪⎨⎪=⎩取2p =得(3,0,2)a =-,又(2,0,0)AB =-,21cos ,7||||AB a AB a ABa ⋅<>==⋅.故AB 与平面SBC所成得角为arcsin 7. 【解析3】(Ⅰ)计算1SD =,AD =2SA =,于是222SA SD AD +=,利用勾股定理,可知SD SA ⊥,同理,可证SD SB ⊥,又SASB S =,因此SD SAB ⊥平面.(Ⅱ)过点D 做Dz ABCD⊥平面,如图建立空间直角坐标系D xyz -.(2,1,0)A -,(2,1,0)B ,(0,1,0)C ,1(,0,22S ,可计算平面SBC 的一个法向量是(0,3,2)n=,(0,2,0)AB=,||23|cos ,|||||27AB n AB n AB n ⋅<>===⋅21.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知函数{}32()3(36)124f x x ax a x a a R =++-+-∈.(Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得极小值,01,3x ∈(),求a 的取值范围.【解析1】(Ⅰ)2()3636f x x ax a '=++-.由(0)124f a =-,(0)36f a '=-得曲线()y f x =在0x =处的切线方程为(36)124y a x a=-+-,由此知曲线()y f x =在0x =处的切线过点(2,2).(Ⅱ)由()0f x '=得22120x ax a ++-=. (i )当2(2)4(12)0a a ∆=--≤时,2121a --≤≤-,()f x 没有极小值;(ii )当2(2)4(12)0a a ∆=-->时,21a >-或21a <--,由()0f x '=得2121x a a a =--+-,2221x a a a =-++-,故02x x =.由题设知21213a a a <-++-<. 当21a >-时,不等式21213a a a <-++-<无解;当21a <--时,解不等式21213a a a <-++-<得5212a -<<--. 综合(i )(ii )得a 的取值范围是5(,21)2---.22.(本小题满分l2分)(注意:在试题卷上作答无效.........) 已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为2-的直线l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上. 【解析1】(Ⅰ)(0,1)F ,l 的方程为21y x =-+,代入2212y x +=并化简得242210x x --=.设11(,)A x y ,22(,)B x y ,33(,)P x y , 则1264x -=,2264x +=,12x x +=,1212)21y y x x +=++=,由题意得312()x x x =-+=,312()1y y y =-+=-.所以点P 的坐标为(1)2--.经验证,点P 的坐标(,1)2--满足方程2212y x +=,故点P 在椭圆C 上.(Ⅱ)由(1)2P --和题设知,(2Q ,PQ 的垂直平分线1l 的方程为y x =. ○1设AB 的中点为M ,则1()42M ,AB 的垂直平分线2l 的方程为124y x =+. ○2由○1○2得1l 、2l 的交点为1()88N -.||NP ==,21||||AB x x =-=,||4AM =,||8MN ==,||8NA ==, 故 ||||NP NA =.又||||NP NQ =,||||NA NB =, 所以 ||||||||NA NP NB NQ ===, 由此知A 、P 、B 、Q 四点在以N 为圆心,NA 为半径的圆上.。

高考数学试题解析 分项版之专题19 选修系列 不等式选讲 教师版选修 文

1 / 1 高考数学试题解析 分项版之专题19 选修系列 不等式选讲 教师版选修 文
一、填空题:
1.(高考陕西卷文科15)A (不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 二、解答题: 2.(高考新课标全国卷文科24)(本小题满分10分)选修4—5:不等式选讲
已知函数f (x ) = |x + a | + |x -2|.
(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;
(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.
【解析】
3.(高考江苏卷21)(选修4 - 5:不等式选讲)(本小题满分10分)
已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18
y <. 【解析】证明:∵()()3||=|3|=|22|22y y x y x y x y x y ++-≤++-,
由题设11|||2|36x y x y +<
-<,,∴1153||=366y <+,∴5||18
y <. 【考点定位】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年高考试题解析数学(文科)
19 选修系列:不等式选讲
一、填空题:
1.(2011年高考陕西卷文科15) A.(不等式选做题)若不等式12x x a ++-≥对任意x R ∈恒成立,则a 的取值范围是______。

【答案】(,3]-∞
【解析】:因为12|12|3x x x x ++-≥+-+=,对任意x R ∈恒成立,所以有3a ≤
二、解答题:
2.(2011年高考江苏卷21)选修4-5:不等式选讲(本小题满分10分) 解不等式:|21|3x x +-<
(Ⅱ)因为0)(≤x f ,所以,03≤+-x a x ,可化为,

⎨⎧≤+-≤⎩⎨⎧≤+-≥0303x x a a x x a x a x 或 即⎪⎩⎪⎨⎧-≤≤⎪⎩
⎪⎨⎧≤≥24a x a x a x a x 或
因为,0>a 所以,该不等式的解集是⎭⎬⎫⎩⎨⎧
-≤2a x x ,再由题设条件得2,12
=∴-=-a a 点评:本题考查含有绝对值不等式的解法,以及解法的应用,注意过程的完整性与正确性。

4.(2011年高考辽宁卷文科24)(本小题满分10分)选修4-5:不等式选讲
已知函数f (x )=|x-2|-|x-5|。

(I )证明:-3≤f (x )≤3;
(II )求不等式f (x )≥x 2-8x+15的解集。

相关文档
最新文档