九年级数学第一学期期中综合复习卷二

合集下载

2023-2024学年第一学期九年级期中质量监测数学试题及答案

2023-2024学年第一学期九年级期中质量监测数学试题及答案

注意事项:1、本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2、答案全部在答题卡上完成,答在本试卷上无效.2023-2024学年第一学期九年级期中质量监测试题(卷)数学3、考试结束后,只收回答题卡.第Ⅰ卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该选项涂黑)1.下列方程是关于x 的一元二次方程的是A.B.02342=++xx 0122=--y x C.D.0122=++x ax ()024=-x x 2.如图,将含有30°角的三角尺ABC (∠BAC =30°),以点A 中心,顺时针方向旋转,使得点C ,A ,B ′在同一直线上,则旋转角的大小是A.30°B.60°C.120°D.150°3.方程的两个实数根是x x =2A.x 1=x 2=1B.x 1=1,x 2=-1C.x 1=0,x 2=1D.x 1=0,x 2=-14.将关于x 的方程配方成的形式,则的值是0862=+-x x ()p x =-23p A.1B.28C.17D.445.如果关于x 的一元二次方程有两个实数根,则k 的取值范围是032=+-k x x A.k≥B.k≤C.k>D.k<49494949C′B′CBA6.将二次函数的图象先向左平移2个单位,再向上平移1个单()2122---=x y 位,则所得到的二次函数的解析式是A.B.()1322---=x y ()1122-+-=x y C.D.()3122-+-=x y ()3322---=x y 7.冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA 病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类和人.在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染.若每轮感染中平均一只动物会感染x 只动物,则下面所列方程正确的是A.3x(x+1)=363B.3+3x+3x ²=363C.3(1+x)²=363D.3+3(1+x)+3(1+x)²=3638.已知二次函数(c 为常数)的图象与x 轴的一个交点为(1,0),c x x y +-=42则关于x 的一元二次方程的两个实数根是042=+-c x x A.x 1=1,x 2=-1B.x 1=-1,x 2=2C.x 1=-1,x 2=0D.x 1=1,x 2=39.二次函数的图象上部分点的坐标(x,y)对应值列表如下:c bx ax y ++=2则关于该二次函数的图象与性质,下列说法正确的是A.开口方向向上B.当x>-2时,y 随x 增大而增大C.函数图象与x 轴没有交点D.函数有最小值是-210.在同一平面直角坐标系中,二次函数与一次函数的图bx ax y +=2a bx y +=象可能是x …-3-2-101…y…-3-2-3-6-11…第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共15分)11.如图,在⊙O 中,AC =BC ,半径OC 与AB 交于点D ,若AB =8cm,OB =5cm,则CD =▲cm.13.已知点A (4,y 1)和点B (-1,y 212.2022年2月4日—2月20日,北京冬奥会隆重开幕,北京成为世界上第一个既举办过夏季奥运会,又举办过冬季奥运会的国家.下面图片是在北京冬奥会会徽征集过程中,征集到的一副图片,整个图片由“京字组成的雪花图案”、“beijing2022”、“奥运五环”三部分组成.对于图片中的“雪花图案”,至少旋转▲°能与原雪花图案重合.)是二次函数(m 为常数)()m x y +-=21-215.如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,AD 的中点,若四边形EFGH 是矩形,且其周长是20,则四边形ABCD 的图象上两点,则y 1和y 2的大小关系是▲.14.2021年我国高速铁路总里程为2.9万公里,2023年我国高速铁路总里程达到3.8万公里,高速铁路已经覆盖了全国80%以上的大城市,形成以“八纵八横”主通道为骨架、区域连接线衔接、城际铁路补充的高速铁路网.若设2021年到2023年我国高速铁路总里程的平均年增长率为x,则依题意可列方程为▲.的面积的最大值是▲.HG FED CBA⌒⌒三、解答题(本大题共8个小题,共75分.解答题应写出文字说明、证明过程或演算步骤)16.解方程(每小题5分,共10分)(1)()910-=+x x (2)()12832+=+x x x 17.(本小题5分)如图,以□ABCD 的顶点A 为圆心,AB 为半径作⊙A ,分别交BC ,AD 于E ,F 两点,交BA 的延长线于点G .求证:EF =FG .18.(本小题8分)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (5,4),B (1,3),C (3,1).点P (a,b)是△ABC 内的一点.(1)以点O 为中心,把△ABC 顺时针旋转90°,画出旋转后的△A 1B 1C 1,并写出A 1,B 1,C 1的坐标:A 1▲,B 1▲,C 1▲.注:点A 与A 1,B 与B 1,C 与C 1分别是对应点.(2)点P 的对应点P 1的坐标是▲;(3)若以点O 为中心,把△ABC 逆时针旋转则点P 的对应点P 2的坐标是▲,点P 1与点P 2关于▲对称.(填写“x 轴、y 轴或原点”)⌒⌒19.(本小题8分)阅读下列材料,并完成相应学习任务:一元二次方程在几何作图中的应用如图1,在矩形ABCD 中,AB =3,BC =4.求作一个矩形,使其周长和面积分别是矩形ABCD 的周长和面积的2倍.因为矩形ABCD 的周长是14,面积是12,所以所求作的矩形周长是28,面积是24.若设所求作的矩形一边的长为x,则与其相邻的一边长为14-x.所以,得x(14-x)=24.解得x 1=2,x 2=12.当x=2时,14-x=12;当x=12时,14-x=2.所以求作的矩形相邻两边长分别是2和12.如图2,在边AB 的延长线取点G ,使得AG =4AB .在AD 上取AE =AD .21以AG 和AE 为邻边作出矩形AGFE .则矩形AGFE 的周长和面积分别是矩形ABCD 的周长和面积的2倍.学习任务:(1)在作出矩形AGFE 的过程中,主要体现的数学思想是▲;(填出序号即可)A.转化思想B.数形结合思想C.分类讨论思想D.归纳思想(2)是否存在一个矩形,使其周长与面积分别是矩形ABCD 的周长和面积的?21若存在,请在图1中作出符合条件的矩形;若不存在,请说明理由.图1 图2GFEDCBA D CBA20.(本小题9分)漪汾桥是太原市首座对称双七拱吊桥,每个桥拱呈大小相等的抛物线型,桥拱如长虹出水,屹立于汾河之上,是太原市地标性建筑之一.如图2所示,单个桥拱在桥面上的跨度OA =60米,在水面的跨度BC =80米,桥面距水面的垂直距离OE =7米,以桥面所在水平线为x 轴,OE 所在直线为y 轴建立平面直角坐标系.(1)求桥拱所在抛物线的函数关系表达式;(2)求桥拱最高点到水面的距离是多少米?21.(本小题10分)下面是小明解决某数学问题的过程,请认真阅读并解决相应学习任务:数学问题:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:“,”现已知商品的进价为每件40元,如何定价才能使每个星期的利润达到6080元,且顾客能够得到更大的实惠?解:设….根据题意,所列出方程:.()6080402300-20=⎪⎭⎫⎝⎛⨯+x x …根据小明所列方程,完成下列任务:(1)填空:数学问题中“”处短缺的条件是▲,小明所列方程中未知数x 的实际意义是▲.(2)请你重新设一个未知数,要求所设未知数与小明所列方程中未知数的意义不同,并结合所补充的条件,解决上面的数学问题.图1图222.(本小题12分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD 中,点E 是边CD 上一点,将△ADE 以点A 为中心,顺时针旋转90°,得到△ABF ,连接EF .过点A 作AG ⊥EF ,垂足为G .试猜想FG 与GE 的数量关系,并证明.(1)独立思考:请你解决老师所提出的问题;(2)拓展探究:智慧小组在老师所提问题的基础上,连接DG ,他们认为DG 平分∠ADC .请你利用图2说明,智慧小组所提出的结论是否正确?请说明理由;(3)问题解决:在图2中,若AD +DE =28,则四边形AGED 的面积为▲.(直接写出答案即可)图1 图2AB CDEFGGFEDCBA23.(本小题13分)综合与探究已知抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 32-2-=x x y 轴交于点C ,点D 是y 轴右侧抛物线上一个动点.(1)求出点A ,B ,C 的坐标;(2)如图1,当点D 在第四象限时,求出△BCD 面积的最大值,并求出这时点D 坐标;(3)当∠DAB =∠ABC 时,求出点D的坐标.图1 备用图一、选择题:1—10:DDCAB BCDCC二、填空题:11.2;12.60°;13.y 1<y 2;14.2.9(1+x)²=3.8;15.50.三、解答题:16.解:(1)x 1=-1,x 22023~2024学年第一学期九年级期中质量监测试题数学参考答案=-9;…………………………………………………………5分(2)x 1=,x 2=4.…………………………………………………………………5分23-注:阅卷组自行制定评分细则17.证明:∵AB=AE,∴∠B=∠AEB.……………………………………………………………………1分∵四边形ABCD 是平行四边形,∴AD∥BC,……………………………………………………………………2分∴∠B=∠GAF,∠FAE=∠AEB,……………………………………………………………………3分∴∠GAF=∠FAE,…………………………………………………………………4分∴EF=FG.……………………………………………………………………5分18.解:(1)画图略,画图正确.………………………………………………2分A 1(4,-5),B 1(3,-1),C 1(1,-3).………………………………………5分(2)(b,-a).……………………………………………………………………6分(3)(-b,a),原点.………………………………………………………………8分19.解:(1)B;…………………………………………………………………2分(2)不存在.……………………………………………………………………3分理由如下:若存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的,21则所求的矩形周长为7,面积为6.………………………………………………4分设所求的矩形一边长为x,则与其相邻的另一边的长为-x.………………5分27所以,得x(-x)=6.……………………………………………………………6分27整理,得2x ²-7x+12=0.…………………………………………………………7分因为△=(-7)²-4×2×12=49-96<0.所以该方程无解.…………………………………………………………8分所以,不存在矩形,其周长与面积分别是矩形ABCD 的周长和面积的……9分21⌒⌒20.解:(1)设桥拱所在抛物线的函数关系表达式为y=ax ²+bx.………………1分∵OA=60,∴A 点坐标为(60,0).∵BC=80,根据对称性可知,点C 坐标为(70,-7).…………………………2分把A(60,0),B(70,-7)代入y=ax ²+bx,得………3分⎩⎨⎧-=+=+77049000603600b a b a 解得………………………………………………………………4分⎪⎩⎪⎨⎧=-=531001b a ∴桥拱所在抛物线的函数关系表达式是.………………5分x x y 5310012+-=(2)∵x x y 5310012+-=……………………………………………………7分().93010012+--=x ∴该函数的顶点为(30,9).……………………………………………………8分∵9+7=16.∴桥拱最高点到水面的距离是16米.…………………………………………9分21.解:(1)每件商品的售价每降价2元,每个星期的销售量可增加40件;每件商品的售价降了x 元.………………………………………………………………2分(2)设每件商品的定价为x 元,根据题意可列方程…………………………3分.………………………………………6分()60804026030040=⎪⎭⎫ ⎝⎛⨯-+-x x 整理,得x ²-115x+3304=0.……………………………………………………7分解得x 1=59,x 2=56.……………………………………………………………8分为了让每位顾客得到更大的实惠,所以x=59舍去.…………………………9分答:每件商品的定价为56元,每个星期的利润能达到6080元,且顾客能够得到更大的实惠.…………………………………………………………………10分22.(1)FG=EG.………………………………………………………………1分证明:∵△ABF 是由△ADE 顺时针方向旋转90°得到的,∴△ABF≌△ADE,………………………………………………………………2分∴AF=AE. (3)分∵AG⊥EF,∴FG=EG.………………………………4分(2)连接CG.……………………………5分∵四边形ABCD 是正方形,∴AD=CD,∠FCE=90°.……………………6分由(1)可知,FG=EG,∴CG=EF.………………………………7分21∵∠EAF=90°,∴AG=EF.………………………………8分21∴AG=CG.∵DG=DG,∴△ADG≌△CDG,………………………………………………………………9分∴∠ADG=∠CDG,即DG 平分∠ADC.…………………………………………10分(3)196………………………………………………………………………12分23.解:(1)当y=0时,.032-2=-x x 解得x 1=-1,x 2=3.∴点A(-1,0),B(3,0).……………………………………………………2分当x=0时,y=-3,∴点C(0,-3)……………………………………………………………………3分(2)如图,过点D 作DE⊥x 轴,垂足为E,并且交直线BC 于点F.过点C 作CH⊥DE,垂足为H.……………………4分设BC 的解析式为y=kx+b.把点B(3,0),点C(0,-3)代入,得,⎩⎨⎧-==+33b b k 解得k=1,b=-3.∴直线BC 的解析式为y=x-3.……………………5分设点D(m,m ²-2m-3),则点F(m,m-3).则DF=m-3-(m ²-2m-3)=-m ²+3m.……………6分∵S △BCD =S △CDF +S △BDF =×DF×CH+×DF×BE=×DF(CH+BE)=21212121ACDEFG∴S △BCD =(-m ²+3m)×3=-m ²+m.………………………………7分212329=-(m-)²+.(0<m<3)…………………………………………8分2323827∵-<0,∴当m=时,S △BCD 有最大值,S △BCD 的最大值为.………9分2123827(3)∵点B(3,0),点C(0,-3).∴OB=OC.∵∠BOC=90°,∴∠OBC=∠OCB=45°.设点D(m,m ²-2m-3).如图,当点D 在x 轴下方时,过点D 作DP⊥OB,垂足为P.∵∠DAB=∠ABC=45°,∠APD=90°.∴∠PDA=∠PAD,∴PA=PD.∴m-(-1)=-(m ²-2m-3).……………………10分解得m=2或m=-1(舍去).当m=2时,m ²-2m-3=-3.∴点D 坐标为(2,-3).…………………………11分如图,当点D 在x 轴上方时,过点D 作DQ⊥OB,垂足为Q.∵∠DAB=∠ABC=45°,∠AQD=90°.∴∠QDA=∠QAD,∴QA=QD.∴m-(-1)=m ²-2m-3.…………………………………………………………12分解得m=4或m=-1(舍去).当m=4时,m ²-2m-3=5.∴点D 坐标为(4,5).∴当∠DAB=∠ABC 时,点D(2,-3)或(4,5) (13)分。

