弹性力学_第三章_应变状态分析

弹性力学_第三章_应变状态分析
弹性力学_第三章_应变状态分析

第三章应变状态分析知识点

位移与变形

正应变

纯变形位移与刚性转动位移

应变分量坐标转轴公式主应变齐次方程组

体积应变

变形协调方程

变形协调方程证明变形与应变分量

切应变

几何方程与应变张量

位移增量的分解

应变张量

应变状态特征方程

变形协调的物理意义

变形协调方程的数学意义多连域的变形协调

一、内容介绍

本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。

对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。

应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。

二、重点

1、应变状态的定义:正应变与切应变;应变分量与应变张量;

2、几

何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变

状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程

与位移边界条件。

§3.1 位移分量与应变分量几何方程

学习思路:

由于载荷的作用或者温度的变化,物体内各点在空间的位臵将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。

弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。

由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。

几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。

几何方程给出了位移分量和应变分量之间的关系。

学习要点:

1、位移函数;

2、变形与应变分量;

3、正应变表达式;

4、切应

变分量;5、几何方程与应变张量。

1、位移函数

由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位臵将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。

第一种位移是位臵的改变,但是物体内部各个点仍然保持初始状态的相对位臵不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。

第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位臵,而且改变了物体内部各个点的相对位臵,这是物体形状变化引起的位移,称为变形。

一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。

根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连续的,如图所示。在数学上,x',y',z' 必为x,y,z的单值连续函数。设MM'=S 为位移矢量,其三个分量u,v,w为位移分量。则

u=x'(x,y,z)-x=u(x,y,z),

v=y'(x,y,z)-y=v(x,y,z)

w=z'(x,y,z)-z=w(x,y,z)

显然,位移分量u,v,w也是x,y,z的单值连续函数。以后的分析将进一步假定位移函数具有三阶连续导数。

2、变形与应变分量

为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。

对于微分单元体的变形,将分为两个部分讨论。一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。弹性力学分别使用正应变和切应变表示这两种变形的。

对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。

假设分别用εx, εy, εz表示x,y,z轴方向棱边的相对伸长度,即正应变;分别用γxy, γyz, γzx表示x和y,y和z,z和x轴之间的夹角变化,即切应变。则

对于小变形问题,为了简化分析,将微分单元体分别投影到Oxy,Oyz,Ozx 平面来讨论。

显然,单元体变形前各棱边是与坐标面平行的,变形后棱边将有相应的转动,但我们讨论的是小变形问题,这种转动所带来的影响较小。特别是物体位移中不影响变形的计算,假设各点的位移仅为自身的大小和形状的变化所确定,则这种微分线段的转动的误差是十分微小的,不会导致微分单元体的变形有明显的变化。

3、正应变表达式

首先讨论Oxy面上投影的变形。

设ma,mb分别为MA,MB的投影,m'a',m'b'分别为M'A',M'B',即变形后的MA,MB的投影。

微分单元体的棱边长为d x,d y,d z,M点的坐标为(x,y,z),u(x,y,z),v(x, y, z)分别表示M点x,y方向的位移分量。

则A点的位移为u(x+d x,y,z),v(x+d x,y,z),B点的位移为u(x,y+d y,z),v(x,y+d y,z)。按泰勒级数将A,B两点的位移展开,并且略去二阶以上的小量,则A,B点的位移分别为

因为

所以

同理可得

由此可以得到弹性体内任意一点微分线段的相对伸长度,即正应变。

显然微分线段伸长,则正应变εx, εy, εz大于零,反之则小于零。

4、切应变分量

以下讨论切应变表达关系。

假设βyx为与x轴平行的微分线段ma向y轴转过的角度,βxy为与y轴平行的mb向x轴转过的角度。则切应变

因为

上式的推导中,利用了小变形条件下位移的导数是高阶小量的结论。同理可得

βyx和βxy可为正或为负,其正负号的几何意义为:βyx大于零,表示位移v随坐标x而增加,即x方向的微分线段正向向y轴旋转。将上述两式代入切应变表达式,则

同理可得

切应变分量大于零,表示微分线段的夹角缩小,反之则增大。

5、几何方程与应变张量

综上所述,应变分量与位移分量之间的关系为

上述公式称为几何方程,又称柯西方程。

柯西方程给出了位移分量和应变分量之间的关系。如果已知位移,由位移函数的偏导数即可求得应变;但是如果已知应变,由于六个应变分量对应三个位移分量,则其求解将相对复杂。这个问题以后作专门讨论。

几何方程给出的应变通常称为工程应变。

如果使用张量符号,则几何方程可以表达为

上式表明应变分量 ij将满足二阶张量的坐标变换关系,应变张量分量与工程应变分量的关系可表示为

§3.2 纯变形位移与刚性转动位移

学习思路:

应变分量通过位移的偏导数描述了一点的变形,对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。但是这还不能完全描述弹性体的变形,原因是没有考虑微分单元体的刚体转动。

通过分析弹性体内无限邻近两点的位臵变化,则可得出刚体的转动位移与纯变形位移之间的关系。刚体转动通过转动分量描述。

刚性转动位移的物理意义:如果弹性体内某点没有变形,则无限邻近它的任意一点的位移由两部分组成,平动位移和转动位移。如果发生变形,位移中还包括纯变形位移。

学习要点:

1、刚体转动位移;

2、转动位移分量;

3、纯变形位移与转动位移;

4、位移的分解。

1、刚体转动位移

应变可以描述一点的变形,即对微分平行六面体单元棱边的伸长以及棱边之间夹角的改变做出定义。但是这还不足以完全描述弹性体的变形,原因是应变分析仅仅讨论了棱边伸长和夹角变化,而没有考虑微分单元体位臵的改变,即单元体的刚体转动。

通过分析弹性体内无限邻近两点的位臵变化,则可得出刚体的转动位移与纯变形位移之间的关系。

设P点无限邻近O点,P点及其附近区域绕O作刚性转动,转过微小角度。

设转动矢量为ω,OP之间的距离矢量为ρ ,如图所示。

引入拉普拉斯算符矢量

2、转动位移分量

设P点的位移矢量为U,有

U =u i +u j +u k

由于位移矢量可以表示为U =ω×ρ ,

所以

其中

ωx, ωy, ωz为转动分量,是坐标的函数,表示了弹性体内微分单元体的刚性转动。

3、纯变形位移与转动位移

设M点的坐标为(x,y,z),位移(u,v,w)。与M点邻近的N点,坐标为(x+d x,y+d y,z+d z),位移为(u+d u,v+d v,w+d w)。

则MN两点的相对位移为(d u,d v,d w)。因为位移为坐标的函数,所以

同理可得

以上位移增量公式中,前三项为产生变形的纯变形位移,后两项是某点邻近区域的材料绕该点像刚体一样转动的刚性转动位移。

刚性转动位移的物理意义为,如果弹性体中某点及邻近区域没有变形,则与某点无限邻近这一点的位移,根据刚体动力学可知,是由两部分组成。分别是随

这点的平动位移和绕这点的转动位移。对于弹性体中某一点,一般还要发生变形,因此位移中还包括纯变形位移。

4、位移的分解

总得来讲,与M点无限邻近的N点的位移由三部分组成的:

