计算流体力学课程作业

计算流体力学课程作业
计算流体力学课程作业

计算流体力学大作业

——有限差分法解Poisson 方程

五点格式解区域内Poisson 方程

摘要:本文结合计算流体力学课上所学知识,采用数值解法中的有限差分法求解Poisson 方程(偏微分方程中椭圆型方程的一种),并用其五点格式采用高斯—塞德尔(Gauss-Seidel )迭代求解。并比较了数值近似解与真实解,以及不同步长情况下误差的大小,得到了一定的结论。

关键词:Poisson 方程 有限差分法 五点格式

一、计算流体流体力学的特点

计算流体力学中许多问题求解最终都会变成偏微分方程的求解,而在数学上,除了几种极少数情况外,要求出它们精确解是很难的。计算机技术的发展使得这一难题的一很好地解决。

二、偏微分方程的种类

2.1、 椭圆型偏微分方程

椭圆型偏微分方程的一般形式为

(

)(,)div c u au f x t -?+= 其中:若12(,,,,)(,)n u u x x x t u x t ==,u ?为u 的梯度,则其定义为 12

,,,n u u x x x ??????=??????? 散度()div v 的定义为

12

()n div v v x x x ?????=+++ ??????

这样,()div c u ?可以更明确地表示为

1122()n n u u u div c u c c c x x x x x x ???????????????=++

+?? ? ? ???????????

????

若c 为常数,则进一步化简为 22

222212()n div c u c u c u x x x ??????=+++=? ??????

其中,?又称为Laplace 算子。这样椭圆型偏微分方程可以简单地写为

22

222212

(,)n c u au f x t x x x ?????-++++= ??????

2.2、抛物型偏微分方程

抛物型偏微分方程的一般形式为 ()(,)u d div c u au f x t t

?-?+=? 根据上面叙述,若c 为常数,则该方程可以更简单地写为

22222212

(,)n u d c u au f x t t x x x ??????-++++= ??????? 2.3、双曲型偏微分方程

双曲型偏微分方程的一般形式为

22()(,)u d div c u au f x t t

?-?+=? 若c 为常数,则可以将该方程简化为

2222222212(,)n u d c u au f x t t x x x ??????-++++= ???????

三类方程的直接的区别在于u 对t 的导数的阶次。

若对t 没有求导,可以理解为其值为常数,故称为椭圆型的。

若取u 对时间t 的一阶导数,则与u 对x 的二阶导数直接构成了抛物线关系,故称为抛物型偏微分方程。

若取u 对时间t 的二阶导数,称其为双曲型偏微分方程。

三、Poisson 方程:

泊松方程是数学中一个常见于静电学、机械工程和理论物理的偏微分方程。是从法国数学家、几何学家及物理学家泊松而得名的。

泊松方程一般可写为:

△φ=f

在这里△代表的是拉普拉斯算符(也就是哈密顿算符▽的平方),而 f 和φ可以是在流形上的实数或复数值的方程。

拉普拉斯方程:

因此泊松方程通常写成:

在三维直角坐标系,可以写成

如果没有f,这个方程就会变成拉普拉斯方程△φ=0.

泊松方程可以用格林函数来求解;如何利用格林函数来解泊松方程可以参考screened Poisson equation。现在有很多种数值解法,数学上,泊松方程属于椭圆型方程。

四、Poisson方程的解法

泊松首先在无引力源的情况下得到泊松方程,△Φ=0(即拉普拉斯方程);当考虑引力场时,有△Φ=f(f为引力场的质量分布)。后推广至电场磁场,以及热场分布。该方程通常用格林函数法求解,也可以分离变量法,特征线法求解。由于Poisson方程难以求得其解析解,计算机技术发展之后,数值解法成为工程实际中应用最广泛的求Poisson方程解的方法,常见的数值解法有:里兹(Ritz)法,加权余量法,有限差分法,有限元法,边界元法及有限体积法等。

4.1、里兹(Ritz)法

瑞利-里兹法(也称里兹法)是通过泛函驻值条件求未知函数的一种近似方法,是英国的瑞利于1877年在《声学理论》一书中首先采用,后由瑞士的W.

里兹于1908年作为一个有效方法提出。这一方法在许多力学、物理学、量子化学问题中得到应用。

同时它也是广泛应用于应用数学和机械工程领域的经典数值方法,它可以用来计算结构的低阶自然频率。它是直接变分法的一种,以最小势能原理为理论基础。通过选择一个试函数来逼近问题的精确解,将试函数代入某个科学问题的泛函中,然后对泛函求驻值,以确定试函数中的待定参数,从而获得问题的近似解。

4.2、加权余量法

加权余量法(Weighted residual approach),又称加权残量法,加权残余法。

当n 有限时,定解方程存在偏差(余量)。取权函数,强迫余量在某种平均意义上为零。采用使余量的加权积分为零的等效积分的“弱”形式来求得微分方程近似解的方法称为加权余量法。

加权余量法在固体力学中,是求解线性、非线性微分方程的一种有效方法,它是基于等效积分形式的近似方法,也是通用的数值计算方法.有限元法、边界元法、无网格法都是加权余量法的特殊情况,由于这三种方法各有其特点,所以都各自发展为一种独立的方法,加权余量法最早是用于流体力学,传热等科学领域,后在固体力学中得到了更大的发展。

权函数的选择

加权余量法是求解微分方程近似解的一种有效方法.显然,任何独立的完全函数都可用来作为权函数,加权余量法可分为内部法、边界法和混合法,在内部法中,又可分为:配置法(以笛拉克函数δ作为权函数),子域法,最小二乘法,矩量法,伽辽金法等。

4.3、有限差分法

有限差分法的基本思想是把连续的定解区域用有限个离散点构成的网格来

代替,这些离散点称作网格的节点;把连续定解区域上的连续变量的函数用在网格上定义的离散变量函数来近似;把原方程和定解条件中的微商用差商来近似,积分用积分和来近似,于是原微分方程和定解条件就近似地代之以代数方程组,即有限差分方程组,解此方程组就可以得到原问题在离散点上的近似解。然后再利用插值方法便可以从离散解得到定解问题在整个区域上的近似解。

在采用数值计算方法求解偏微分方程时,若将每一处导数由有限差分近似公式替代,从而把求解偏微分方程的问题转换成求解代数方程的问题,即所谓的有限差分法。

有限差分法求解偏微分方程的步骤如下:

1、区域离散化,即把所给偏微分方程的求解区域细分成由有限个格点组成的网格;

2、近似替代,即采用有限差分公式替代每一个格点的导数;

3、逼近求解。换而言之,这一过程可以看作是用一个插值多项式及其微分来代替偏微分方程的解的过程。

4.4、有限元法

有限元法(finite element method)是一种高效能、常用的计算方法。有限

元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。

将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单

元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。

有限元法的一般步骤:

步骤1:剖分:

将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).