广东省深圳市宝安区2024-2025学年上学期九年级期中数学复习训练试卷

广东省深圳市宝安区2024-2025学年上学期九年级期中数学复习训练试卷

2024-2025学年第一学期深圳市宝安区九年级期中数学复习训练试卷(时间:90分钟,满分:100分)一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.下列几何体中,主视图是三角形的为()A .B.C.D.2.一元二次方程2450x x +-=经过配方后,可变形为()A.()221x -=B.()2 21x +=-C.()229x +=D.()229x -=3.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,AB =8,BC =12,EF =9,则DE 的长为()A.5B.6C.7D.84.“敬老爱老”是中华民族的优秀传统美德.小刚、小强计划利用暑期从A ,B ,C 三处养老服务中心中,随机选择一处参加志愿服务活动,则两人恰好选到同一处的概率是()A.12B.13C.16D.295.如图()4,2E -,()1,1F --,以O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E '的坐标为()A.()8,4-B.()8,4-或()8,4-C.()2,1-D.()2,1-或()2,1-6.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是()A.12B.9C.4D.37.如图,小明在A 时测得某树的影长为8m ,B 时又测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为()A.2m B.4m C.6m D.8m8.如图,小树AB 在路灯O 的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4.5m.则路灯的高度OP 为()A.3m B.4mC.4.5mD.5m 9.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG=2,则线段AE 的长度为()A.6B.8C.10D.1210.如图,矩形ABCD ,点F 是C 边上的一点,把矩形ABCD 沿BF 折叠,点C 落在C 边上的点E 处,54AD AB ==,,点M 是线段C 上的动点,连接B ,过点E 作B 的垂线交BC 于点N ,垂足为H .以下结论:①ABE DEF ∽;②AE BE =DE EF ;③2CF =;④BM EN =54.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共5个小题.每小题3分,共15分.把答案填在题中横线上.11.若53a b =,则a b b -的值为.12.一个不透明的口袋中装有10个红球和若干个黄球,这些球除颜色外都相同,九年二班数学兴趣小组进行了如下试验:从口袋中随机摸出1个球记下它的颜色后,放回摇匀,记为一次摸球试验,经过大量试验发现摸到红球的频率稳定在0.4附近,则口袋中黄球大约有______个.13.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.14.如图,在一幅长80cm,宽50cm的长方形风景画的四周镶上一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,则金色纸边的宽为cm.15.如图,四边形ABCD是正方形,AB=6,E是BC中点,连接DE,DE的垂直平分线分别交AB、DE、CD于M、O、N,连接EN,过E作EF⊥EN交AB于F.下列结论中,正确结论是.(填序号)①△BEF∽△CNE;②MNBF=52AF;④△BEF的周长是12.三、解答题:本大题共6个小题,共55分,解答应写出文字说明、证明过程或演算步骤16.解方程:(1)x2﹣4x﹣5=0(2)(3x﹣1)2=2(3x﹣1),17.如图,在△ABC中,AB=AC,D为BC边上一点,E为AC边上一点,且∠ADE=∠B.(1)求证:△ABD∽△DCE;(2)若AC=12,BC=11,CE=2,求BD的长.18.为了培养青少年体育兴趣、体育意识,某校初中开展了“阳光体育活动”,决定开设篮球、足球、乒乓球、羽毛球、排球这五项球类活动,为了了解学生对这五项活动的喜爱情况,随机调查了一些学生(每名学生必选且只能选择这五项活动中的一种).根据以下统计图提供的信息,请解答下列问题:(1)本次被调查的学生有______名,补全条形统计图;(2)扇形统计图中“羽毛球”对应的扇形的圆心角度数是______;(3)学校准备推荐甲、乙、丙、丁四名同学中的2名参加全市中学生篮球比赛,则甲和乙同学同时被选中的概率是多少?19.如图,AB 和DE 是直立在地面上的两根立柱.AB=7m,某一时刻AB 在太阳光下的投影BC=4m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为8m,计算DE 的长.19.今年超市以每件25元的进价购进一批商品,当商品售价为40元时,三月份销售256件,四、五月该商品十分畅销,销售量持续上涨,在售价不变的基础上,五月份的销售量达到400件.(1)求四、五这两个月销售量的月平均增长百分率.(2)经市场预测,六月份的销售量将与五月份持平,现商场为了减少库存,采用降价促销方式,经调查发现,该商品每降价1元,月销量增加5件,当商品降价多少元时,商场六月份可获利4250元?21.在Rt ABC ∆中,90,20cm,15cm ∠=︒==C AC BC ,现有动点P 从点A 出发,沿AC 向点C 方向运动,动点Q 从点C 出发,沿线段CB 向点B 方向运动,如果点P 的速度是4cm/s ,点O 的速度是2cm/s ,它们同时出发,当有一点到达所在线段的端点时,就停止运动(05t ≤≤).设运动时间为t 秒,求:(1)用含t的代数式表示CQ,CP;(2)当t为多少时,PQ的长度等于10(3)当t为多少时,以点C,P,Q为顶点的三角形与ABC相似?22.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.参考解答一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1.A【分析】分别判断出各选项中的几何体的主视图,即可得出答案.【详解】解:A、圆锥的主视图是三角形,故本选项符合题意;B、球的主视图是圆,故本选项不符合题意;C、长方体的主视图是长方形,故本选项不符合题意;D、三棱柱的主视图是长方形,故本选项不符合题意;故选:A.2.【答案】C【分析】先移项,然后利用完全平方公式配方即可.【详解】∵2450x x +-=,∴245x x +=,∴24454x x ++=+,∴()229x +=.故选:C.3.【答案】B 【分析】根据平行线分线段成比例可知AB DE BC EF=,代值求解即可得到结论.【详解】解:∵123l l l ∥∥,∴AB DE BC EF=,∵AB =8,BC =12,EF =9,∴8129DE =,解得DE =6,故选:B.4.【答案】B【分析】画出树状图展示所有9种等可能的结果数,找出两人恰好选择同一场所的结果数,然后根据概率公式求解.【详解】解:画树状图如图:共有9种等可能的结果数,其中两人恰好选择同一场所的结果数为3,∴小刚、小强两人恰好选择同一场馆的概率3193==,故选:B.5.【答案】D【分析】将点E (-4,2)的坐标同时乘以12或-12即可求得点E ′的坐标【详解】根据题意可知,点E 的对应点E ′的坐标是E (-4,2)的坐标同时乘以12或-12,所以点E ′的坐标为(-2,1)或(2,-1).故选D.6.【答案】A【分析】此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.【详解】解:∵a 个球中红球有3个,通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,∴325%a=,∴12a =.故选:A.7.【答案】B【分析】根据题意,画出示意图,易得Rt Rt EDC CDF ∽F,进而可得DE CD CD DF=,代入数据求解即可得答案.【详解】解:根据题意做出示意图,则CD EF ⊥,CE CF ⊥,2m DE =,8m DF =,∴90EDC CDF ECF ∠=∠=∠=︒,∴90E ECD ECD DCF ∠+∠=∠+∠=︒,∴E DCF ∠=∠,∴Rt Rt EDC CDF ∽,∴DE CD CD DF=,即28CD CD =,∴22816CD =⨯=,∴4m CD =(负值舍去).故选:B.8.【答案】D【分析】根据在同一灯光照射下任何物体的高度与其影子的比值不变建立等量关系即可求解.【详解】解:在同一灯光照射下任何物体的高度与其影子的比值不变:∵当树高AB=2m,树影BC=3m,且BP=4.5m ∴OP AB PC BC =,代入得:27.53OP =∴5OP =m故选:D9.