1、随同M点作平动位移。

2、绕M点作刚性转动在N点产生的位移。

3、由于M点及其邻近区域的变形在N点引起的位移。

转动分量ω x, ω y,ω z 对于微分单元体,描述的是刚性转动,但其对于整个弹性体来讲,仍属于变形的一部分。三个转动分量和六个应变分量合在一起,不仅确定了微分单元体形状的变化,而且确定了方位的变化。

位移增量公式如果使用矩阵形式表示,可得

显然,位移的增量是由两部分组成的,一部分是转动分量引起的刚体转动位移,另一部分是应变分量引起的变形位移增量。

§3.3 应变的坐标变换与应变张量

学习思路:

与应力状态分析相同,一点的应变分量在不同坐标系下的描述是不相同的,因此讨论应变状态,就必须建立坐标变换,就是坐标转动时的应变分量变换关系。

本节通过新坐标系与旧坐标系之间的位移变换关系式,根据几何方程,通过复合函数的微分,就可以得到应变分量的转轴公式。

转轴公式表明应变张量也是二阶对称张量。

根据转轴公式,一点的六个独立的应变分量一旦确定,则任意坐标系下的应变分量均可确定,即应变状态完全确定。

应变状态分析表明:坐标变换后各个应变分量均发生改变,但是作为一个整体,一点的应变状态是不会改变的。

学习要点:

1、坐标变换;

2、应变分量坐标转轴公式;

3、应变张量。

1、坐标变换

上一节我们引入了应变分量,本节将讨论不同坐标系下一点的应变分量的关系。与坐标转轴时的应力分量的变换一样,我们将建立应变分量转轴的变换公式,即已知εij在旧坐标系中的分量,求其在新坐标系中的各分量εi'j'。

根据几何方程,坐标平动将不会影响应变分量。因此只需坐标转动时的应变分量变换关系,设新坐标系Oxyz 是旧坐标系Ox'y'z' 经过转动得到的,如图所示。

新旧坐标轴之间的夹角的方向余弦为

设变形前的M点,变形后移至M'点,设其位移矢量MM '=U,则

2、应变分量坐标转轴公式

所以,新坐标系的位移分量为

根据几何方程,根据复合函数的微分关系

同理,可以推导其余五个应变分量的变换公式,即

3、应变张量

如果以n ij(i,j=1,2,3)表示新旧坐标系之间的夹角的方向余弦,并注意到应变张量表达式,则上述应变分量变换公式可以写作

εij=n ii' n jj' εij

因此,如果将应变分量写作下列形式

则应变分量满足张量变换关系。

与应力张量相同,应变张量也是二阶对称张量。

由公式可知,一点的六个独立的应变分量一旦确定,则任意坐标系下的应变分量均可确定,即一点的应变状态就完全确定了。不难理解,坐标变换后各应变

分量均发生改变,但它们作为一个整体,所描述的一点的应变状态是不会改变的。

§3.4 主应变和应变不变量

学习思路:

应变状态分析需要确定一点的最大正应变及其方位,就是确定主应变和主平面。

对于任意一点,至少有三个垂直方向,在该方向仅有正应变而切应变为零。具有该性质的方向,称为应变主轴或应变主方向,该方向的正应变称为主应变。

本节根据位移增量与应变分量以及主应变的关系,推导求解主应变及其方向余弦的齐次方程组。根据齐次方程组非零解的条件,可以确定关于求解主应力的应变状态特征方程。

根据特征方程,可以确定三个主应变。如果将主应变回代齐次方程组,并且注意到任意截面的三个方向余弦的平方和等于1,则可解应变主轴的方向余弦。

根据特征方程和应变不变量可知,主应变和应变主轴的特性与主应力和应力主轴是类似的。

学习要点:

1、位移微分表达式;

2、主应变齐次方程组;

3、主应变特征方程与不变量。

1、位移微分表达式

弹性体内任一点的六个应变分量,即应变张量随着坐标轴的旋转而改变。因此是否可以像应力张量一样,对于某一个确定点,在某个坐标系下所有的切应变分量都为零,仅有正应变分量不等于零。即能否找到三个相互垂直的方向,在这三个方向上的微分线段在物体变形后只是各自改变长度,而其夹角仍为直角。答案是肯定的。

在任何应变状态下,至少可以找到三个这样的垂直方向,在该方向仅有正应变而切应变为零。

具有该性质的方向,称为应变主轴或应变主方向,该方向的应变称为主应变。

设ε ij为物体内某点在已知坐标系的应变张量,求其主应变ε1,ε2,ε3 及应变主轴方向n1, n2, n3。设MN 为M点的主轴之一,其变形前的方向余弦为l,m,n,主应变为ε。令dρ表示MN 的长度, 则MN相对伸长为ε dρ,如图所示设M点的位移为(u,v,w),则N点的位移为(u+d u,v+d v,w+d w)。因为

d u =在x方向的变形位移分量+刚性转动位移在x方向的分量

=ε l dρ + 刚性转动位移在x方向的分量

2、主应变齐次方程组

根据公式

即d u等于纯变形位移与刚性转动位移在x方向的分量之和。根据上述公式,可得

或者写作

同理可得

上述公式是关于l,m,n的齐次线性方程组。

3、主应变特征方程与不变量

对于l,m,n的齐次线性方程组,其非零解的条件为其系数行列式的值为零。即

将上式展开,可得主应变特征方程,

其中

显然与应力不变量相同,J1,J2,J3为应变不变量,分别称为第一,第二和第三应变不变量。

根据特征方程,可以求解得到三个主应变。将求解后的主应变代入公式,并注意到任意一点三个方向余弦的平方和等于1,则可解应变主轴的方向余弦。

由应力张量和应变张量,应力不变量和应变不变量之间的公式的比较可知,主应变和应变主轴的特性与主应力和应力主轴是类似的。

上图是从别处截过来的。

§3.5 体积应变

学习思路:

物体变形后的单位体积变化称为体积应变。

讨论微分平行六面体单元的体积变形,可以得到体积应变。体积应变等于3个正应变之和,就是第一应变不变量。

体积应变表示物体的体积变形是正应变引起的,与切应变无关。

学习要点:

1、单元体位移;

2、体积应变。

1、单元体位移

本节介绍物体变形后的单位体积变化,即体积应变。

讨论微分平行六面体单元,如图所示。

变形前,单元体的三条棱边分别为MA,MB,MC,长d x,d y,d z,其体积为:V=d x d y d z。设M点坐标为(x,y,z),则A,B,C点坐标分别为(x+d x,y,z),(x,y+dy,z)和(x,y,z+d z)。