步骤2:单元分析:

进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数

步骤3:求解近似变分方程

用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

4.5、边界元法

边界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点。但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。

边界元法以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。对一般的非线性问题,由于在方程中会出现域内积分项,从而部分抵消了边界元法只要离散边界的优点。

4.6、有限体积法

有限体积法(Finite Volume Method)又称为有限容积法、控制体积法。

将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。

从积分区域的选取方法看来

有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积法的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。有限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

五、有限差分法详细介绍

在计算流体力学中,由于有限差分法发展较早,应用技术比较成熟,其应用比较的广泛。

物理学和其他学科领域的许多问题在被分析研究之后, 往往可以归结为常微分方程或偏微分方程的求解问题。一般说来,处理一个特定的物理问题,除了需要知道它满足的数学方程外,还应当同时知道这个问题的定解条件,然后才能设计出行之有效的计算方法来求解。

有限差分法以变量离散取值后对应的函数值来近似微分方程中独立变量的连续取值。在有限差分方法中,我们放弃了微分方程中独立变量可以取连续值的特征,而关注独立变量离

散取值后对应的函数值。但是从原则上说,这种方法仍然可以达到任意满意的计算精度。因为方程的连续数值解可以通过减小独立变量离散取值的间格,或者通过离散点上的函数值插值计算来近似得到。

这种方法是随着计算机的诞生和应用而发展起来的。其计算格式和程序的设计都比较直观和简单,因而,它的实际应用已经构成了计算数学和计算物理的重要组成部分。

有限差分法的具体操作分为两个部分:

(1)用差分代替微分方程中的微分,将连续变化的变量离散化,从而得到差分方程组的数学形式;

(2)求解差分方程组。在第一步中,我们通过所谓的网络分割法,将函数定义域分成大量相邻而不重合的子区域。通常采用的是规则的分割方式。这样可以便于计算机自动实现和减少计算的复杂性。网络线划分的交点称为节点。若与某个节点P 相邻的节点都是定义在场域内的节点,则P 点称为正则节点;反之,若节点P 有处在定义域外的相邻节点,则P 点称为非正则节点。 在第二步中,数值求解的关键就是要应用适当的计算方法,求得特定问题在所有这些节点上的离散近似值。

有限差分法的差分格式

一个函数在x 点上的一阶和二阶微商,可以近似地用它所临近的两点上的函数值的差分来表示。如对一个单变量函数f(x),x 为定义在区间[a,b]的连续变量。以步长h=Δx 将[a,b]区间离散化,我们得到一系列节点公式

()()()j i j i j i u y x u j i y x jl y ih x l y h x ,,,,,,

,,,??===?=? 则可用差商代替微商 前插和后插格式:()()j i j i j

i j i j i j i u u h x u u u h x u ,1,,,,1,11-+-=???? ????-=???? ???? 中心差分格式: ()j i j i j

i u u h x u ,1,1,21-+-=???? ????

下面即用五点格式求解Poisson 方程的Matlab 程序,一类边界条件(即在边界上给定边界函数),采用高斯-赛德尔(Gauss-Seidel )迭代,求解。若P 点不恰好在边界上(如下图所示),则用直接转移法定义。在x 区域上给定函数为22)y ,(y x x f +=,

则其精确解即为22)y ,(y x x f +=,边界条件亦为22)y ,(y x x f +=。用五点格式求其精确解,并输出其解析解及其与精确解的误差。

P点不恰好在边界上的节点处理

六、Matlab程序及数值解分析

% Uses the five-point formula to solve Poisson's equation

% on a square.

% Inline functions define the source function (f), the boundary

% values (ux0,ux1,u0y,u1y), and the true solution (u).

f = inline('x^2 + y^2');

ux0 = inline('0');

ux1 = inline('.5*x^2');

u0y = inline('sin(pi*y)');

u1y = inline('exp(pi)*sin(pi*y) + .5*y^2');

u = inline('exp(pi*x)*sin(pi*y) + .5*(x^2)*(y^2)');

% Ask user for problem size. (Use same no. of points in each direction.)

n = input(' Enter number of subintervals in each direction: ');

h = 1/n;

N = (n-1)^2;

A = sparse(N,N); % Store A as a sparse matrix.

F = zeros(N,1);

% Set up matrix A and right-hand side vector F.

A = -4*sparse(eye(N,N));

for j=1:n-1, % Loop over grid rows

for i=1:n-1, % Loop over points in each row

k = (j-1)*(n-1)+i; % Index of this point

if j > 1,

A(k,k-(n-1)) = 1; % coupling to pt below

end;

if j < n-1,

A(k,k+(n-1)) = 1; % coupling to pt above end;

if i > 1, A(k,k-1) = 1; end; % coupling to pt to left

if i < n-1, A(k,k+1) = 1; end; % coupling to pt to right

xi = i*h; yj = j*h;

F(k) = f(xi,yj); % right-hand side vector if j==1,

F(k) = F(k) - (1/h^2)*ux0(xi); % bdry pt below

end;

if j==n-1,

F(k) = F(k) - (1/h^2)*ux1(xi); % bdry pt above

end;

if i==1,

F(k) = F(k) - (1/h^2)*u0y(yj); % bdry pt to left

end;

if i==n-1,

F(k) = F(k) - (1/h^2)*u1y(yj); % bdry pt to right

end;

end;

end;

% Remember to multiply A by 1/h^2.