【答案】D【详解】分析:根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF AB GF GD==2,结合FG=2可求出AF、AG 的长度,由CG∥AB、AB=2CG 可得出CG 为△EAB 的中位线,再利用三角形中位线的性质可求出AE 的长度,此题得解.详解:∵四边形ABCD 为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF AB GF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG 为△EAB 的中位线,∴AE=2AG=12.故选D.10.【答案】B【分析】本题考查折叠的性质以及相似三角形的判定和性质,勾股定理等知识,掌握勾股定理和相似三角形的判定与性质是解题的关键.利用矩形的折叠相关知识,先用勾股定理求出AE DE ,,设EF FC x ==,结合EF FC =和Rt DEF 利用勾股定理列出方程可求出 2.5CF =,从而判定③错误,利用一线三直角模型可证明ABE DEF ∽,从而判定①正确,利用相似三角形的性质可知AB BE =DE EF,而43AB AE =≠=,从判定故②错误,作EG BC ⊥,证明BMC ENG ∽△△,可判断故④正确,从而得解.【详解】由矩形的性质得:5AD BC ==,4AB CD ==,90A ABC C D ∠=∠=∠=∠=︒,由折叠的性质得90BEF C ∠=∠=︒,5BE BC ==,EF FC =,在Rt ABE △中,3AE ===,∴2DE AD AE =-=,设EF FC x ==,∴4DF CD CF x =-=-,在Rt DEF △中,()22224x x +-=,解得 2.5x =,即 2.5CF =,故③错误;在矩形ABCD 中,90A ∠=︒,∴90AEB EBA ∠+∠=︒,又∵90BEF ∠=︒,∴18090FED AEB AEB EBA BEF ∠=︒-∠=︒∠=∠∠--,∵EBA FED ∠=∠,A D ∠=∠,∴ABE DEF ∽,故①正确;∵ABE DEF ∽,∴AB BE =DE EF,∵43AB AE =≠=,∴AE BE ≠DE EF,故②错误;作EG BC ⊥,则四边形ABGE 是矩形,∴4EG AB ==,∵EN BM ⊥,∴90BHN C EGN ∠=∠=∠=︒,∴9090BMC MBC BNH NEG ∠=︒-∠=∠=︒-∠,∴BMC ENG ∽△△,∴54BM BC EN EG ==,故④正确;故正确的有①④,共两个.故选B.二、填空题:本大题共5个小题.每小题3分,共15分.把答案填在题中横线上.11.【答案】23【分析】本题主要考查了比例的基本性质.根据分比定理“如果::a b c d =,那么():():a b b c d d -=-(b 、0)d ≠”解答.熟练掌握分比定理是解题的关键.【详解】解: 53a b =,∴53233a b b --==.故答案为:23.12.【答案】15【解析】【分析】设袋子中黄球约有x个,根据题意可知从袋子中随机摸出一个红球的概率为0.4,由此根据概率公式建立方程求解即可.【详解】解:设袋子中黄球约有x个,∵通过多次重复试验发现摸出红球的频率稳定在0.4附近,∴从袋子中随机摸出一个红球的概率为0.4,∴100.4 10x=+,解得15x=,经检验,15x=是原方程的解,∴袋子中黄球约有15个,故答案为:15.13.【答案】4【分析】根据题意得△ABC∽△EDC,相似三角形成比例得解.【详解】∵△ABC∽△EDC,∴ED CD=AB CB,1.62=4.8CB,CB=6,BD=6-2=4.故BD为4m.14.【答案】5.【分析】利用等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程,解方程即可求解.【详解】解:设金色纸边的宽为xcm,由题意得(80+2x)(50+2x)=5400,解得:x 1=5,x 2=-70(舍去)答:金色纸边的宽为5cm .故答案为:515.【答案】①②④【分析】由∠BFE =∠CEN ,∠B =∠C 即可证得△BEF ∽△CNE ,即可判断①正确;根据三角形面积公式即可判断②正确;求得BF =4,即可得到BF =2AF ,即可判断③错误;根据勾股定理求得EF ,即可求△BEF 的周长是12,即可判断④正确;即可求解.【详解】解:∵EF ⊥EN ,∴∠FEN =90°,∴∠BEF +∠CEN =90°,∵四边形ABCD 是正方形,∴∠ABC =∠DCB =90°,∴∠BEF +∠BFE =90°,∴∠BFE =∠CEN ,∵∠B =∠C ,∴△BEF ∽△CNE ,故①正确;∵四边形ABCD 是正方形,AB =6,E 是BC 中点,∴CD =AB =BC =6,∴CE =BE =3,∴DE ==∵MN 垂直平分BE ,∴122OD OE DE ===,EN =DN ,设DN =x ,则EN =x ,CN =6﹣x ,连接MD ,∵222EN EC CN =+,∴2223(6)x x =+-,解得154x =,∴15.4DN =,∵1122DMN S DN AD MN OD ∆=⋅⋅=⋅⋅,∴DN AD MN OD ⋅=⋅,即15642MN ⨯=,∴MN =∵△BEF ∽△CNE ,∴BFBECE CN =,∵BE =CE =3,1596,44CN =-=,∴334BF =,∴BF =4,∴AF =6﹣4=2,∴BF =2AF ,故③错误;∵BE =3,BF =4,∴EF =5,∴△BEF 的周长=3+4+5=12,故④正确;故答案为:①②④.三、解答题:本大题共6个小题,共55分,解答应写出文字说明、证明过程或演算步骤16.解:(1)x 2﹣4x﹣5=0(x+1)(x﹣5)=0x+1=0或x﹣5=0解得:x 1=﹣1,x 2=5;(2)(3x﹣1)2=2(3x﹣1),(3x﹣1)2﹣2(3x﹣1)=0,(3x﹣1)[(3x﹣1)﹣2]=03x﹣1=0或3x﹣3=0解得:x 1=13,x 2=1.17.解:(1)证明:∵AB =AC∴∠B =∠C∵∠ADC =∠B +∠BAD∠ADC =∠ADE +∠CDE∵∠ADE =∠B∴∠BAD=∠CDE∴△ABD ∽△CDE(2)∵AB =AC ,AC =12∴AB =12由(1)知,△ABD∽△CDE∴ABCD=BDCE即1211BD-=2BD∴BD=3或818.(1)解:根据题意得本次被调查的学生人数3030%100=÷=(人),喜爱足球的人数为:100302010535----=(人),条形图如图所示,故答案为:100;(2)解:“羽毛球”人数所占比例为:10100=10%÷,所以,扇形统计图中“羽毛球”对应的扇形的圆心角度数36010%=36=︒⨯︒,故答案为:36︒;(3)解:设甲、乙、丙、丁四名同学分别用字母A,B,C,D表示,根据题意画树状图如下:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P (A 、B 两人进行比赛)21126==.19.解:(1)连接AC,过点D 作DF∥AC,交直线BC 于点F,线段EF 即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴AB:DE=BC:EF,∵AB=7m,BC=4m,EF=8∴7:4=DE:8∴DE=14(m).20.(1)解:设平均增长率为x ,由题意得:()22561400x ⨯+=,解得:0.25x =或 2.25x =-(舍);∴四、五这两个月的月平均增长百分率为25%;(2)解:设降价y 元,由题意得:()()402540054250y y --+=,整理得:2653500y y +-=,解得:5y =或70y =-(舍);∴当商品降价5元时,商场六月份可获利4250元.21.解:(1)由运动知,AP =4t cm,CQ =2t cm,AC =20cm,∴CP =(20-4t )cm,点P 在AC 上运动,∴4t ≤20,即t ≤5,点Q 在BC 运动,∴2t ≤15,∴t ≤7.5,∴0≤t ≤5,故答案为:CQ =2t cm,CP =(20-4t )cm,0≤t ≤5;(2)在Rt△PCQ 中,根据勾股定理得,222PQ CP CQ +=,222(204)(2)t t ∴=-+,解得:2t =或6t =(舍去),故答案为:2;(3) 以点C ,P ,Q 为顶点的三角形与ABC ∆相似,且∠C =∠C =90°,∴①△CPQ ∽△CAB ,CP CQ AC BC∴=,20422015t t -∴=,∴t =3,②△CPQ ∽△CBA ,CP CQ BC AC∴=,20421520t t -∴=,4011t ∴=,即当t 为3或4011时,以点C ,P ,Q 为顶点的三角形与ABC ∆相似,故答案为:3或4011.22.解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13OD OB OA OC ==.∴OD=13∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,故答案为(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB22+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,.。