弹性体变形后,其三条棱边分别变为M'A',M'B',M'C'。其中

2、体积应变

若用V '表示变形后的微分单元体体积,则

将行列式展开并忽略二阶以上的高阶小量,则

若用θ表示单位体积的变化即体积应变,则由上式可得

显然体积应变θ就是应变张量的第一不变量J1。因此θ常写作

体积应变θ大于零表示微分单元体膨胀,小于零则表示单元体受压缩。若弹性体内θ处处为零,则物体变形后的体积是不变的。

§3.6 应变协调方程

学习思路:

变形协调方程的数学意义是:要使以三个位移分量为未知函数的六个几何方程不矛盾,则应变分量必须满足的必要条件。

应变协调方程的物理意义可以从弹性体的变形连续性质作出解释。如果变形不满足一定的关系,变形后的物体将出现缝隙或嵌入现象,不能重新组合成连续体。

为使变形后的微分单元体连续,应变分量必须满足一定的关系,这一关系就是应变协调方程,又称圣维南(Saint V enant)方程。

假如弹性体是单连通域的,应变协调方程不仅是变形连续的必要条件,而且也是充分条件。

利用位移函数的微分沿任意路径重新积分可以确定的位移必然是单值位移的条件,可以证明应变协调方程。

对于多连通域问题,应变分量满足变形协调方程只是位移连续的必要条件,只有加上位移连续补充条件作为充分条件。

学习要点:

1、变形协调例题;

2、变形协调方程;

3、变形协调方程的意义;

4、变形协调方程证明;

5、变形协调方程证明2;

6、多连域的变形协调。

1、变形协调例题

几何方程表明,六个应变分量是通过三个位移分量表示的,因此六个应变分量将不可能是互不相关的,应变分量之间必然存在某种联系。

这个问题对于弹性力学分析是非常重要的。因为如果已知位移分量,容易通过几何方程的求导过程获得应变分量;但是反之,如果已知应变分量,则几何方程的六个方程将仅面对三个未知的位移函数,方程数显然超过未知函数的个数,方程组将可能是矛盾的。

随意给出六个应变分量,不一定能求出对应的位移。例如:

例1设应变分量为:,,求其位移

解:

显然该应变分量没有对应的位移。

要使这一方程组不矛盾,则六个应变分量必须满足一定的条件

以下我们将着手建立这一条件。

2、变形协调方程

首先从几何方程中消去位移分量,把几何方程的第一式和第二式

分别对x和y求二阶偏导数,然后相加,并利用第四式,可得

若将几何方程的第四,五,六式分别对z,x,y求一阶偏导数,然后四和六两式相加并减去第五式,则

将上式对x求一阶偏导数,则

分别轮换x,y,z,则可得如下六个关系式

上述方程称为应变协调方程或者变形协调方程,又称圣维南(Saint V enant)方程。

3、变形协调方程的意义

变形协调方程的数学意义是:要使三个位移分量为未知函数的六个几何方程不相矛盾,则应变分量必须满足的必要条件。

应变协调方程的物理意义可以从弹性体的变形连续作出解释。假如物体分割成无数个微分六面体单元,变形后每一单元体都发生形状改变,如变形不满足一定的关系,变形后的单元体将不能重新组合成连续体,其间将产生缝隙或嵌入现

象。

为使变形后的微分单元体仍能重新组合成连续体,应变分量必须满足一定的关系,这一关系就是应变协调方程。

假如弹性体是单连通域的,则应变分量满足应变协调方程不仅是变形连续的必要条件,而且也是充分条件。

为证明应变协调方程是变形体连续的必要和充分条件,我们可利用弹性体变形连续的物理意义,反映在数学上则要求位移分量为单值连续函数的性质。

我们的目的就是证明:如果已知应变分量满足应变协调方程,则对于单连通域,就一定可以通过几何方程的积分求得单值连续的位移分量。

下面我们推导单连通域的变形协调关系。

4、变形协调方程证明

所谓的单连通域,是指该物体内任一条闭曲线可以收缩到一点而不越出界外。设应变分量εij单值连续,并有连续的二阶导数,则由

轮换x, y, z计算,可得d v,d w 和dω y,dω z。

如果能够通过积分,计算出

上述位移和转动分量如果是单值连续的,则可得到弹性体的位移单值连续的条件。

5、变形协调方程证明2

保证上述位移单值连续的条件是其积分与积分路径P0P无关。其充分与必要条件为

根据上述公式的第三式,可得

同理,根据上述公式的第四和第八式,可得ω x对y,z的偏导数。即

将计算ω x对y,z的偏导数回代到公式的第一式,则可以得到转动分量ω x表达式

如使ωx单值连续,其必要与充分条件是

弹性力学-第三章-应变状态分析

第三章应变状态分析知识点 位移与变形 正应变 纯变形位移与刚性转动位移 应变分量坐标转轴公式主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义多连域的变形协调 一、内容介绍 本章讨论弹性体的变形,物体的变形是通过应变分量确定的。因此,首先确定位移与应变分量的基本关系-几何方程。由于应变分量和刚体转动都是通过位移导数表达的,因此必须确定刚体转动位移与纯变形位移的关系,才能完全确定一点的变形。 对于一点的应变分量,在不同坐标系中是不同的。因此,应变状态分析主要是讨论不同坐标轴的应变分量变化关系。这个关系就是应变分量的转轴公式;根据转轴公式,可以确定一点的主应变和应变主轴等。当然,由于应变分量满足二阶张量变化规律,因此具体求解可以参考应力状态分析。 应该注意的问题是变形协调条件,就是位移的单值连续性质。假如位移函数不是基本未知量,由于弹性力学是从微分单元体入手讨论的,因此变形后的微分单元体也必须满足连续性条件。这在数学上,就是应变分量必须满足变形协调方程。在弹性体的位移边界,则必须满足位移边界条件。 二、重点 1、应变状态的定义:正应变与切应变;应变分量与应变张量; 2、几 何方程与刚体转动;3、应变状态分析和应变分量转轴公式;4、应变 状态特征方程和应变不变量;主应变与应变主轴;5、变形协调方程 与位移边界条件。

§3.1 位移分量与应变分量几何方程 学习思路: 由于载荷的作用或者温度的变化,物体内各点在空间的位置将发生变化,就是产生位移。这一移动过程,弹性体将同时发生两种可能的变化:刚体位移和变形位移。变形位移是与弹性体的应力有着直接的关系。 弹性体的变形通过微分六面体单元描述,微分单元体的变形分为两个部分,一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化,分别使用正应变和切应变表示这两种变形的。 由于是小变形问题,单元变形可以投影于坐标平面分析。根据正应变和切应变定义,不难得到应变与位移的关系-几何方程,或者称为柯西方程。 几何方程给出的应变通常称为工程应变。几何方程可以表示为张量形式,应该注意的是,正应变与对应应变张量分量相等;而切应变等于对应的应变张量分量的两倍。 几何方程给出了位移分量和应变分量之间的关系。 学习要点: 1、位移函数; 2、变形与应变分量; 3、正应变表达式; 4、切应 变分量;5、几何方程与应变张量。 1、位移函数 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。 第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置,而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连