A = (1/h^2)*A;

% Solve linear system.

uapprox = A\F;

% Compare to true solution.

utrue = zeros(N,1);

for j=1:n-1,

for i=1:n-1,

k = (j-1)*(n-1)+i;

xi = i*h; yj = j*h;

utrue(k) = u(xi,yj);

end;

end;

err2 = h*norm(utrue-uapprox),

errinf = norm(utrue-uapprox,'inf')

% Plot solution and error over grid.

ugrid = reshape(utrue,n-1,n-1);

figure(1)

mesh([h:h:(n-1)*h]',[h:h:(n-1)*h]',ugrid')

title('True Solution')

errgrid = reshape(utrue-uapprox,n-1,n-1);

figure(2)

mesh([h:h:(n-1)*h]',[h:h:(n-1)*h]',errgrid')

title('Error')

运行,输入两个方向的划分节点数(程序中默认两者相等)10,

Enter number of subintervals in each direction: 10,

得到结果:误差矩阵的范数为err2 =0.0329

真实解图误差图再次运行,输入两个方向的划分节点数(程序中默认两者相等)100,Enter number of subintervals in each direction: 100,

得到结果:误差矩阵的范数为err2 =

3.3207e-004

真实解图误差图

对比两次运行结果可以发现,随着节点数的增多,数值解的误差变小,同时求解速度也变大,实际工程中应按照工程类型合理选择节点数,以提高效率。

参考文献:

《计算流体力学》李万平华中科技大学出版社 2004-10

《Matlab教程》张志涌北京航空航天大学出版社 2006年8月

计算流体力学课程总结

计算流体力学课程总结 计算流体动力学(computational Fluid Dynamics,简称CFD)是通过计算机数值 计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。 流体力学和其他学科一样,是通过理论分析和实验研究两种手段发展起来的。很早就已有理论流体力学和实验流体力学两大分支。理论分析是用数学方法求出问题的定量结果。但能用这种方法求出结果的问题毕竟是少数,计算流体力学正是为弥补分析方法的不足而发展起来的。计算流体力学是目前国际上一个强有力的研究领域,是进行传热、传质、动量传递及燃烧、多相流和化学反应研究的核心和重要技术,广泛应用于航天设计、汽车设计、生物医学工业、化工处理工业、涡轮机设计、半导体设计、HAVC&R 等诸多工程领域。 计算流体力学的任务是流体力学的数值模拟。数值模拟是“在计算机上实现的一 个特定的计算,通过数值计算和图像显示履行一个虚拟的物理实验——数值实验“。 数值模拟包括以下几个部分。首先,要建立反映问题(工程问题、物理问题等)本质数 学模型。其次,数学模型建立以后需要解决的问题是寻求高效率、高准确度的计算方法。再次,在确定了计算方法和坐标系统后,编制程序和进行计算式整个工作的主体。最后,当计算工作完成后,流畅的图像显示是不可缺少的部分。 还有一个就是CFD的基本思想问题,它就是把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通 过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求 解代数方程组获得场变量的近似值。 经过四十多年的发展,CFD出现了多种数值解法。这些方法之间的主要区别在于 对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支: ?有限差分法(Finite Different Method,FDM) ?有限元法(Finite EIement Method,FEM) ?有限体积法(Finite Volume Method,FVM) 有限差分法是应用最早、最经典的CFD方法,也是最成熟、最常用的方法。它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的 导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分万程组 的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题 的近似数值解法。

流体力学大作业

《计算流体力学》课程大作业 作业内容:3-4人为小组完成数值模拟,在第8次课上每组进行成果展示,并在课程结束后每组上交一份纸质版报告。 数值模拟实现形式:自编程或者使用任意的开源、商业模型。 成果展示要求:口头讲述和幻灯片结合的方式,每组限时10分钟(8分钟讲述,2分钟提问和讨论)。 报告要求:按照期刊论文的思路和格式进行撰写(包括但不限于如下内容:摘要、绪论\引言、数值模型简介、数值结果分析\讨论、结论、参考文献)。 (以下题目二选一) 题目一:固定单方柱扰流问题 根据文章《Interactions of tandem square cylinders at low Reynolds numbers》中的实验进行数值模拟,完成但不局限于如下工作: (1)根据Fig. 2 中的雷诺数和方柱排列形式,进行相同雷诺数不同间距比情况下的方柱绕流数值模拟,并做出流线图和Fig.2中的结果对比。 (2)根据Fig. 3 中的雷诺数和方柱排列形式,进行相同雷诺数后柱不同转角情况下的方柱绕流数值模拟,并做出流线图和Fig.3中的结果对比。 (3)根据Fig. 12, 13 中的雷诺数和方柱间距比的设置进行数值模拟,作出频率、斯特劳哈尔数、阻力系数随雷诺数变化的折线并与图中对应的折线画在同一坐标系下比较。 (中共有4条折线,对应4种不同的方柱排列形式下的物理参数随雷诺数变化的规律,仅需选取单柱模型和其中一种双柱模型进行数值模拟,共计16个工况)。 题目二:溃坝问题 根据文章《Experimental investigation of dynamic pressure loads during dam break》中的实验进行数值模拟,完成但不局限于如下工作: (1)分别完成二维、三维的溃坝的数值建模,讨论二维、三维模型的区别。 (2)分别将二维、三维溃坝的数值模拟结果和Fig. 7,10中各时刻的自由面形态进行对比,并分别观测溃坝前端水舌的位置随时间的变化,其结果和Fig. 12 种的各试验结果放在同一坐标系下进行对比。 (3)根据实验设置数值观测点,分别观测与实验测点相对应的数值观测点上的水体高度、压力随时间的变化曲线,并和Fig.16, 18,21,30,31,32,33,35中的实验结果进行对比。

产品数据管理技术与计算流体力学课程介绍

〈〈产品数据管理(PDM技术》课程简介 课程代码:AM011 课程简介: 本门课程将讲授PDM技术的基本概念、理论方法、系统结构和PDM^r业实施案例以及典型PDM^统介绍等相关专题,以满足我国企业信息化工程对大量复合型人才的需求 本课程的主要任务是: 1、掌握PDMJ术的发展与应用; 2、掌握PDMJ术的基本理论和方法; 3、掌握PDMK统体系结构和主要功能; 4、掌握PD"对象的建模方法和对象模型; 5、了解PDMK统实施方法; 6、了接国内外著名PDMS用系统。 本课程是一门实用性和系统性很强的课程,包含了机械工程和工业工程等领域高级技术 人员必须掌握的基本知识和内容。课程学习的目的是使学生掌握 PD M 基本理论知识和方法,为今后从事企业信息化工作,特别是从事产品数字化设计、制造与管理工作打下坚实的理论基础。 This course is the basic course on product development, it covers the following topics: Development and applications of PDM technology, Supporting technologies of PDM, Product data management technology, Product development lifecycle management technology, PDM implementation methodology, Introduction to SIPM/PDM.