武汉市黄陂区九年级上期中数学复习试卷(二)含解析

武汉市黄陂区九年级上期中数学复习试卷(二)含解析

2022-2023湖北省武汉市黄陂区九年级(上)期中数学复习试卷(二)一、选择题(共10小题,每小题3分,共30分)1.一元二次方程x(x﹣1)=0的根是()A.1 B.0 C.0或1 D.0或﹣12.下列是几个汽车的标志,其中是中心对称图形的是()A. B.C. D.3.若关于x的方程(a﹣1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>1 C.a<1 D.a≠04.已知方程2x2﹣4x﹣3=0两根分别是x1和x2,则x1x2的值等于()A.﹣3 B.﹣C.3 D.5.如图,△ABC≌△AED,点D落在BC上,且∠B=60°,则∠EDC的度数等于()A.45°B.30°C.60°D.75°6.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=257.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B.60°C.25°D.30°8.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x个支干,则可列方程是()A.(1+x)2=57 B.1+x+x2=57 C.(1+x)x=57 D.1+x+2x=579.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b ﹣1)x+c的图象可能是()A.B.C.D.10.一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果m是方程M的一个根,那么是方程N的一个根;④如果方程M和方程N有一个相同的根,那么这个根必是x=1正确的个数是()A.1 B.2 C.3 D.4二、填空题(共6小题,每小题3分,共18分)11.方程x2=2x的解是.12.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是度.13.如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第6个图案小木棒根数是.14.太阳从西边出来,这个事件的概率为.15.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求α2+β2的值.16.某型号的手机连续两次降阶,每个售价由原来的1185元降到580元.设平均每次降价的百分率为x,列方程为.三、解答题(共8题,共72分)17.按要求解下列方程:x2+x﹣3=0(公式法)18.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B (0,3).求此抛物线所对应的函数关系式.19.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.20.已知a、b是方程x2+x﹣=0的两个实数根,求:a2+2a+b的值.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,三个顶点的坐标分别为A(2,2),B(1,0),C(3,1).①将△ABC关于x轴作轴对称变换得△A1B1C1,则点C1的坐标为;②将△ABC绕原点O按逆时针方向旋转90°得△A2B2C2,则点C2的坐标为;③△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,则对称中心的坐标为.22.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.23.如图(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,求CE1的长;(3)连接PA,△PAB面积的最大值为.(直接填写结果)24.如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b=,点B的横坐标为(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上一点,其坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB、PC,设所得△PBC 的面积为S,求S的取值范围.2022-2023湖北省武汉市黄陂区九年级(上)期中数学复习试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.一元二次方程x(x﹣1)=0的根是()A.1 B.0 C.0或1 D.0或﹣1【考点】解一元二次方程-因式分解法.【分析】利用因式分解法把原方程转化为x=0或x﹣1=0,然后解两个一次方程即可.【解答】解:x=0或x﹣1=0,所以x1=0,x2=1.故选C.2.下列是几个汽车的标志,其中是中心对称图形的是()A. B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选A.3.若关于x的方程(a﹣1)x2+2x﹣1=0是一元二次方程,则a的取值范围是()A.a≠1 B.a>1 C.a<1 D.a≠0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程可得a﹣1≠0,再解即可.【解答】解:由题意得:a﹣1≠0,解得:a≠1.故选:A.4.已知方程2x2﹣4x﹣3=0两根分别是x1和x2,则x1x2的值等于()A.﹣3 B.﹣C.3 D.【考点】根与系数的关系.【分析】利用根与系数的关系,直接得出两根的积.【解答】解:∵方程2x2﹣4x﹣3=0两根分别是x1和x2,12故选:B.5.如图,△ABC≌△AED,点D落在BC上,且∠B=60°,则∠EDC的度数等于()A.45°B.30°C.60°D.75°【考点】全等三角形的性质.【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【解答】解:∵△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=180°﹣∠ADE﹣∠ADB=60°.故选C.6.用配方法解方程x2+8x+9=0,变形后的结果正确的是()A.(x+4)2=﹣7 B.(x+4)2=﹣9 C.(x+4)2=7 D.(x+4)2=25【考点】解一元二次方程-配方法.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C7.如图,在⊙O中,半径OC⊥弦AB于P,且P为OC的中点,则∠BAC的度数是()A.45°B.60°C.25°D.30°【考点】垂径定理;含30度角的直角三角形.【分析】连接OB,根据OC⊥AB,P为OC的中点可得出OP=OB,故∠OBP=30°,由直角三角形的性质得出∠BOP的度数,根据圆周角定理即可得出结论.【解答】解:连接OB,∵OC⊥AB,P为OC的中点,∴∠OBP=30°,∴∠BOP=90°﹣30°=60°,∴∠BAC=∠BOP=30°.故选D.8.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x个支干,则可列方程是()A.(1+x)2=57 B.1+x+x2=57 C.(1+x)x=57 D.1+x+2x=57【考点】由实际问题抽象出一元二次方程.【分析】关键描述语是“主干、支干、小分支的总数是73”,等量关系为:主干1+支干数目+小分支数目=57,把相关数值代入即可.【解答】解:∵主干为1,每个支干长出x个小分支,每个支干又长出同样数目的小分支,∴小分支的个数为x×x=x2,∴可列方程为1+x+x2=57.故选B.9.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b ﹣1)x+c的图象可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.10.一元二次方程:M:ax2+bx+c=0;N:cx2+bx+a=0,其中ac≠0,a≠c,以下四个结论:①如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根;②如果方程M有两根符号相同,那么方程N的两根符号也相同;③如果m是方程M的一个根,那么是方程N的一个根;④如果方程M和方程N有一个相同的根,那么这个根必是x=1正确的个数是()A.1 B.2 C.3 D.4【考点】根的判别式;一元二次方程的解.【分析】利用根的判别式与求根公式直接判断①②;利用代入的方法判断③④即可.【解答】解:①两个方程根的判别式都是△=b2﹣4ac,所以如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根正确;②如果方程M的两根符号相同,那么方程N的两根符号也相同,那么△=b2﹣4ac≥0,>0,所以a与c符号相同,>0,所以方程N的两根符号也相同,结论正确;③如果m是方程M的一个根,那么m2a+mb+c=0,两边同时除以m2,得c+b+a=0,所以是方程N的一个根,结论正确;D、如果方程M和方程N有一个相同的根,那么ax2+bx+c=cx2+bx+a,(a﹣c)x2=a﹣c,由a≠c,得x2=1,x=±1,结论错误.正确的是①②③共3个.故选:C.二、填空题(共6小题,每小题3分,共18分)11.方程x2=2x的解是x1=0,x2=.【考点】解一元二次方程-因式分解法.【分析】首先移项,利用因式分解法将原式分解因式得出即可.【解答】解:x2=2xx2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=.故答案为:x1=0,x2=.12.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数是45度.【考点】旋转的性质.【分析】根据旋转的性质并结合一个周角是360°求解.【解答】解:∵一个周角是360度,等腰直角三角形的一个锐角是45度,∴如图,是由一个等腰直角三角形每次旋转45度,且旋转8次形成的.∴每次旋转的度数是45°.13.如图,图案均是用长度相等的小木棒,按一定规律拼撘而成,第一个图案需4根小木棒,则第6个图案小木棒根数是54.【考点】规律型:图形的变化类.