高三化学反应原理第三章《物质在水溶液中的行为》第三章

化学测试题 I卷(54分) 2008、4、2 一、选择题(每小题3分,共54分) 1.下列溶液一定是碱性的是 A.pH = 8的某电解质的溶液. B.c(OH-)>1×10-7mol/L C.溶液中含有OH-. D.溶液中c(OH-)>c(H+) 2. 0.1mol/L K2CO3溶液中,若使c (CO32—)更接近0.1 mol/L,可采取的措施是 A. 加入少量盐酸 B. 加水 C. 加KOH固体 D. 加热 3.在60℃时,水的离子积Kw==1×10-13mol2·L-2,下列同体积的各水溶液中所含H+和OH-粒子数之和最小的是: A、pH = 4 B、pH = 6 C、pH = 8 D、pH = 11 4.在已达到电离平衡的0.1 mol/L的醋酸溶液中,欲使平衡向电离的方向移动,同时使溶液的pH 降低,应采取的措施是() A. 加热 B. 加少量水 C. 加少量盐酸 D. 加少量醋酸钠晶体 5.将足量BaCO3粉末分别加入下列溶液中,充分溶解至溶液饱和。各溶液中Ba2+的浓度最小的为() A.40mL 水B.10mL 0.2mol/LNa2CO3溶液 C.50mL 0.01mol/L 氯化钡溶液D.100mL 0.01mol/L盐酸 6. 下列有关滴定操作的顺序正确的是() ①检查滴定管是否漏水②用蒸馏水洗涤玻璃仪器③用标准溶液润洗盛标准溶液的滴定管,用待测液润洗盛待测液的滴定管④装标准溶液和待测液并调整液面(记录初读数) ⑤取一定体积的待测液于锥形瓶中⑥滴定操作 A. ①③②④⑤⑥ B. ①②③④⑤⑥ C. ②③①④⑤⑥ D. ④⑤①②③⑥ 7.下列反应的离子方程式正确的是() A.等体积等物质的量浓度的氢氧化钡溶液与碳酸氢铵溶液混合 Ba2++2 OH—+NH4++HCO3— = BaCO3↓ +NH3·H2O +H2O

鲁科版《化学反应原理》 基础知识思维导图-第3章-物质在水溶液中的行为

鲁科版《化学反应原理》 基础知识思维导 图-第 3 章-物质在水溶液中的行为.DOCX
(20XX——20XX 学年 第 X 学期)
单位 姓名 20XX 年 X 月

极其微弱,水中含极少量离子,几乎不导电
特点
吸热:升温电离程度增大

的 电
表达式:Kw=[H+]·[OH-]

单位:mol2·L-2
水的离子积(Kw)
适合于任何稀水溶液
影响因素
只与温度有关,升温,Kw增大 加酸碱盐,只影响平衡和电离程度,不改变Kw
强电解质
强酸:HCl、H2SO4、HNO3、HBr、HI 强碱:KOH、NaOH、Ca(OH)2、Ba(OH)2 盐:NaCl、BaSO4、CaCO3、AgCl、NH4HCO3
电解质
活泼金属氧化物:K2O、CaO、Na2O、MgO、Al2O3 弱酸:CH3COOH、H2CO3、H2SO3、H2S、H3PO4、HClO
弱电解质
弱碱:NH3·H2O、Mg(OH)2、Al(OH)3、Fe(OH)3、Cu(OH)2 水
络合物:Fe(SCN)3


非金属氧化物:SO2、NO2、CO2

与 非
非电解质
气态氢化物:CH4、NH3


大多有机物:蔗糖、酒精、CCl4

本质
电解质能电离 非电解质不能电离
电解质和非电解质区别
所属化合物
电解质是离子化合物或共价化合物 非电解质是共价化合物
电离方程式书写
强电解质: =、一步
判断方法:熔融状态是否导电
弱电解质:可逆号、多元弱酸分步,其他一步
形态:水合离子或水和分子
导电性:
决定因素:与离子浓度有关,与离子多少无关
向盐酸中加少量NaOH固体导电性几乎不变 向醋酸中通NH3导电性增强

化学反应原理第三章第一节

化学反应原理第三章第一节 一、水的电离 1、水的电离是一个过程,水的电离方程式是 在一定条件下,其平衡常数表达式为: 2、称为水的离子积常数,简称为,其表达式为: 25℃时,纯水中的[H+] 和[OH-] 都是mol/L,所以K W为 注意:①K W适用于任何稀溶液,在25℃时,任何稀溶液中都有K W=[H+]·[OH-]= ②在纯水中,温度升高,K W数值变,[H+] [OH-] 1.0×10-7 mol?L-1 水显性。 ③任何稀溶液中都存在着H+ 和OH-,强酸溶液中的H+来自酸电离出的H+ 和水电离出 的H+,强碱溶液中的OH-来自碱电离出的OH-和水电离出的OH-。 ④任何稀溶液中,水电离出的H+ 和OH-的物质的量浓度始终相等。 [练习] 1、室温下,某酸溶液中的[H+] =1.0×10-5 mol?L-1。则该溶液中的[OH-]=, 由水电离产生的[H+] =。 2、某温度下,纯水的[H+] =2.0×10-7 mol?L-1,则此时[OH-]=,在相同温度下的某酸溶液中[OH-]=2.0×10-10 mol?L-1,则此溶液中[H+] =,由水电离产生的[H+] =。 3、水的电离在某种意义上可以看成是中和反应的逆反应,因此下列说法不正确的是() A、水的离子积K W随温度的升高而升高 B、水的电离程度很小 C、在一定温度下,当溶液中的[H+]变小时,[OH-]一定变大 D、在任何条件下,溶液中的[H+]变大时,[OH-]一定变小 二、电解质在水溶液中存在的形式 1、知识回顾: 电解质: 非电解质: 注意:①电解质和非电解质的物质范畴都是 ②电解质导电的条件是:或 ③有些物质的水溶液虽然能够导电,但不是电解质。如: ④电解质溶液的导电能力取决于 2、强电解质: 弱电解质: 注意:①书写电离方程式时,强电解质用“=”,弱电解质用“” ②强电解质包括:强酸、强碱和大多数的盐。 弱电解质包括:弱酸、弱碱和极少数的盐[如:Fe(SCN)3]。 [练习](1)写出下列物质的电离方程式: Al2(SO4)3;H2S BaSO4;Fe(OH)2 (2)判断:①能导电的物质就是电解质。() ②水溶液导电性强的是强电解质,导电性弱的是弱电解质。() ③氨水能够导电,所以氨气是电解质。() ④在水溶液中,以分子和离子的形式共存的电解质是弱电解质。() ⑤NaHSO4在熔融状态和水溶液中的电离方程式一样,NaHSO4=Na++HSO4- 3、溶剂化作用: 电解质溶于水后形成的分子或离子不是单独存在的,而是以或