院(系)公章: 撰写人:

《计算流体动力学分析》学习报告

《计算流体动力学分析》学习报告 计算流体力学基础: 本章主要讲解流体动力学的核心思想以及流体动力学的控制方程。 1、计算流体动力学(Computational Fluid Dynamic )基本思想:把原来在时间和空间上的连续的物理量,用一系列离散点上的变量值来代替,通过一定的原则和方式建立变量之间的代数方程式,求解之后获得变量的近似值。 2、CFD 控制方程: 质量守恒方程 0)·=?+??u t ρρ( 动量守恒方程(Navier-Stokes 方程) Fz z y x z u w div t w F z y x y u v div t v F z y x x u u div t u zz zx zx y zy yy xy x zx yx xx +??+??+??+??-=+??+??+??+??+??-=+??+??+??+??+??-=+??τττρρρτττρρρτττρρρ)()()()()()( 能量守恒方程 T p S gradT c k div T u div t +=+??)()(T ( ρρ) S T 为粘性耗散项。 方程含有u ,v ,w ,p ,T 和ρ六个未知量,所以还需要一个方程组,才能使其封闭,而这个方程组就是联系P 和ρ的状态方程组:P=(ρ,T )。 组分质量守恒方程(在一个系统中,可能存在质的交换,或者存在化学组分时使用。) ()s s s s S c grad D div c u div t +=+??)()(c (s ρρρ ) 为便于对控制方程进行计算和分析,对CFD 控制方程写成通用格式: ()S z z y y x x z w y v x u t S grad div u div t +??Γ??+??Γ??+??Γ??=??+??+??+??+Γ=+??)()()()()()())()(φφφφρφρφρρφφφρρφ 依次为瞬态项,对流项,扩散项和源项。 3、湍流控制方程 三维的N-S 方程无论对于层流还是湍流都是是使用的,但由于直接求解三维瞬态的控制方程,对计算机的内存和速度要求很高,因此在工程上广为采用的方法是对瞬态的N-S 方程进行实践平均处理,同时补充反应湍流特性的其他方程,例如湍动能方程以及湍流耗散率方程

流体力学实验报告

流体力学 实验指导书与报告 静力学实验 雷诺实验 中国矿业大学能源与动力实验中心

学生实验守则 一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。如有违犯,指导教师有权停止基实验。 二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。 三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。 四、预习报告和实验报告必须独自完成,不得互相抄袭。 五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。 六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。 七、爱护仪器设备,不准动用与本实验无关的仪器设备。要节约水、电、试剂药品、元器件、材料等。如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。 八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。 九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。 十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。 1984年5月制定 2014年4月再修订 中国矿业大学能源与动力实验中心

流体力学 大作业

一.选择题 1.牛顿内摩擦定律适用于()。 A.任何流体B.牛顿流体C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上B.在微观上C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间B.质量C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力C.正压力、重力D.正压力、切向力、重力 6.下述哪些力属于质量力( ) A.惯性力B.粘性力C.弹性力D.表面张力E.重力 7.某点存在真空时,()() A.该点的绝对压强为正值B.该点的相对压强为正值c.该点的绝对压强为负值D.该点的相对压强为负值 8.流体静压强的()。 A.方向与受压面有关B.大小与受压面积有关B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A.B.C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器内液面压强小于大气压强,其任一点的测压管液面()。A.高于容器内液面B.低于容器内液面C.等于容器内液面 12.流体运动的连续性方程是根据()原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13. 流线和迹线重合的条件为()。

A.恒定流 B.非恒定流 C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流 C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:()、() A.总水头线总是沿程下降的。 B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A. 温度 B. 管径 C. 流速 D. 管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为()。 A. 层流 B. 层流向紊流过渡 C.紊流 18.等直径圆管中紊流的过流断面流速分布是()A呈抛物线分布B. 呈对数线分布 C.呈椭圆曲线分布 D. 呈双曲线分布 19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍B.1/3倍C. 1/4倍D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B. 二次方 C. 三次方 D. 四次方 21..圆管的水力半径是( ) A. d/2 B. d/3 C. d/4 D. d/5. 22谢才公式中谢才系数的单位是()A. 无量纲B. C. D. . 23. 判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24.. 对于管道无压流,当充满度分别为()时,其流量和速度分别达到最大。 A. 0.5, 0.5 B. 0.95, 0.81 C. 0.81, 081 D. 1.0, 1.0 25.对于a, b, c三种水面线,下列哪些说法是错误()() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。B.所有b型曲线都是壅水曲线,即,水深沿程增大。C.所有a、c型曲线都是降水曲线,即,水深沿程减小。C.所有b型曲线都是降水曲线,即,水深沿程减

《计算流体力学》结课作业要点.doc

2012~2013学年第1学期 12级研究生《计算流体力学》结课作业 适用专业:供热供燃气通风及空调工程 一、结合某一具体学科,阐述纯理论方法、实验方法及数值方法在科学研究中的各自优缺点,在此基础上论述数值模拟方法的发展前景。(不少于4千字)。 流体力学是力学的一个重要分支, 是研究流体(液体和气体)的力学运动规律及其应用的学科, 主要研究在各种力的作用下,流体本身的静止状态和运动状态特征,以及流体和相邻固体界面有相对运动时的相互作用和流动规律。在人们的生活和生产活动中随时随地都可遇到流体,流体力学与人类的日常生活和生产事业密切相关。按其研究内容的侧重点不同,分为理论流体力学和工程流体力学。其中理论流体力学主要采用严密的数学推理方法,力求准确性和严密性,工程流体力学侧重于解决工程实际中出现的问题,而不追求数学上的严密性。当然由于流体力学研究的复杂性,在一定程度上,两种方法都必须借助于实验研究,得出经验或半经验的公式。 在实际工程的诸多领域流体力学都起着十分重要的作用。如气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了流体力学自身的不断发展。1950年后,计算机的发展给予流体力学以极大的推动作用。 目前,解决流体力学问题的方法主要有实验方法、理论分析方法和数值方法三种。 实验方法 同物理学、化学等学科一样,流体力学的研究离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。流体力学实验研究方法有实物实验、比拟研究和模型研究三类:实物实验是用仪器实测原型系统的流动参数,适用于较小的原型;比拟实验是利用电场和磁场来模拟流场,实施起来限制条件较多;模型研究是实验流体力学最常用的研究方法。 实验研究的一般过程是:在相似理论的指导下建立实验模型,用流体测量技术测量流动参数,处理和分析实验数据。建立实验模型要求模型与原型满足相似理论,即满足两个流场