【分析】由题意可知:第1个图案需要小木棒1×(1+3)=4根,第二个图案需要2×(2+3)=10根,第三个图案需要3×(3+3)=18根,第四个图案需要4×(4+3)=28根,…,继而即可找出规律,进一步求出第6个图案需要小木棒的根数【解答】解:拼搭第1个图案需4=1×(1+3)根小木棒,拼搭第2个图案需10=2×(2+3)根小木棒,拼搭第3个图案需18=3×(3+3)根小木棒,拼搭第4个图案需28=4×(4+3)根小木棒,…拼搭第n个图案需小木棒n(n+3)=n2+3n根.当n=6时,n2+3n=62+3×6=54.故答案为:54.14.太阳从西边出来,这个事件的概率为0.【考点】概率的意义.【分析】根据事件的类型判断相应的概率即可.【解答】解:太阳从西边出来为不可能事件,故这个事件的概率为0.故答案为:0.15.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求α2+β2的值.【考点】根与系数的关系.【分析】根据根与系数的关系找出α+β=﹣3、αβ=﹣1,利用完全平方公式将α2+β2的变形为只含α+β、αβ的算式,代入数据即可得出结论.【解答】解:∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11.16.某型号的手机连续两次降阶,每个售价由原来的1185元降到580元.设平均每次降价的百分率为x,列方程为1185(1﹣x)2=850.【考点】由实际问题抽象出一元二次方程.【分析】设平均每次降价的百分率为x,则第一次降价后售价为1185(1﹣x),第二次降价后售价为1185(1﹣x)2,然后根据两次降阶后的售价建立等量关系即可.【解答】解:根据题意得1185(1﹣x)2=850.故答案为1185(1﹣x)2=850.三、解答题(共8题,共72分)17.按要求解下列方程:x2+x﹣3=0(公式法)【考点】解一元二次方程-公式法.【分析】先求出b2﹣4ac的值,再代入公式x=计算即可.【解答】解:∵a=1,b=1,c=﹣3,∴△=b2﹣4ac=12﹣4×1×(﹣3)=13>0,x==,∴x1=,x2=.18.如图所示,已知抛物线y=﹣x2+bx+c与x轴的一个交点为A(4,0),与y轴交于点B (0,3).求此抛物线所对应的函数关系式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】直接利用待定系数法求出二次函数解析式进而得出答案.【解答】解:把点A(4,0),B(0,3)代入二次函数y=﹣x2+bx+c,,解得:,所以二次函数的关系式为:y=﹣x2+x+3.19.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AB于F,求证:AD=CD.【考点】圆周角定理;全等三角形的判定与性质.【分析】由CD⊥AB于E,CO⊥AB于F,根据垂径定理可得AD=2AF,CD=2CE,∠OEC=∠OFA=90°,然后由AAS判定△COE≌△AOF,继而证得CE=AF,则可证得结论.【解答】证明:∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.20.已知a、b是方程x2+x﹣=0的两个实数根,求:a2+2a+b的值.【考点】根与系数的关系.【分析】先根据一元二次方程的解的定义得到a2+a﹣=0,即a2+a=,则a2+2a+b可化为a2+a+a+b=+a+b,然后利用根与系数的关系得到a+b=﹣1,再利用整体代入的方法计算即可.【解答】解:∵a,b是方程x2+x﹣=0的两个实数根,∴a2+a﹣=0,a+b=﹣1,∴a2+a=,∴a2+2a+b=a2+a+a+b=﹣1=.21.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,三个顶点的坐标分别为A(2,2),B(1,0),C(3,1).①将△ABC关于x轴作轴对称变换得△A1B1C1,则点C1的坐标为(3,﹣1);②将△ABC绕原点O按逆时针方向旋转90°得△A2B2C2,则点C2的坐标为(﹣1,3);③△A1B1C1与△A2B2C2成中心对称吗?若成中心对称,则对称中心的坐标为(,).【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)根据轴对称图形的性质可知点C的坐标为(3,﹣1);(2)根据旋转变换图形的性质也可求出点C2的坐标;(3)成中心对称,连续各对称点,连线的交点就是对称中心,从而可以找出对称中心的坐标.【解答】解:(1)点C1的坐标为(3,﹣1);(2)点C2的坐标为(﹣1,3);(3)△A1B1C1与△A2B2C2成中心对称,对称中心的坐标为.22.如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕着点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.【考点】旋转的性质;勾股定理;正方形的性质.【分析】先根据旋转的性质得到BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,则可判断△PB P′是等腰直角三角形,根据等腰直角三角形的性质得PP′=BP=4,∠BP′P=45°,于是可计算出∠PP′C=90°,然后在Rt△PP′C中利用勾股定理计算PC的长.【解答】解:∵△PAB绕着点B顺时针旋转90°到△P′CB的位置,∴BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,∴△PB P′是等腰直角三角形,∴PP′=BP=4,∠BP′P=45°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,在Rt△PP′C中,PC===6.答:PP′和PC的长分别为4,6.23.如图(1),在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,如图(2),设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)求证:BD1=CE1;(2)当∠CPD1=2∠CAD1时,求CE1的长;(3)连接PA,△PAB面积的最大值为2+2.(直接填写结果)【考点】几何变换综合题.【分析】(1)由旋转得到△ABD1≌△ACE1的条件即可;(2)由(1)的结论,在利用勾股定理计算即可;(3)作出辅助线,利用勾股定理建立方程求出即可.【解答】解:(1)在△ABD1和△ACE1中∴△ABD1≌△ACE1∴BD1=CE1(2)由(1)知△ABD1≌△ACE1,可证∠CPD1=90°∴∠CAD1=45°,∴∠BAD1=135°延长BA交D1E1于F,∴∠D1AF=45°=∠AD1E1,∴AF=D1F==;∵∠AFD1=90°,∴BD1=2.(3)如图作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1==2,∴∠ABP=30°,∴PB=2+2,∴点P到AB所在直线的距离的最大值为:PG=1+.∴△PAB的面积最大值为AB×PG=2+2,故答案为2+2.24.如图,已知抛物线y=x2+bx+c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(﹣1,0).(1)b=+c,点B的横坐标为﹣2c(上述结果均用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+bx+c交于点E,点D是x轴上一点,其坐标为(2,0),当C、D、E三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB、PC,设所得△PBC 的面积为S,求S的取值范围.【考点】二次函数综合题.【分析】(1)将A(﹣1,0)代入y=x2+bx+c,可以得出b=+c;根据一元二次方程根与系数的关系,得出﹣1•x B=,即x B=﹣2c;(2)由y=x2+bx+c,求出此抛物线与y轴的交点C的坐标为(0,c),则可设直线BC的解析式为y=kx+c,将B点坐标代入,运用待定系数法求出直线BC的解析式为y=x+c;由AE∥BC,设直线AE得到解析式为y=x+m,将点A的坐标代入,运用待定系数法求出直线AE得到解析式为y=x+;解方程组,求出点E坐标为(1﹣2c,1﹣c),将点E坐标代入直线CD的解析式y=﹣x+c,求出c=﹣2,进而得到抛物线的解析式;,易求0<S<5;(Ⅱ)(3)分两种情况进行讨论:(Ⅰ)当﹣1<x<0时,由0<S<S△ACB当0<x<4时,过点P作PG⊥x轴于点G,交CB于点F.设点P坐标为(x,x2﹣x﹣2),则点F坐标为(x,x﹣2),PF=PG﹣GF=﹣x2+2x,S=PF•OB=﹣x2+4x=﹣(x=4,即0<S≤4.则0<S<5.﹣2)2+4,根据二次函数的性质求出S最大值【解答】解:(1)∵抛物线y=x2+bx+c过点A(﹣1,0),∴0=×(﹣1)2+b×(﹣1)+c,∴b=+c,∵抛物线y=x2+bx+c与x轴分别交于点A(﹣1,0)、B(x B,0)(点A位于点B的左侧),∴﹣1与x B是一元二次方程x2+bx+c=0的两个根,∴﹣1•x B=,∴x B=﹣2c,即点B的横坐标为﹣2c;故答案为: +c;﹣2c;(2)∵抛物线y=x2+bx+c与y轴的负半轴交于点C,∴当x=0时,y=c,即点C坐标为(0,c).设直线BC的解析式为y=kx+c,∵B(﹣2c,0),∴﹣2kc+c=0,∵c≠0,∴k=,∴直线BC的解析式为:y=x+c.∵AE∥BC,∴可设直线AE得到解析式为y=x+m,∵点A的坐标为(﹣1,0),∴×(﹣1)+m=0,解得:m=,∴直线AE得到解析式为:y=x+.由,解得,,∴点E坐标为(1﹣2c,1﹣c).∵点C坐标为(0,c),点D坐标为(2,0),∴直线CD的解析式为y=﹣x+c.∵C,D,E三点在同一直线上,∴1﹣c=﹣×(1﹣2c)+c,∴2c2+3c﹣2=0,∴c1=(与c<0矛盾,舍去),c2=﹣2,∴b=+c=﹣,∴抛物线的解析式为y=x2﹣x﹣2;(3)①设点P坐标为(x,x2﹣x﹣2).∵点A的坐标为(﹣1,0),点B坐标为(4,0),点C坐标为(0,﹣2),∴AB=5,OC=2,直线BC的解析式为y=x﹣2.分两种情况:(Ⅰ)当﹣1<x<0时,0<S<S△ACB.∵S△ACB=AB•OC=5,∴0<S<5;(Ⅱ)当0<x<4时,过点P作PG⊥x轴于点G,交CB于点F.∴点F坐标为(x,x﹣2),∴PF=PG﹣GF=﹣(x2﹣x﹣2)+(x﹣2)=﹣x2+2x,∴S=S△PFC +S△PFB=PF•OB=(﹣x2+2x)×4=﹣x2+4x=﹣(x﹣2)2+4,∴当x=2时,S最大值=4,∴0<S≤4.综上可知0<S<5.11月1日。