弹性力学-答案

《弹性力学》习题答案 一、单选题 1、所谓“完全弹性体”是指(B) A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识是(A ) A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的是(D )。 A、杆件 B、块体 C、板壳 D、质点 4、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 5、图示弹性构件的应力和位移分析要用什么分析方法?(C) A、材料力学 B、结构力学 C、弹性力学 D、塑性力学 6、弹性力学与材料力学的主要不同之处在于( B ) A、任务 B、研究对象 C、研究方法 D、基本假设 7、下列外力不属于体力的是(D) A、重力 B、磁力 C、惯性力 D、静水压力 8、应力不变量说明( D )。 A. 应力状态特征方程的根是不确定的 B. 一点的应力分量不变 C. 主应力的方向不变 D. 应力随着截面方位改变,但是应力状态不变 9、关于应力状态分析,(D)是正确的。 A. 应力状态特征方程的根是确定的,因此任意截面的应力分量相同

B. 应力不变量表示主应力不变 C. 主应力的大小是可以确定的,但是方向不是确定的 D. 应力分量随着截面方位改变而变化,但是应力状态是不变的 10、应力状态分析是建立在静力学基础上的,这是因为( D )。 A. 没有考虑面力边界条件 B. 没有讨论多连域的变形 C. 没有涉及材料本构关系 D. 没有考虑材料的变形对于应力状态的影响 11、下列关于几何方程的叙述,没有错误的是( C )。 A. 由于几何方程是由位移导数组成的,因此,位移的导数描述了物体的变形位移 B. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的位移 C. 几何方程建立了位移与变形的关系,因此,通过几何方程可以确定一点的应变分量 D. 几何方程是一点位移与应变分量之间的唯一关系 12、平面应变问题的应力、应变和位移与那个(些)坐标无关(纵向为 z 轴方向)( C ) A、 x B、 y C、 z D、 x, y, z 13、平面应力问题的外力特征是(A) A 只作用在板边且平行于板中面 B 垂直作用在板面 C 平行中面作用在板边和板面上 D 作用在板面且平行于板中面。 14、在平面应力问题中(取中面作 xy 平面)则(C) A、σ z = 0 , w = 0 B、σ z ≠ 0 , w ≠ 0 C、σ z = 0 , w ≠ 0 D 、σ z ≠ 0 , w = 0 15、在平面应变问题中(取纵向作 z 轴)(D) A、σ z = 0 , w = 0 ,ε z = 0 B、σ z ≠ 0 , w ≠ 0 ,ε z ≠ C、σ z = 0 , w ≠ 0 ,ε z = 0 D、σ z ≠ 0 , w = 0 ,ε z = 16、下列问题可简化为平面应变问题的是(B)。

弹性力学试题

第一章绪论 1、所谓“完全弹性体”就是指(B)。 A、材料应力应变关系满足虎克定律 B、材料的应力应变关系与加载时间、历史无关 C、本构关系为非线性弹性关系 D、应力应变关系满足线性弹性关系 2、关于弹性力学的正确认识就是(A )。 A、计算力学在工程结构设计中的作用日益重要 B、弹性力学从微分单元体入手分析弹性体,因此与材料力学不同,不需要对问题作假设 C、任何弹性变形材料都就是弹性力学的研究对象 D、弹性力学理论像材料力学一样,可以没有困难的应用于工程结构分析 3、下列对象不属于弹性力学研究对象的就是(D )。 A、杆件 B、板壳 C、块体 D、质点 4、弹性力学研究物体在外力作用下,处于(弹性)阶段的(应力)、(应变)与(位移) 5、弹性力学可以解决材料力学无法解决的很多问题;并对杆状结果进行精确分析,以及验算材力结果的适用范围与精度。与材料力学相比弹性力学的特点有哪些? 答:1)研究对象更为普遍; 2)研究方法更为严密; 3)计算结果更为精确; 4)应用范围更为广泛。 6、材料力学研究杆件,不能分析板壳;弹性力学研究板壳,不能分析杆件。(×) 改:弹性力学不仅研究板壳、块体问题,并对杆件进行精确的分析,以及检验材料力学公式的适用范围与精度。 7、弹性力学对杆件分析(C) A、无法分析 B、得出近似的结果 C、得出精确的结果 D、需采用一些关于变形的近似假定 8、图示弹性构件的应力与位移分析要用什么分析方法?(C) A、材料力学 B、结构力学

C 、弹性力学 D 、塑性力学 解答:该构件为变截面杆,并且具有空洞与键槽。 9、弹性力学与材料力学的主要不同之处在于( B )。 A 、任务 B 、研究对象 C 、研究方法 D 、基本假设 10、重力、惯性力、电磁力都就是体力。(√) 11、下列外力不属于体力的就是(D) A 、重力 B 、磁力 C 、惯性力 D 、静水压力 12、体力作用于物体内部的各个质点上,所以它属于内力。(×) 解答:外力。它就是质量力。 13、在弹性力学与材料力学里关于应力的正负规定就是一样的。( × ) 解答:两者正应力的规定相同,剪应力的正负号规定不同。 14、图示单元体右侧面上的剪应力应该表示为(D) A 、xy τ B 、yx τ C 、zy τ D 、yz τ 1τ2 τ3τ4τO x z 15、按弹性力学规定,下图所示单元体上的剪应力( C )。

化学人教版高中选修4 化学反应原理《第三章 第二节 水的电离和溶液的酸碱性》章节知识点归纳

第三章第二节水的电离和溶液的酸碱性 一、水的电离及水的离子积 1、水的电离 电离方程式:H2O+H2O H3O++OH-简写:H2O H++OH- 2、水的离子积常数 (1)表达式:K w=c(H+)·c(OH-) 常温下:K w=1.0×10-14,此时c(H+)=c(OH-)=1.0×10-7mol/L (2)影响因素:K w随温度的变化而变化,温度升高,K w增大;温度降低,K w减小。(3)适用范围:K w不仅适用于纯水,还适用于酸、碱、盐的稀溶液,且由水电离的c 水(H +)=c 水(OH -)。此时,水溶液中水的离子积常数不变。 (4)表达式的应用 K w表达式中,c(H+)、c(OH-)均表示整个溶液中相应离子总物质的量浓度。但是一般情 况下有: 酸溶液中K w=c(H+)酸·c(OH-)水(忽略水电离出的H+的浓度)。 碱溶液中K w=c(H+)水·c(OH-)碱(忽略水电离出的OH-的浓度)。 3、纯水电离的影响因素 (1)加入酸或碱,抑制水的电离,Kw不变; (2)升高温度,电离过程是一个吸热过程,促进水的电离,水的离子积增大,在常温时,K W=1×10-14;在100℃时,K W=1×10-12。 注意:①任何水溶液中H+和OH-总是同时存在的,只是相对含量不同. ②K w大小只与温度有关,与是否为酸碱性溶液无关。 25℃时,K w =1×10-14 100℃时,K w =1×10-12 ③不论是在中性溶液还是在酸碱性溶液,水电离出的C(H+)=C(OH-) ④根据Kw=C(H+)×C(OH-) 在温度一定时为定值,C(H+) 和C(OH-) 可以互求,酸性溶