计算流体力学大作业

1 提出问题 [问题描述] Sod 激波管问题是典型的一类Riemann 问题。如图所示,一管道左侧为高温高压气体,右侧为低温低压气体,中间用薄膜隔开。t=0 时刻,突然撤去薄膜,试分析其他的运动。 Sod 模型问题:在一维激波管的左侧初始分布为:0 ,1 ,1111===u p ρ,右侧分布为:0 ,1.0 ,125.0222===u p ρ,两种状态之间有一隔膜位于5.0=x 处。隔膜突然去掉,试给出在14.0=t 时刻Euler 方程的准确解,并给出在区间10≤≤x 这一时刻u p , ,ρ的分布图。 2 一维Euler 方程组 分析可知,一维激波管流体流动符合一维Euler 方程,具体方程如下: 矢量方程: 0U f t x ??+=?? (0.1) 分量方程: 连续性方程、动量方程和能量方程分别是: 2 22,,p u ρ

() ()()()2 000u t x u u p t x x u E p E t x ρρρρ???+ =?????????++=? ??????+?????+ =????? (0.2) 其中 22v u E c T ρ?? =+ ?? ? 对于完全气体,在量纲为一的形式下,状态方程为: ()2 p T Ma ργ∞ = (0.3) 在量纲为一的定义下,定容热容v c 为: () 21 1v c Ma γγ∞= - (0.4) 联立(1.2),(1.3),(1.4)消去温度T 和定容比热v c ,得到气体压力公式为: ()2112p E u γρ??=-- ??? (0.5) 上式中γ为气体常数,对于理想气体4.1=γ。 3 Euler 方程组的离散 3.1 Jacibian 矩阵特征值的分裂 Jacibian 矩阵A 的三个特征值分别是123;;u u c u c λλλ==+=-,依据如下算法将其分裂成正负特征值: () 12 222 k k k λλελ±±+= (0.6) 3.2 流通矢量的分裂 这里对流通矢量的分裂选用Steger-Warming 分裂法,分裂后的流通矢量为 ()()()()()()()12312322232121212122f u u c u c u u c u c w γλλλργλλλγλλγλ?? ? -++ ?=-+-++ ? ? ? -+-+++ ??? +++++++ ++ ++ (0.7)

计算流体力学课后题作业

课后习题 第一章 1.计算流体动力学的基本任务是什么 计算流体动力学是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。 2.什么叫控制方程?常用的控制方程有哪几个?各用在什么场合? 流体流动要受物理守恒定律的支配,基本的守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律。如果流动包含有不同组分的混合或相互作用,系统还要遵守组分守恒定律。如果流动处于湍流状态,系统还要遵守附加的湍流输运方程。控制方程是这些守恒定律的数学描述。 常用的控制方程有质量守恒方程、动量守恒方程、能量守恒方程、组分质量守恒方程。质量守恒方程和动量守恒方程任何流动问题都必须满足,能量守恒定律是包含有热交换的流动系统必须满足的基本定律。组分质量守恒方程,在一个特定的系统中,可能存在质的交换,或者存在多种化学组分,每种组分都需要遵守组分质量守恒定律。 4.研究控制方程通用形式的意义何在?请分析控制方程通用形式中各项的意义。 建立控制方程通用形式是为了便于对各控制方程进行分析,并用同一程序对各控制方程进行求解。

各项依次为瞬态项、对流项、扩散项、源项。 6.CFD商用软件与用户自行设计的CFD程序相比,各有何优势?常用的商用CFD软件有哪些?特点如何? 由于CFD的复杂性及计算机软硬件条件的多样性,用户各自的应用程序往往缺乏通用性。 CFD商用软件的特点是 功能比较全面、适用性强。 具有比较易用的前后处理系统和其他CAD及CFD软件的接口能力,便于用户快速完成造型、网格划分等工作。 具有比较完备的容错机制和操作界面,稳定性高。 可在多种计算机、多种操作系统,包括并行环境下运行。 常用的商用CFD软件有PHOENICS、CFX、SRAR-CD、FIDAP、FLUENT。PHOENICS除了通用CFD软件应该拥有的功能外,PHOENICS软件有自己独特的功能:开放性、CAD接口、运动物体功能、多种模型选择、双重算法选择、多模块选择。 CFX除了可以使用有限体积法外,还采用基于有限元的有限体积法。用于模拟流体流动、传热、多相流、化学反应、燃烧问题。其优势在于处理流动物理现象简单而几何形状复杂的问题。 SRAR-CD基于有限体积法,适用于不可压流体和可压流的计算、热力学的计算及非牛顿流的计算。它具有前处理器、求解器、后处理器三大模块,以良好的可视化用户界面把建模、求解及后处理与全部的物理模型和算法结合在一个软件包中。

计算流体力学论文

自然环境和工程装置中的流动常常是湍流流动,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。 对湍流最根本的模拟方法是在湍流尺度的网格尺寸内求解瞬态的三维N-S 方程的全模拟方法,此时无需引进任何模型。然而由于计算方法及计算机运算水平的限制,该种方法不易实现。另一种要求稍低的方法是亚网格尺寸度模拟即大涡模拟(LES ),也是由N-S 方程出发,其网格尺寸比湍流尺度大,可以模拟湍流发展过程的一些细节,但由于计算量仍然很大,只能模拟一些简单的情况,直接应用于实际的工程问题也存在很多问值题[1]。目前数模拟主要有三种方法:1.平均N-S 方程的求解,2.大涡模拟(LES ),3.直接数值模拟(DNS ),而模拟的前提是建立合适的湍流模型。 2、基本湍流模型 常用的湍流模型有: 零方程模型:C-S 模型,由Cebeci-Smith 给出;B-L 模型,由Baldwin-Lomax 给出。一方程模型:来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型;另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型。二方程模型:应用比较广泛的两方程模型有Jones 与Launder 提出的标准k-e 模型,以及k-omega 模型。 2.1 零方程模型 上世纪30年代发展的一系列湍流的半经验理论,如Prandtl 的混合长度理论、Taylor 的涡量输运理论、von Karman 的相似性理论等,本质上即是零方程湍流模型。零方程模型直接建立雷诺应力与平均速度之间的代数关系,由于不涉及代数关系故称为另方程模型: ''m u u v y ρρε?-=? 其中m ε称为涡粘系数,他与分子的运动粘性系数ν有相同的量级。对于一般的三维的情况,上式可写为: '' 223 i j m ij ij u v S K ρεδ-=- K 为单位质量的湍流脉动动能。为了发展上述方法,需要建立m ε与平均速度之间的关系。1925年,普朗特沿这一方向做了重要工作,提出可混合长度理论,混合长度理论认为,存在这样的长度l ,在此长度内流体质点运动是自由的(不与

计算流体力学结课报告

计算流体力学结课报告200Km/h列车fluent仿真计算 学部:化、环、生学部 学院:化工机械与安全学院 学号:31507095 班级:化1512班 学生姓名:孙金