24-25学年九年级数学上学期期中测试卷(北京专用,测试范围:人教版九上第二十一章-第二十四章)解析

24-25学年九年级数学上学期期中测试卷(北京专用,测试范围:人教版九上第二十一章-第二十四章)解析

2024-2025学年九年级数学上学期期中模拟卷(北京专用)(考试时间:120分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.测试范围:人教版九年级上册第二十一章-第二十四章。

5.难度系数:0.8。

第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将抛物线y=2x2向左平移3个单位,再向上平移1个单位得到的抛物线表达式是().A.B.C.D.【答案】B【详解】由题意可知,平移后的抛物线的顶点为(-3,1),所以平移后的抛物线表达式为.故选B.2.把如图中的三角形A()可以得到三角形B.A.先向右平移5格,再向上平移2格.B.先向右平移7格,再以直角顶点为中心逆时针旋转90°,然后向上平移1格.C.先以直角顶点为中心顺时针旋转90°,再向右平移5格.D.先向右平移5格,再以直角顶点为中心逆时针旋转90°.【答案】B【详解】解:先向右平移7格,再以直角顶点为中心逆时针旋转90°,然后向上平移1格,三角形A可以得到三角形B.故选项B符合题意;其他三个选项,都向右只平移5格,三角形A不能得到三角形B.故选:B.3.已知三角形两边长分别为4和7,第三边的长是方程217660-+=的根,则第三边的长为()x xA.6B.11C.6或11D.74.如图,四边形ABCD内接于⊙O,若∠BCD=110°,则∠BOD的度数为( )A.35°B.70°C.110°D.140°【答案】D【详解】解:∵四边形ABCD内接于⊙O,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:D.5.若关于x的方程(a﹣2)x2+x+1=0是一元二次方程,则a的取值范围为( )A.a=2B.a≠﹣2C.a≠±2D.a≠2【答案】D【详解】解:由题意得:a-2≠0,解得:a≠2,故选:D.6.如图,⊙O的半径为9,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB折叠交OC于点D,若OD=DC,则弦AB的长为()A.B.C.D.7.如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕着点A 顺时针方向旋转得△ADE ,AB ,CE 相交于点F ,若AD ∥CE 时,则∠BAE 的大小是( )A .20°B .25°C .30°D .35°8.在数学实践活动课中,某小组的四位同学对二次函数21(,y ax bx a b =++为常数,且0)a ¹的图象及其性质进行研究,分别得到如下结论:小赵:该函数图象开口向上;小钱:该函数的图象经过点(3,1);小孙:该函数的图象经过点(2,1)-;小李:该函数的图象的对称轴为直线1x =.若这四个结论中只有一个是错误的,则得到错误结论的同学是( )A .小赵B .小钱C .小孙D .小李第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分。

2024-2025学年第一学期九年级数学期中测评卷(21-23章)

2024-2025学年第一学期九年级数学期中测评卷(21-23章)

2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中) 题号 1 2 3 4 5 6 7 8 9答案 D B A C A D B D C1.下列是一元二次方程的是( D )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( B )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( A )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是(C )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( A )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是(D )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于(B )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( D )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( C )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是__0122=−−x x ___.11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于___8_____.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是___k <-4_____.13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为__4)1(32−−−=x y ___.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为__722+−=x y ____.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为__52)1(862=−x ___.三.解答题(共6小题,共,55分)16.(10分)解方程091012=+−x x )( 1,921==x x6)6()2(+=+x x x 6,121−==x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x .求证:无论 m 取何值,这个方程总有实数根.解:222)3-m 2()24(4)12(4=−−+=−m m ac b 证明:无论 m 取何值,042≥−ac b18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12).(1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.解:3)1(12++=x y )((2)当21≤≤−x 时,函数的最大值为12.19. (8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?解:设每轮传染中平均一个人传染x 个人.288)122=+x ()(13,1121舍去−==x x答:每轮传染中平均一个人传染11个人.20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润. 解:售价应定为65元时,利润最大为6250元21.(10分)如图为抛物线c x y +−=2,图像经过点(-1,8).直线3+=ax y 与抛物线交于B,C 两点.点A,B 在x 轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC 的面积.解:(1)将点(-1,8)代入中c x y +−=2,得c=9 92+−=x y 即令y=0,得A(-3,0),B(3,0)13)0,3(−=+=a ax y B ,得代入将3+−=x y 即(2)联立函数解析式,得C(-2,5)△ABC 的面积为15.。

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案(含两套题)

人教版2022--2023学年度第一学期九年级数学上册期中测试卷及答案(含两套题)
25.(12分)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.
(1)如图1,点E在BC边上.
①依题意补全图1;
②若AB=6,EC=2,求BF的长;
(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.
∴∠ODA=90°,AD=BD=8cm,
在Rt△ODA中,由勾股定理得
OD= cm,
∵OC=10cm,
∴CD=OC-OD=4cm,故选C.
【点睛】本题考查了垂径定理,勾股定理.能根据垂径定理求出AD的长是解题的关键.
4. B
【解析】
【分析】先求圆锥的母线,再根据公式求侧面积.
【详解】由勾股定理得:母线 ,
(1)如图1,MA=6,MB=8,∠NOB=60°,求NB的长;
(2)如图2,过点M作MC⊥AB于点C,P是MN的中点,连接MB,NA,PC,试探究∠MCP,∠NAB,∠MBA之间的数量关系,并证明.
24.(12分)已知:如图1,在平面直角坐标系中,⊙P的圆心 ,半径为5,⊙P与抛物线 的交点A、B、C刚好落在坐标轴上.
三、解答题(共9小题,总分72分)
17.(6分)已知△ABC的顶点A、B、C在格点上,按下列要求在网格中画图.
(1)△ABC绕点C顺时针旋转90°得到△A1B1C;
(2)画△A1B1C关于点O的中心对称图形△A2B2C2.
18.(6分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.
人教版2022--2023学年度第一学期期中测试卷
九年级 数学
(满分:120分 时间:100分钟)
题号