鲁科版化学反应原理第三章《物质在水溶液中的行为》寒假复习学案及答案

《第三章物质在水溶液中的行为》寒假统考复习学案 编辑人:高二化学组 2013.12.23 一、水的电离:精确实验表明,水是一种极弱电解质,存在有电离平衡: 在25℃时纯水中 ,[H+]=[OH-] = ,Kw = [H+][OH-] = mol-2·L-2 [结论] 1、水的电离是个过程,故温度升高,水的Kw。 2、水的离子积是水电离平衡时的性质,它不仅适用于纯水,也适用于任何稀 溶液。即25℃时溶液中[H+][OH-] = 1.0× 10-14mol-2?L-2 3、在酸溶液中,[H+]近似看成是酸电离出来的H+浓度,[OH-]则来自于水的电离。 4、在碱溶液中,[OH-]近似看成是碱电离出来的OH-浓度,而[H+]则是来自于水的电离。 【练习】1.常温下,某溶液中由水电离出来的c(H+)=1.0×10-13mol·L-1,该溶液可能是( ) ①二氧化硫②氯化铵水溶液③硝酸钠水溶液④氢氧化钠水溶液A.①④B.①② C.②③D.③④ 2. 某溶液中水电离产生的C(H+)=10-3mol/L,,该溶液中溶质可能是()①Al2(SO4)3 ②NaOH ③NH4Cl ④NaHSO4 A、①②B、①③C、②③D、①④ 3. 25℃时,水的电离达到平衡:H 2O H++OH-;ΔH>0,下列叙述正确的是() A.将水加热,K W增大,溶液的pH增大 B.向水中加入稀氨水,平衡正向移动,c(OH-)增加 C.向水中加入少量固体硫酸氢钠,c(H+)降低,K W不变 D.向水中加入少量固体CH3COONa,平衡正向移动,c(OH-)增加 4. 能促进水的电离,并使溶液中C(H+)>C(OH—)的操作是() (1)将水加热煮沸(2)向水中投入一小块金属钠(3)向水中通CO2 (4)向水中通NH3 (5)向水中加入明矾晶体(6)向水中加入NaHCO3固体(7)向水中加NaHSO4固体 A、(1)(3)(6)(7) B、(1)(3)(6) C、(5)(7) D、(5) 二、溶液的酸碱性和pH值 1.溶液酸性、中性或碱性的判断依据是:看和的相对大小. 在任意温度的溶液中:若c(H+)>c(OH-) c(H+)=c(OH-) c(OH-)>c(H+)溶液的pH值:氢离子浓度的负对数。pH= ; 3.pH值计算的基本规律(1). 两种强酸溶液混和,先求c(H+),再求pH。C(H+)= (2).两种强碱溶液混和,先求c(OH-),再通过求c(H+),最后求pH值.C(OH-)= (3).强酸和强碱混和,先确定过量离子的浓度:若H+过量 c(H+)= 若碱过量 c(OH-)= 当酸过量时,必须以剩余的氢离 子浓度来计算溶液的 PH 值;当碱过量时,必须以剩余的氢氧根离子浓度通过K W来计算溶 液的c(H+)值,再求pH值。 (4). 有关酸、碱溶液的稀释 强酸溶液每稀释10倍,pH增大一个单位,弱酸溶液每稀释10倍,pH增大不到一个单位; 强碱溶液每稀释10倍,pH减小一个单位。弱碱溶液每稀释10倍,pH减小不到一个单位。 [提醒]:混和后溶液呈酸性时,一定用c(H+)计算pH;呈碱性时,一定用c(OH-)通过K W来 计算溶液的c(H+)值,再计算pH值 【练习】1. 下列溶液一定呈中性的是() A.PH=7的溶液 B.C(H+)=1.0×10-7mol/L的溶液 C.C(H+)= C(OH-) D.PH=3的酸与PH=11的碱等体积混合后的溶液

弹性力学 第四章 应力和应变关系

第四章应力和应变关系知识点 应变能原理 应力应变关系的一般表达式完全各向异性弹性体 正交各向异性弹性体本构关系弹性常数 各向同性弹性体应变能格林公式 广义胡克定理 一个弹性对称面的弹性体本构关系各向同性弹性体的应力和应变关系应变表示的各向同性本构关系 一、内容介绍 前两章分别从静力学和运动学的角度推导了静力平衡方程,几何方程和变形协调方程。由于弹性体的静力平衡和几何变形是通过具体物体的材料性质相联系的,因此,必须建立了材料的应力和应变的内在联系。应力和应变是相辅相成的,有应力就有应变;反之,有应变则必有应力。对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。这是材料的固有特性,因此称为物理方程或者本构关系。 对于复杂应力状态,应力应变关系的实验测试是有困难的,因此本章首先通过能量法讨论本构关系的一般形式。分别讨论广义胡克定理;具有一个和两个弹性对称面的本构关系一般表达式;各向同性材料的本构关系等。 本章的任务就是建立弹性变形阶段的应力应变关系。 二、重点 1、应变能函数和格林公式; 2、广义胡克定律的一般表达式; 3、具 有一个和两个弹性对称面的本构关系;4、各向同性材料的本构关系; 5、材料的弹性常数。 §4.1 弹性体的应变能原理 学习思路: 弹性体在外力作用下产生变形,因此外力在变形过程中作功。同时,弹性体内部的能量也要相应的发生变化。借助于能量关系,可以使得弹性力学问题的求

解方法和思路简化,因此能量原理是一个有效的分析工具。 本节根据热力学概念推导弹性体的应变能函数表达式,并且建立应变能函数表达的材料本构方程。 根据能量关系,容易得到由于变形而存储于物体内的单位体积的弹性势能,即应变能函数。 探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。 如果材料的应力应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐二次函数。因此由齐次函数的欧拉定理,可以得到用应变或者应力表示的应变能函数。 学习要点:1、应变能;2、格林公式;3、应变能原理。 1、应变能 弹性体发生变形时,外力将要做功,内部的能量也要相应的发生变化。本节通过热力学的观点,分析弹性体的功能变化规律。 根据热力学的观点,外力在变形过程中所做的功,一部分将转化为内能,一部分将转化为动能;另外变形过程中,弹性体的温度将发生变化,它必须向外界吸收或释放热量。设弹性体变形时,外力所做的功为d W,则 d W=d W1+d W2 其中,d W1为表面力F s所做的功,d W2为体积力F b所做的功。变形过程中,由外界输入热量为d Q,弹性体的内能增量为d E,根据热力学第一定律, d W1+d W2=d E - d Q 因为 将上式代入功能关系公式,则