引言 数值仿真就是对所建立的数值模型进行数值实验和求解的过程。而计算流体力学CFD (Computational Fluid Dynamics)就是在工程仿真实验领域中应用最广泛的一门学科。任何流体运动的规律都是以质量守恒定律、动量守恒定律和能量守恒定律为基础的。这些基本定律可由数学方程组来描述,如欧拉方程、N-S方程。采用数值计算方法,通过计算机求解这些控制流体流动的数学方程,进而研究流体的运动规律这就是CFD研究问题的方法。在实际计算流体力学方面,采用通用的CFD软件来完成工程上的一些流体力学问题,有极为广泛的应用前景。近年来,随着计算机技术以及相关技术的发展,CFD技术已经在工程领域内取得重大的进步,特别是在高速列车的外型设计方面起了很大作用。随着国家经济的发展,国家运输业也有了很大的发展,特别是列车经过几次提速后,高速列车在国家运输行业中所占比例不断提高。高速列车的特点是庞大、细长、在地面轨道上运行,其空气动力学问题非常复杂。空气在列车表面形成空气流场,空气阻力急剧增加,作用在列车的阻力大部分来自压强阻力,而一部分来自表面磨擦阻力,这就使能耗过大,同时列车可能出现较大的空气升力,导致列车产生“飘”的现象,激发列车脱轨事故的发生,因此研究高速列车气动力性能非常重要。用CFD仿真可以详细了解高速列车的空气动力特性,从而设计出阻力小、噪音低等各方面性能完善的高质量列车。本文采用CFD学科中的常用商业软件Fluent仿真一个时速200km/h的二维流线型车头的外流场,对其空气动力性能进行分析,从而得到不同车辆形状其周围流场的不同,进而分析哪种车型更适合。

计算流体力学课程大作业

《计算流体力学》课程大作业 ——基于涡量-流函数法的不可压缩方腔驱动流问题数值模拟 张伊哲 航博101 1、 引言和综述 2、 问题的提出,怎样使用涡量-流函数方法建立差分格式 3、 程序说明 4、 计算结果和讨论 5、 结论 1引言 虽然不可压缩流动的控制方程从形式上看更为简单,但实际上,目前不可压缩流动的数值方法远远不如可压缩流动的数值方法成熟。 考虑不可压缩流动的N-S 方程: 01()P t νρ??=? ? ??+??=-?+???? U U UU f U (1.1) 其中ν是运动粘性系数,认为是常数。将方程组写成无量纲的形式: 01()Re P t ??=?? ??+??=-?+????U U UU f U (1.2) 其中Re 是雷诺数。 从数学角度看,不可压缩流动的控制方程中不含有密度对时间的偏导数项,方程表现出椭圆-抛物组合型的特点;从物理意义上看,在不可压缩流动中,压力这一物理量的波动具有无穷大的传播速度,它瞬间传遍全场,以使不可压缩条件在任何时间、任何位置满足,这就是椭圆型方程的物理意义。这就造成不可压缩的N-S 方程不能使用比较成熟的发展型...偏微分方程的数值求解理论和方法。 如果将动量方程和连续性方程完全耦合求解,即使使用显示的离散格式,也将会得到一个刚性很强的、庞大的稀疏线性方程组,计算量巨大,更重要的问题是不易收敛。因此,实际应用中,通常都必须将连续方程和动量方程在一定程度上解耦。 目前,求解不可压缩流动的方法主要有涡量-流函数法,SIMPLE 法及其衍生的改进方法,有限元法,谱方法等,这些方法各有优缺点。其中涡量-流函数法是解决二维不可压缩流动的有效方法。作者本学期学习了研究生计算流体课程,为了熟悉计算流体的基本方法,选择使用涡量-流函数法计算不可压缩方腔驱动流问题,并且对于不同雷诺数下的解进行比较和分析,得出一些结论。 本文接下来的内容安排为:第2节提出不可压缩方腔驱动流问题,并分析该问题怎样使用涡量-流函数方法建立差分格式、选择边界条件。第3节介绍程序的结构。第4节对于不同雷诺数下的计算结果进行分析,并且与U.GHIA 等人【1】的经典结论进行对比,评述本

计算流体力学过渡到编程的傻瓜入门教程

借宝地写几个小短文,介绍CFD的一些实际的入门知识。主要是因为这里支持Latex,写起来比较便。 CFD,计算流体力学,是一个挺难的学科,涉及流体力学、数值分析和计算机算法,还有计算机图形学的一些知识。尤其是有关偏微分程数值分析的东西,不是那么容易入门。大多数图书,片中数学原理而不重实际动手,因为作者都把读者当做已经掌握基础知识的科班学生了。所以数学基础不那么好的读者往往看得很吃力,看了还不知道怎么实现。本人当年虽说是学航天工程的,但是那时本科教育已经退步,基础的流体力学课被砍得只剩下一维气体动力学了,因此自学CFD的时候也是头晕眼花。不知道怎么实现,也很难找到教学代码——那时候网络还不发达,只在教研室的故纸堆里搜罗到一些完全没有注释,编程风格也不好的冗长代码,硬着头皮分析。后来网上淘到一些代码研读,结合书籍论文才慢慢入门。可以说中间没有老师教,后来赌博士为了混学分上过CFD专门课程,不过那时候我已经都掌握课堂上那些了。 回想自己入门艰辛,不免有一个想法——写点通俗易懂的CFD入门短文给师弟师妹们。本人不打算搞得很系统,而是希望能结合实际,阐明一些最基本的概念和手段,其中一些复杂的道理只是点到为止。目前也没有具体的计划,想到哪里写到哪里,因此可能会很零散。但是我争取让初学CFD 的人能够了解一些基本的东西,看过之后,会知道一个CFD代码怎么炼成的(这“炼”字好像很流行啊)。欢迎大家提出意见,这样我尽可能的可以追加一些修改和解释。

言归正传,第一部分,我打算介绍一个最基本的算例,一维激波管问题。说白了就是一根两端封闭的管子,中间有个隔板,隔板左边和右边的气体状态(密度、速度、压力)不一样,突然把隔板抽去,管子面的气体怎么运动。这是个一维问题,被称作黎曼间断问题,好像是黎曼最初研究双曲微分程的时候提出的一个问题,用一维无粘可压缩Euler程就可以描述了。 这里 这个程就是描述的气体密度、动量和能量随时间的变化()与它们各自的流量(密度流量,动量流量,能量流量)随空间变化()的关系。 在CFD常把这个程写成矢量形式 这里 进一步可以写成散度形式