河北省保定市2024届九年级上学期期中考试数学复习试卷(含解析)

2023—2024学年第一学期期中考试九年级数学试题注意事项:考试时间120分钟,满分120分.一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 方程的解是()A. B. C. D. ,解析:解:,解得,,故选:C.2. 已知:如图,正方形网格中,如图放置,则的值为()A B. 2 C. D.解析:解:由网格图可得:CD=2,OD=1,则OC=,,故选D.3. 如图,在6×6的菱形网格中,连结两网格线上的点A,B,线段AB与网格线的交点为M,N,则AM:MN:NB为()A. 3:5:4B. 1:3:2C. 1:4:2D. 3:6:5解析:解:如图,∵AE∥MF∥NG∥BH,∴AM:MN:BN=EF:FG:GH=1:3:2故选:B.4. 一个不透明的盒子中装有红、黄两种颜色的小球共10个,它们除颜色外其他都相同.小明多次摸球后记录并放回小球重复试验,发现摸到红色小球的频率稳定在0.4左右,由此可知盒子中黄色小球的个数可能是( )A. 3B. 4C. 5D. 6解析:解:设袋中有黄色小球x个,由题意得,解得:.故选:D.5. 如图,在坡度为的山坡上种树,如果相邻两树之间的水平距离是4米,那么斜坡上相邻两树的坡面距离是()A. 米B. 米C. 4米D. 米解析:解:如图,构造直角三角形,在中,由题意可知,,∵米,米,由勾股定理得:(米).故选:B.6. 若点、都在反比例函数的图象上,则有()A. B. C. D.解析:解:∵反比例函数y=中k<0,∴函数图象的两个分支位于二四象限,且在每一象限内y随x的增大而增大,∵﹣2<﹣1<0,∴y2>y1>0,∵1>0,∴y3<0,∴y2>y1>y3.故选:C.7. 大自然巧夺天工,一片小枫叶也蕴含着“黄金分割”,如图,P是线段的黄金分割点,且,,则的长约为()A. B. C. D.解析:解:为的黄金分割点,,故选:B .8. 如图,点P 是反比例函数图象上的一点,垂直y 轴,垂足为点A ,垂直x 轴,垂足为点B .若矩形的面积为6,则k 的值是( )A. 3B. -3C. 6D. -6解析:∵矩形的面积为6,∴,∵反比例函数的图象过第二象限,∴,∴;故选:D .9. 根据下列表格的对应值:判断方程一个解的取值范围是( )A. B.C.D.解析:解:由题意得:当时,,当时,,∴方程一个解x 的取值范围为.故选:C .10. 如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与相似的是( )A. B. C. D.解析:根据题意得:,,,,A 、三边之比为,图中的三角形(阴影部分)与相似;B 、三边之比,图中的三角形(阴影部分)与不相似;C 、三边之比为,图中的三角形(阴影部分)与不相似;D 、三边之比为,图中的三角形(阴影部分)与不相似.故选:A .11. 已知方程可以配方成,则( )A. 1B. -1C. 0D. 4解析:解:由(x +m )2=3,得:x2+2mx+m2﹣3=0,∴2m=4,m2﹣3=n,∴m=2,n=1,∴(m﹣n)2015=1,故选:A.12. 设a,b是方程的两个实数根,则的值是()A. 2021B. 2020C. 2019D. 2018解析:解:∵a,b是方程的两个实数根,∴,,即,∴.故选:C.13. 如图2是图1中长方体的三视图,若用S表示面积,,,则().A. B. 20 C. D. 9解析:解:∵S主=5x,S左=4x,且主视图和左视图的宽为x,∴俯视图的长为5,宽为4,则俯视图的面积S俯=5×4=20,故选:B.14. 解是的一元二次方程是()A. B. C. D.解析:解:A、因为,所以,故不符合题意;B、因为,所以,故不符合题意;C、因为,所以,故不符合题意;D、因为,所以,故符合题意;故选:D15. 反比例函数与一次函数(k为常数,且)在同一平面直角坐标系中的图象可能是()A. B. C. D.解析:解:当∴比例函数的图象在一、三象限,∴,∴一次函数的图象经过一、三、四象限,故A,B选项错误;当,则,∴反比例函数在二四象限,一次函数经过一、二、四象限,故C选项错误,D选项正确,故选:D.16. 对于一元二次方程,正确的结论是()①若,则;②若方程有两个不相等的实根,则方程必有两个不相等的实根;③若是一元二次方程的根,则.A. ①②B. ①③C. ②③D. ①②③解析:解:①若,则是原方程的解,即方程至少有一个根,由一元二次方程的实数根与判别式的关系与判别式的关系可知:,故①正确;②方程有两个不相等的实根,,,又方程的判别式为,,方程有两个不相等的实数根,故②正确;③若是一元二次方程的根,则根据求根公式得:或,或,,故③正确;综上,①②③正确.故选:D.二、填空题(本大题有3个小题,17、18每小题3分,19题每空2分,共12分,请把正确答案填在题中的横线上)17. 计算:tan60°﹣cos30°=_____.解析:根据特殊角的三角函数值,直接计算即可得tan60°﹣cos30°==.故答案为.18. 如图,在平面直角坐标系中,点、的坐标分别为、,点、的坐标分别为、.若线段和是位似图形,且位似中心在轴上,则位似中心的坐标为_____.解析:解:如图所示,连接与轴交于点,则点是位似中心,∵,,∴设所在直线的解析式为,∴,解得,,∴直线的解析式为,当时,,∴位似中心的坐标是,故答案为:.19. 如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.解析:解:(1)由图像可知T1(-16,1)又∵.函数()的图象经过T1∴,即k=-16;(2)由图像可知T1(-16,1)、T2(-14,2)、T3(-12,3)、T4(-10,4)、T5(-8,5)、T6(-6,6)、T7(-4,7)、T8(-2,8)∵过点∴k=-10×4=40观察T1~T8,发现T5符合题意,即m=5;(3)∵T1~T8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于的两侧,k必须满足-36<k<-28∴k可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20. 解方程:(1);(2);(3);(4).【小问1解析】解:,,或,解得,,;【小问2解析】解:,,,或,解得,,;【小问3解析】解:,,∴,解得,;【小问4解析】解:,,,或,解得,.21. 如图,在网格图中(小正方形的边长为1),的三个顶点都在格点上.(1)以点O为位似中心,将扩大为原来的2倍,得到,点B的对应点在第一象限;(2)的内部一点M的坐标为,写出点在中的对应点的坐标;(3)直接写出的面积是多少.【小问1解析】如图所示:【小问2解析】解:根据“以点O为位似中心,将扩大为原来的2倍,得到,点B的对应点在第一象限”可知,横纵坐标都变为原来的2倍且符号相反,∴;【小问3解析】解:的面积:.22. 为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球.B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.【小问1解析】解:根据题意得:(名).答:在这项调查中,共调查了150名学生.【小问2解析】本项调查中喜欢“立定跳远”的学生人数是;(名),所占百分比是:,补充两个统计图如下:【小问3解析】用,,分别表示三个男生,用,分别表示两个女生,画树状图如下:由图知共有20种情况,同性别学生的情况是8种,故:刚好抽到同性别学生的概率是.23. 淇淇和嘉嘉在习了利用相似三角形测高之后分别测量两个旗杆高度.(1)如图1所示,淇淇将镜子放在地面上,然后后退直到她站直身子刚好能从镜子里看到旗杆的顶端E,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,已知淇淇的身高是1.54m,眼睛位置A距离淇淇头顶的距离是4cm,求旗杆DE的高度.(2)如图2所示,嘉嘉在某一时刻测得1 m长的竹竿竖直放置时影长2m,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他测得落在地面上的影长为10m,落在斜坡上的影长为m,∠DCE=45°,求旗杆AB的高度?解析:解:(1)由题意可知:AB=1.54-0.04=1.5(m);BC=0.5m;CD=4m∵ΔABC∽ΔEDC∴即∴m答:DE的长为12m.(2)延长AD交BC的延长线于点F,过点D作DE⊥BC于点E∵CD=m,∠DCE=45°∴DE=CE=2m∵同一时刻物高与影长成正比∴∴EF=2DE=4m∴BF=EF+CE+BC=16(m)∴AB=FB=8(m)答:旗杆的高度约为8m.24. 如图,在平面直角坐标系中,一次函数与反比例函数交于第一象限内A,两点(B在A右侧),分别交x轴,y轴于C,D两点.(1)求k和b的值;(2)求点A的坐标;(3)在y轴上是否存在一点P,使以A,D,P为顶点的三角形与相似?若存在,求出点P的坐标.若不存在,请说明理由.【小问1解析】解:∵一次函数与反比例函数交于点,∴,解得:,∴,;【小问2解析】由(1)知一次函数的解析式为,反比例函数的解析式为,解方程组,解得:,,∴点的坐标为;【小问3解析】∵∵一次函数与轴,轴交于,两点,∴当时,,当时,,即:,,∴,,设,∵,当点在点上方时为钝角,显然不符合题意,则点在点下方,可知,①当时,,∵点的坐标为,∴,,∴点的坐标为;②当时,,∴,∵,,,,∴,解得,∴点的坐标为;综上,点的坐标为或.25. 某商场将进货价为30元的台灯以40元售出,1月份销售400个,2月份和3月份这种台灯销售量持续增加,在售价不变的基础上,3月份的销售量达到576个,设2月份和3月份两个月的销售量月平均增长率不变.(1)求2月份和3月份两个月的销售量月平均增长率;(2)从4月份起,在3月份销售量的基础上,商场决定降价促销.经调查发现,售价在35元至40元范围内,这种台灯的售价每降价元,其销售量增加6个.若商场要想使4月份销售这种台灯获利4800元,则这种台灯应降价多少元?【小问1解析】设2,3两个月的销售量月平均增长率为,依题意,得:,解得:(不符合题意,舍去).答:2,3两个月的销售量月平均增长率为.【小问2解析】设这种台灯每个降价元时,商场四月份销售这种台灯获利4800元,依题意,得:,整理,得:,解得(不符合题意,舍去),答:该这种台灯应降价2元.26. 问题提出(1)如图,在等腰直角中,,点D、E分别在边上,连接,有.求证:.问题探究(2)如图,将矩形沿折叠,使点D落在边的点F处,若,__________;变式拓展(3)如图,如果,将三角板的直角顶点E放在矩形纸片的边上移动,的长应为___________时,恰好存在两直角边所在的直线分别经过点A,D;问题解决(4)如图,菱形是一座避暑山庄的平面示意图,其中米,现计划在山庄内修建一个三角形花园,点P、Q分别在线段上,根据设计要求要使,且,问能否建造出符合要求的三角形花园,若能,请直接写出的长,若不能,请说明理由.解析:(1)证明:∵,∴,∵,∴,即,∵,,∴;(2)解:由矩形的性质可知,,,由折叠的性质可知,,,由勾股定理得,,∴,设,则,,由勾股定理得,,即,解得,,故答案为:;(3)解:由矩形的性质可知,,由题意知,,∴,即,∵,,∴,∴,即,整理得,,解得,或,故答案为:2或8;(4)解:能,;∵菱形,,∴,,,如图,在上截取,使,连接,则为等边三角形,∴,∵,∴,∵,,∴,∴,即,解得,,∵,∴,解得,,∴,如图,作的延长线于,∴,,∴,,∴,由勾股定理得,∴能,.。