第三章 应变状态分析

第三章应变状态分析 内容介绍 知识点 位移与变形 正应变 纯变形位移与刚性转动位移应变分量坐标转轴公式 主应变齐次方程组 体积应变 变形协调方程 变形协调方程证明 多连域的变形协调变形与应变分量 切应变 几何方程与应变张量 位移增量的分解 应变张量 应变状态特征方程 变形协调的物理意义 变形协调方程的数学意义 由于载荷作用或者温度变化等外界因素等影响,物体内各点在空间的位置将发生变化,即产生位移。这个移动过程,弹性体将可能同时发生两种位移变化。 第一种位移是位置的改变,但是物体内部各个点仍然保持初始状态的相对位置不变,这种位移是物体在空间做刚体运动引起的,因此称为刚体位移。

第二种位移是弹性体形状的变化,位移发生时不仅改变物体的绝对位置, 而且改变了物体内部各个点的相对位置,这是物体形状变化引起的位移,称为变形。 一般来说,刚体位移和变形是同时出现的。当然,对于弹性力学,主要是研究变形,因为变形和弹性体的应力有着直接的关系。 根据连续性假设,弹性体在变形前和变形后仍保持为连续体。那么弹性体中某点在变形过程中由M(x,y,z)移动至M'(x',y',z'),这一过程也将是连续的, 如图所示。在数学上,x',y',z'必为x,y,z的单值连续函数。设MM'=S为位移矢量,其三个分量u,v,w为位移分量。 则 u=x'(x,y,z)-x=u(x,y,z) v=y'(x,y,z)-y=v(x,y,z) w=z'(x,y,z)-z=w(x,y,z) 显然,位移分量u,v,w也是x,y,z的单值连续函数。以后的分析将进一步假定位移函数具有三阶连续导数。 为进一步研究弹性体的变形情况,假设从弹性体中分割出一个微分六面体单元,其六个面分别与三个坐标轴垂直。 对于微分单元体的变形,将分为两个部分讨论。一是微分单元体棱边的伸长和缩短;二是棱边之间夹角的变化。弹性力学分别使用正应变和切应变表示这两种变形的。 对于微分平行六面体单元,设其变形前与x,y,z坐标轴平行的棱边分别为MA,MB,MC,变形后分别变为M'A',M'B',M'C'。

【精品版】弹性力学在工程中的应用

弹性力学在土木工程中的应用 摘要:弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产的应力、弹性力学,应变和位移,从而解决结构或设计中所提生出的强度和刚度问题。在土木工程方面,建筑物能够通过有效的弹性可以抵消部分晃动,从而减少在地震中房屋倒塌的现象;对于水坝结构来说,弹性变化同样具有曲线性,适合不断变化的水坝内部的压力,还有大型跨顶建筑、斜拉桥等等。弹性力学在土木工程中还有一些重要应用实例,如:地基应力与沉降计算原理、混凝土板的计算方法、混凝土材料受拉劈裂试验的力学原理、混凝土结构温度裂缝分析、工程应变分析、结构中的剪力滞后问题等。 关键词:弹性力学、力学、弹性变形、有限元法、强度、土木工程

正文: 弹性力学也称弹性理论,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性力学弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。 对于物体弹性变形,变形的机理,应从材料内部原子间里的作用来分析。实际上,固体材料之所以能保持其内部结构的稳定性是由于组成该固体材料(如金属)的原子间存在着相互平衡的力,吸力使原子间密切联系在一起,而短程排斥力则使各原子间保持一定的距离在正常情况下,这两种力保持平衡,原子间的相对位置处于规则排列的稳定状态。受外力作用时,这种平衡被打破,为了恢复平衡,原子便需产生移动和调整,使得吸力、斥力和外力之间取得平衡。因此,如果知道了原子之间的力相互之间的定律,原则上就能算出晶体在一定弹性力作用下的反应。实际上,固体结构的内部是多样的、复杂的。例如:夹杂、微孔、晶

化学选修化学反应原理各章知识点归纳整理

高二化学选修4化学反应原理知识点整理 第一章化学反应与能量 一、焓变反应热 1.反应热:一定条件下,一定物质的量的反应物之间完全反应所放出或吸收的热量 2.焓变(ΔH)的意义:在恒压条件下进行的化学反应的热效应 (1)符号:△H (2)单位:kJ/mol 3.产生原因:化学键断裂——吸热化学键形成——放热 放出热量的化学反应。(放热>吸热) △H 为“-”或△H <0 吸收热量的化学反应。(吸热>放热)△H 为“+”或△H >0 ☆常见的放热反应:①所有的燃烧反应②酸碱中和反应 ③大多数的化合反应④金属与酸的反应 ⑤生石灰和水反应⑥浓硫酸稀释、氢氧化钠固体溶解等 ☆常见的吸热反应:①晶体Ba(OH)2·8H2O与NH4Cl ②大多数的分解反应 ③以H2、CO、C为还原剂的氧化还原反应④铵盐溶解等 二、热化学方程式 书写化学方程式注意要点: ①热化学方程式必须标出能量变化。 ②热化学方程式中必须标明反应物和生成物的聚集状态(g,l,s分别表示固态,液态,气态,水溶液中溶质用aq表示) ③热化学反应方程式要指明反应时的温度和压强(25 ℃,101 kPa时可以不注明)。 ④热化学方程式中的化学计量数可以是整数,也可以是分数。只能表示物质的量,不能表示分子个数。 ⑤各物质化学计量数加倍,△H加倍;反应逆向进行,△H改变符号,数值不变。 三、燃烧热 1.概念:25 ℃,101 kPa时,1 mol纯物质完全燃烧生成稳定的化合物时所放出的热量。燃烧热的单位用kJ/mol表示。 ※注意以下几点: ①研究条件:101 kPa ②反应程度:完全燃烧,产物是稳定的氧化物。 ③燃烧物的物质的量:1 mol ④研究内容:放出的热量。(ΔH<0,单位kJ/mol) 四、中和热 1.概念:在稀溶液中,酸跟碱发生中和反应生成1mol H2O,这时的反应热叫中和热。 2.强酸与强碱的中和反应其实质是H+和OH-反应,其热化学方程式为: H+(aq) +OH-(aq) =H2O(l) ΔH=-57.3kJ/mol 3.弱酸或弱碱电离要吸收热量,所以它们参加中和反应时的中和热小于57.3kJ/mol。 4.中和热的测定实验 五、盖斯定律