流体力学大作业

流体力学-大作业

————————————————————————————————作者: ————————————————————————————————日期:

一.选择题 1.牛顿内摩擦定律适用于()。 A.任何流体B.牛顿流体 C.非牛顿流体 2.液体不具有的性质是()。 A.易流动性B.压缩性C.抗拉性 D.粘滞性 3连续介质假定认为流体()连续。 A.在宏观上 B.在微观上 C.分子间D.原子间 4.在国际单位制中流体力学基本量纲不包括()。 A.时间 B.质量 C.长度D.力. 5.在静水中取一六面体,作用在该六面体上的力有() A.切向力、正压力B.正压力C.正压力、重力D.正压力、切向力、重力 6. 下述哪些力属于质量力() A.惯性力B.粘性力 C.弹性力D.表面张力E.重力 7.某点存在真空时,( )() A.该点的绝对压强为正值 B.该点的相对压强为正值c.该点的绝对压强为负值 D.该点的相对压强为负值 8.流体静压强的( )。 A.方向与受压面有关B.大小与受压面积有关B.大小与受压面方位无关 9.流体静压强的全微分式为()。 A. B. C. 10.压强单位为时,采用了哪种表示法()。 A.应力单位B.大气压倍数C.液柱高度 11.密封容器内液面压强小于大气压强,其任一点的测压管液面( )。 A.高于容器内液面B.低于容器内液面 C.等于容器内液面 12.流体运动的连续性方程是根据( )原理导出的。 A.动量守恒 B. 质量守恒 C.能量守恒 D. 力的平衡 13.流线和迹线重合的条件为()。

A.恒定流B.非恒定流C.非恒定均匀流 14.总流伯努利方程适用于()。 A.恒定流 B.非恒定流C.可压缩流体 15. 总水头线与测压管水头线的基本规律是:( )、( ) A.总水头线总是沿程下降的。B.总水头线总是在测压管水头线的上方。 C.测压管水头线沿程可升可降。 D.测压管水头线总是沿程下降的。 16 管道中液体的雷诺数与()无关。 A.温度B.管径C. 流速D.管长 17.. 某圆管直径d=30mm,其中液体平均流速为20cm/s。液体粘滞系数为0.0114cm3/s,则此管中液体流态为( )。 A. 层流 B. 层流向紊流过渡C.紊流 18.等直径圆管中紊流的过流断面流速分布是()A呈抛物线分布B.呈对数线分布 C.呈椭圆曲线分布D.呈双曲线分布19.等直径圆管中的层流,其过流断面平均流速是圆管中最大流速的() A 1.0倍 B.1/3倍C.1/4倍D. 1/2倍 20.圆管中的层流的沿程损失与管中平均流速的()成正比. A. 一次方 B.二次方 C. 三次方D. 四次方 21..圆管的水力半径是() A. d/2B.d/3 C. d/4D. d/5. 22谢才公式中谢才系数的单位是()A.无量纲B.C.D.. 23.判断层流和紊流的临界雷诺数是() A.上临界雷诺数 B.下临界雷诺数 C.上下临界雷诺数代数平均 D.上下临界雷诺数几何平均 24..对于管道无压流,当充满度分别为( )时,其流量和速度分别达到最大。A.0.5,0.5B.0.95,0.81 C.0.81, 081 D. 1.0,1.0 25.对于a, b,c三种水面线,下列哪些说法是错误( )() A.所有a、c型曲线都是壅水曲线,即,水深沿程增大。B.所有

计算流体力学大作业报告(翼型空气动力分析)

课程综合作业课程名称:计算流体力学 专业班级:研究方向: 学生姓名:学号: 完成日期:

计算流体力学课程综合报告 1.简介 计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。其基本思想为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值。 CFD可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理星,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。 2.计算流体动学的特点: ①流动问题的控制方程一般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解。 ②可利用计算机进行各种数值试验,例如,选择不同流动参数进行物理方程中各项有效性和敏感性试验,从而进行方案比较。 ③它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。 ④数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差。 ⑤它不像物理模型实验一开始就能给出流动现象并定性地描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证。

流体力学试验

流體力學實驗 老師:A1班→李宗翰老師;B1班→楊龍杰老師 A2班→蔡欣正老師;B2班→邵德文老師 時間:A1班→星期五12、13、14節;B1班→星期三11、12、13節A2班→星期二11、12、13節;B2班→星期四12、13、14節 上課進度:

成績計算: 1.作業(30﹪):上課後10分鐘未交報告者扣總分3分! 當日無故未交者扣總分10分! 1.課堂(20﹪):分組合作精神,數據結果及隨堂口試小考。 2.口試(25﹪):於考前一週公告口試方式。 3.筆試(25﹪):於考前一週公告考場。 4.上課遲到10分鐘內扣總分3分! 無故缺課扣總分10分!缺課3次下學期再見! ※實驗前每組須備有空白數據表格一份,以方便記錄實驗數據※ 規定事項: 一、預習報告:(限用A4大小的紙書寫,不可用打字) 1.封面:包含實驗名稱、組別、班級、姓名、學號、座號。 2.內容:包含實驗目的、實驗原理、實驗步驟及空白數據表格。 3.每人一份,於實驗前由組長收齊交給助教簽章,並於批閱後取回。 二、結論報告:(限用A4大小的紙書寫) 1.個人結報:每人一份,含實驗心得和討論(心得須300字以上)。上課前將 個人結報及前一次實驗領回的預報合訂在一起,交給組長。 2.整組結報:每組一份,含數據、回歸分析結果,回歸分析圖表。 3.回歸分析須有電腦分析報表結果和座標曲線圖,圖可用手畫或電腦處理,若 用手畫請用方格紙,不可用工學院作業紙的背面。 4.未能及時繳交之作業,也一定要儘快繳交,不可缺交。 三、上課期間: 1.在實驗室內不可抽煙、進食及喝水,並注意安全。 2.不可無故離開實驗室,如有需要請先報備,助教會不定時的抽點。 3.組長負責整組的實驗操作、秩序及做完實驗後的清潔。 4.實驗後的數據表格,須在下課前交給助教檢查才算完成,嚴禁抄襲。