苏教版化学反应原理第三章知识点归纳

苏教版化学反应原理知识点归纳 第三章 第一单元 弱电解质的电离平衡 电解质:在水溶液中或熔融状态时能够导电的化合物。 非电解质:在水溶液中和熔融状态时都不能导电的化合物。 强弱电解质的区分依据不是看该物质溶解度的大小,也不是看其水溶液导电能力的强弱,而是看溶于水的部分是否完全电离. 二、弱电解质的电离平衡 1.定义:在一定条件(如温度、浓度)下,当电解质分子电离成离子的速率和离子重新结合成分子的速率相等时,电离过程就达到了平衡状态——电离平衡 ②影响电离平衡常数大小的因素: A.电离平衡常数大小是由物质的本性决定的,在同一温度下,不同弱电解质的电离常数不同。 B.弱电解质的电离平衡常数受温度变化的影响,但室温下一般变化不大。 C.弱电解质的电离平衡常数大小不受其浓度变化的影响 3.量度弱电解质电离程度的化学量: (1)电离平衡常数: 4.影响电离平衡的因素 (1)温度 电离过程是吸热过程,温度升高,平衡向电离方向移动。 (2)浓度 弱电解质浓度越大,电离程度越小。 (3)同离子效应 同离子效应(即在弱电解质溶液中加入同弱电解质具有相同离子的强电解质,使电离平衡向逆方向移动) (4)化学反应 在弱电解质溶液中加入能与弱电解质电离产生的某种离子反应的物质时,可以使电离平衡向电离方向移动。 三、电离方程式的书写 强电解质在溶液中完全电离,用“=” 弱电解质在溶液中部分电离,用“ ” 多元弱酸的电离 应分步完成电离方程式,多元弱碱则一步完成电离方程式。 【小结】 (1)Kw 取决于温度,不仅适用于纯水,还适用于其他稀溶液。 K a = c ( H +) .c ( A -) c (HA) 对于一元弱酸:H A H ++ +A -- ,平衡时 对于一元弱碱:M O H M ++O H -,平衡时 K b = c ( M +).c ( OH - ) c (MOH ①意义:K 值越大,电离程度越大,相应酸 (或碱) 的酸(或碱)性越强。 强、弱电解质的判断: 化合物 非电解质 电 解 质 强电解质 弱电解质 大部分的盐类 强 碱 强 酸 活泼金属的氧化物 弱 酸 弱 碱 水 离 子 化 合 物 共 价 化 合 物 大多数有机物,非金属氧化物,NH 3 强 碱: N a O H 、K O H 、C a (O H )2 、B a (O H )2 弱 碱: N H 3·H 2O C H 3C O O C H 3C O O - + H + 电离 结合 2.特点: 动 电离平衡是一种动态平衡 定 条件不变,溶液中各分子、离子的 浓度不变,溶液里既有离子又有分子 等 V 电离=V 分子化≠0 逆 弱电解质的电离 α = 已电离的弱电解质浓度 弱电解质的初始浓度 已电离的分子数 弱电解质分子总数 = 弱电解质浓度越大,电离程度越小。 四、水的电离 1、水是一种极弱的电解质,能微弱的电离: + + H 2O+H 2O H 3O ++OH - ( H 2O H + +OH - ) 电离常数:K 电离= C(H + )×C(OH -) C(H 2O ) 强 酸: √ 记住: H C l 、H 2S O 4、H N O 3、H C l O 4、H B r 、H I 弱 酸: C H 3C O O H 、H 2C O 3、H 2S O 3、H 3P O 4、H C l O 、H F 、所有的有机羧酸 (2)弱电解质的电离度α :

最新弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。

高中化学人教版选修4化学反应原理第3章单元复习

高中化学人教版选修4化学反应原理第三章复习 一. 教学内容: 第三章复习 二. 重点、难点: 1. 将各部分知识综合运用 2. 将本章知识和第二章的平衡移动理论联系 三. 具体内容: 1. 电解质和非电解质的分类 2. 弱电解质的电离平衡 3. 水的离子积和溶液的pH 4. 溶液的酸碱性与pH 5. 盐类的水解 6. 盐类水解的应用 7. 难溶电解质的溶解平衡 8. 沉淀的生成、溶解和转化 【典型例题】 [例1] 下列溶液加热蒸干后,能析出溶质固体的是( ) A. AlCl 3 B. KHCO 3 C. 342)(SO Fe D. NH 4HCO 3 【试题参考答案】:C 【试题参考答案解析】:考察盐的水解的应用。 [例2] 在pH 都等于9的NaOH 和CH 3COONa 两种溶液中,设由水电离产生的OH - 离子浓度分别为Amol/L 与Bmol/L,则A 和B 关系为( ) A. A >B B. A=10-4 B C. B=10-4 A D. A=B 【试题参考答案】:B 【试题参考答案解析】:考察水的离子积和pH 的关系。 [例3] 一定量的盐酸跟过量的铁粉反应时,为了减缓反应速度,且不影响生成氢气的总量,可向盐酸中加入适量的( ) ① NaOH 固体 ② H 2O ③ NH 4Cl 固体 ④ CH 3COONa 固体 ⑤ NaNO 3固体 ⑥ KCl 溶液

A. ②④⑥ B. ①② C. ②③⑤ D. ②④⑤⑥ 【试题参考答案】:A 【试题参考答案解析】:考察反应速率的影响因素和水的电离平衡的移动。 [例4] 1体积pH =2.5的盐酸与10体积某一元强碱溶液恰好完全反应,则该碱溶液的pH 等于( ) A. 9.0 B. 9.5 C. 10.5 D. 11.5 【试题参考答案】:C 【试题参考答案解析】:考察有关pH 的计算。 [例5] 含等物质的量NaOH 的溶液分别用pH 为2和3的CH 3COOH 溶液中和,设消耗CH 3COOH 溶液的体积依次为V V a b 、,则两者的关系正确的是( ) A. V V a b >10 B. V V a b =10 C. V V b a <10 D. V V b a >10 【试题参考答案】:D 【试题参考答案解析】:考察有关pH 的计算。 [例6] 将pH =11 NaOH 溶液和pH =3的甲酸溶液以等体积混合后,对所得溶液,下列判断一定正确的是( ) A. c (HCOO -)<c (Na +) B. c (HCOO - )>c (Na +) C. c (OH -)<c (HCOO -) D. c (OH -)>c (HCOO -) 【试题参考答案】:BC 【试题参考答案解析】:考察弱电解质电离的特点对于中和反应后溶液中离子浓度的影响。 [例7] 常温下pH =3的二元弱酸H 2R 溶液与a L pH =11的NaOH 溶液混合后,混合液的pH 刚好等于7(假设反应前后体积不变),则对反应后混合液的叙述正确的是( ) A. c (R 2-)+ c (OH -)=c (Na +)+c (H +) B. c (R 2-)>c (Na +)>c (H +)=c (OH -) C. 2c (R 2-)+ c (HR -)=c (Na +) D. 混合后溶液的体积为2a L 【试题参考答案】:C 【试题参考答案解析】:考察弱酸和强碱反应的溶液中离子的判断。 [例8] 用标准的NaOH 滴定未知浓度的盐酸,选用酚酞为指示剂,造成测定结果偏高的原因可能

弹性力学试题及答案

弹性力学与有限元分析复习题及其答案 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa , =2σ0MPa ,=1α6135'ο。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa , =2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为了使得相邻单元的位移保持连续,就不仅要使它们在公共结点处具有相同的位移时,也能在整个公共边界上具有相同的位移。 19、在有限单元法中,单元的形函数N i 在i 结点N i =1;在其他结点N i =0及∑N i =1。 20、为了提高有限单元法分析的精度,一般可以采用两种方法:一是将单元的尺寸减小,以便较好地反映位移和应力变化情况;二是采用包含更高次项的位移模式,使位移和应力的精度提高。

相关文档
最新文档