计算流体力学与传热学大作业

########学院 计算流体力学与传热学 学号: 专业: 学生姓名: 任课教师:教授 2013年12月

目录 第一章验证显式格式的稳定性 (4) 1.1 概述 (4) 1.2 数学推导 (4) 1.3 问题描述 (4) 1.4 数值模拟 (4) 1.5 结果及分析 (5) 第二章判断肋片可以按一维问题处理的主要依据 (6) 2.1 概述 (6) 2.2 问题描述及算法 (6) 2.3 数值模拟 (7) 2.4 结果及分析 (8) 第三章三层墙导热 (9) 3.1 概述 (9) 3.2 问题描述 (9) 3.3 TDMA算法 (9) 3.4 结果 (10) 第四章一维无源稳态对流扩散问题 (11) 4.1 公式及初值 (11) 4.2 情况一 (11) 4.3 情况二 (12) 4.4 情况三 (13)

第五章用ADI算法计算长方肋内的温度分布 (14) 5.1 问题描述 (14) 5.2 初始参数 (14) 5.3 情况一,一列列扫 (14) 5.4 情况二,一行行扫 (14) 5.5 情况三,采用ADI算法 (15) 5.6 结果分析 (15) 参考文献 (16)

第一章 验证显式格式的稳定性 1.1 概述 将一维非稳态热传导方程用显式格式差分化为代数方程,在求解的迭代过程中必须满足一定的条件,才能使方程收敛且结果正确。此处即验证β≤?。 1.2 数学推导 方程: 22T t T x α??=?? (1) 显式离散格式: 此处时间向前差分,空间中心差分 111 22n n n n n i i i i i T T T T T t x α+-+--+=?? 1112(2)n n n n n i i i i i t T T T T T x α +-+?-=-+? 令β=2 t x α ??则: 111(2)n n n n n i i i i i T T T T T β+-+-=-+ (2) 误差也应该满足上式,故: ()()1()()()2()()i i i i i Ikx Ikx Ik x x Ikx Ik x x n n n n n T e T e T e T e T e ψψβψψψ----?--+?+??-=-+?? ()()()1()12()()()i i i i Ikx Ikx Ik x x Ik x x n n n n T e T e T e T e ψβψβψψ----?-+?+??=-++?? ()()1()12()()i i i Ikx Ikx Ikx n n Ik x Ik x n T e T e e e T e ψβψβψ---+-??=-++ ()()1() 121() n Ik x Ik x n T e e T ψββψ+-??=-++≤ 因此 β≤?。即当β≤? 时方程(2)才会有收敛的解。 1.3 问题描述 在验证过程中同时可模拟一个实际问题,即冬季里墙壁中的温度分布。此时室内壁温设为Tl=30.0℃,室外壁温Tr=-25.0℃,墙壁以11号楼为例,L=1m ,热扩散系数ɑ=alfa=1.33e-6m 2/s 然后分别取β=0.4,n=10和β=0.6,n=10两种情况,看最后的结果是否收敛和正确。 1.4 数值模拟

计算流体力学实验报告

计算流体力学实验报告——热传导方程求解 姓名:梁庆 学号:0808320126 指导老师:江坤 日期:2010/12/30

基于FTCS格式热传导方程求解程序设计 摘要 计算流体力学是通过数值方法求解流体力学控制方程,得到流场的定量描述,并以预测流体运动规律的学科。在CFD中,我们将流体控制方程中积分微分项,近似的表示为离散的代数形式,使得积分或微分形式的控制方程转化为离散的代数方程组;然后通过计算机求解这些代数方程,从而得到流场在空间和时间点上的数值解。 基于以上思路,我们利用FTCS格式差分,工程上常用的热传导方程,并编制计算机求解程序,解出其数值解。并通过Matlab绘制,求解结果,分别以二维,三维的形式,给出求解结果,本实验通过求解的数值解,制作了1秒内长度为1的距离内,热传导情况动画,以备分析所用。 关键词FTCS 有限差分热传导方程

一、 问题重述 编制一个可以有限差分程序,实现求解热传导方程。 非定常热传导方程: 22(0) u u t t γγ??=>?? 初边值问题的有限差分求解。初始条件和边界条件为: (,0)() (0,)()0(1,)()0 u x f x u t a t u t b t =?? ==??==? 其中1γ=,初值条件为:000.3()1 0.30.71010 0.7 1.0 3 3x f x x x ? <

中科大计算流体力学CFD之大作业一

CFD 实验报告一 姓名: 学号: 一、题目: 利用中心差分格式近似导数22/dx y d ,数值求解常微分方程 x dx y d 2sin 2 2= (10≤≤x ) 00==x y 4 2 s i n 11- ==x y 步长分别取x ?=0.05, 0.01, 0.001,0.0001。 二、报告要求: 1)列出全部计算公式和步骤; 2)表列出程序中各主要符号和数组意义; 3)绘出数值计算结果的函数曲线,并与精确解比较; 4)比较不同差分格式和不同网格步长计算结果的精度和代价; 5)附源程序。 三、相关差分格式 二阶导数22/dx y d 的三点差分格式有向前差分、向后差分和中心差分,表达 式分别如下: ()()()22122 22122 211 222 222j j j j j j j j j u u u u O x x x u u u u O x x x u u u u O x x x ++--+--+?=+???-+?=+???-+?=+???一阶向前差分:一阶向后差分:二阶中心差分: 代入微分方程可以得到差分方程,表达式分别如下: 212 212 11 2 2=sin 22=sin 22=sin 2j j j j j j j j j j j j u u u x x u u u x x u u u x x ++--+--+?-+?-+?一阶向前差分:一阶向后差分:二阶中心差分: 对于三种差分格式,差分格式可以改写成AY b =的形式,其中A 是相同的,

非齐次项b 不同,如下所示: 2112112112A -????-?? ??=?? -?? ??-?? 系数矩阵 ()()()02112 3221sin 2sin 2sin 2k k y x x b x x x x y ---???? ??? ? ?=????? ?? ?-?? 一阶向前差分 ()()()()2202 322121sin 2sin 2sin 2sin 2k k x x y x x b x x x x y -???-????? ??=????? ???-?? 一阶向后差分 ()()()()2102 232 2211sin 2sin 2sin 2sin 2k k x x y x x b x x x x y --?? ?-????? ??=??????? ?-? ? 二阶中心差分 求解AY b =可以得到各节点y 的值[]T 1 22 1k k Y y y y y --= 。 四、计算公式和步骤; 1.关于精确解的推导: 已知22sin 2d y x dx =,对 x 进行两次积分,得到121 sin 24 y x C x C =-++,再结合 边界条件00 ==x y 和4 2 sin 11-==x y 得到相对应的1C 和2C ,确定最后精确解为: 1 sin 24y x x =-+。 2.关于数值求解方法: 对于方程组AY b =可直接求解,也可以使用追赶法求解,下面介绍简单追赶法求解三对角方程组的过程。

相关文档
最新文档