2024-2025学年上学期期中质量检测九年级数学试卷

2024~2025学年度第一学期期中质量检测九年级数学试题一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.在一元二次方程2x2+x-1=0中,二次项系数、一次项系数、常数项分别是(A)2,1,-1. (B)2,-1,1. (C)2,1,1. (D)2,-1,-1.2.下列APP图标中,是中心对称图形的是3.一元二次方程x2-2x-1=0的根的情况是(A)有两个相等的实数根. (B)有两个不相等的实数根.(C)只有一个实数根. (D)没有实数根.4.关于抛物线y=-2(x+5)2-4,下列说法正确的是(A)开口向上. (B)对称轴是直线x=-5. (C)函数有最小值-4.(D)可由抛物线y=-2x2向右平移5个单位再向下平移4个单位而得.5.如图,△ABC内接于⊙O,连OA,OB,若∠BOA-∠C=35°,则∠OAB的度数是(A)70°. (B)65°. (C)55°. (D)50°.6.如图,将△ABC绕点C逆时针旋转,点A的对应点为D,点B的对应点为E,若B恰好是线段CD与AE的交点,且∠DCE=34°,则∠A的度数是(A)34°. (B)39°. (C)42°. (D)45°.7.在平面直角坐标系中,点P坐标(3,-4),以P为圆心,4个单位长度为半径作圆,下列的是(A)原点O在⊙P内. (B)原点O在⊙P上.(C)⊙P与x轴相切,与y轴相交. (D)⊙P与y轴相切,与x轴相交.8.已知抛物线y =x 2-x+c 上有三个点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),若-2<x 1<-1, 0<x 2<1,1<x 3<2,则y 1,y 2,y 3的大小关系是(A )y 1<y 2<y 2. (B )y 2<y 1<y 3 (C )y 2<y 2<y 1 (D )y 2<y 3<y 1.9.如图,四边形ABCD 内接于⊙O ,AB =BC ,∠ABC =90°,⊙O 的直径为10,四边形ABCD 的周长为y ,BD 的长为x ,则y 关于x 的函数关系式是(A )y =√2x 2+10√2.(B )y =√2x +10√2.(C )y =√22x 2+10√2.(D )y =√22x +10√2. 10.在平面直角坐标系中,将函数y =x 2-2x+t 的图象记为C 1,将C ,绕原点旋转180°得到图象C 2,把C 1和C 2合起来的图形记为图形C.则当-1≤t ≤1时,直线y =x+1与图形C 的交点的个数是(A )2. (B )4. (C )2或3. (D )3或4.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填在答卷指定的位置.11.点A (2,-1)关于原点对称的点的坐标是____________________.12.某航空公司有若干个飞机场,每两个飞机场之间都开辟了一条航线,一共开辟了6条航线,这个航空公司共有__________________个飞机场.13.若关于x 的方程x 2+(k -2)x+1-k =0的两个实数根互为相反数,则k 的值是 _____________.14.中国传统数学重要的著作《九章算术》中记载了一个“圆材理壁”的问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?“用几何语言表达为:如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,EB =1寸,CD =10寸,则直径AB 长是__________________________寸.15.已知抛物线y =ax 2+bx+c (a ,b ,c 为常数,a <0)经过点(m ,0),m >0,且4a -2b+c =0,则下列四个结论:① c >0;② b -3a >0;③ 若方程ax 2+bx+c =b 有两个不相等的实数根x 1,x 2 (且x 1<x 2),则x 2<m;④ 若0<m <2,抛物线过点(0,1),且s =a+b+c ,则s <34.其中正确的结论是____________(填序号). 16.如图,已知△ABC ,△DEF 均为等腰直角三角形,∠BAC =∠DEF =90°,A 为DF 的中点,BF 的延长线交线段EC 于点G ,连接GD.若GD =10,GE =4,则GF =_____.三、解答题(共8小题,共72分)下列各题需要在答题卷指定位置写出文字说明、证明过程、计算步骤或作出图形.17.(本小题8分)解方程:x 2-x -5=0.18.(本小题8分)如图,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点D 从点C 开始沿边CA 运动,速度为1cm/s.与此同时,点E 从点B 开始沿边BC 运动,速度为2cm/s.当点E 到达点C 时,点D ,E 同时停止运动.连接AE ,DE ,设运动时间为ts ,△ADE 的面积为Scm 2.(1)用含t 的代数式表示:CD =______cm ,CE =______cm;(2)当CD 为何值时S =58S △ABC ?19.(本小题8分)二次函数y =ax 2+bx -3中的x ,y 的部分取值如下表:根据表中数据填空:(1)该函数图象的对称轴是_________;(2)该函数图象与x 轴的交点的坐标是_________;(3)当0<x <3时,y 的取值范围是__________;(4)不等式ax 2+bx -3>x -3的解集是__________.x *** - I 0 1 2 3 *** y … m -3 n -3 0 ***如图,已知直线MA交⊙O于A,B两点,BD为⊙O的直径,E为⊙O上一点,BE平分∠DBM,过点E作EF⊥AB于点F.小求证:EF为⊙O的切线;2.若已知⊙O的半径为5,且EF-BF=2,求AB的长.21.(本小题8分)如图是由小正方形组成的5×5的网格,小正方形的顶点称为格点,A,B,C,D,E五个点均为格点,F是线段CD与网格线的交点,仅用无刻度的直尺在给定网格中完成画图,每个画图任务的画线不得超过三条.(1)在图(1)中,若点A和B关于点O中心对称,画点O;2)在图(1)中,若点F绕点E逆时针旋转90°后得到点G,画点G;(3)在图(2)中,在线段BC上画点M,使∠AMB=∠BAC;(4)在图(2)中,画满足条件的格点N,使∠ANC=2∠ABC.(2)(第21题)在2024年巴黎奥运会上,全红鲜凭借总分425.60分的成绩蝉联奥运会女子10米跳台的冠军,成为中国奥运史上最年轻的三金王.在进行跳水训练时,运动员身体(视作一点)在空中的运动路线可视作一条抛物线,如图所示,建立平面直角坐标系xOy.已知AB为3米,OB为10米,跳水曲线在离起跳点A水平距离为0.5米时达到距水面最大垂直高度k米.(1)当k=11.25时,①求这条抛物线的解析式;②求运动员落水点与点A的距离;(2)图中OE=4.5米,OF=5.5米,若跳水运动员在区域EF内(含点E,F)人水时才能达到训练要求,请直接写出k的取值范围.23.(本小题10分)如图,在△ABC中,AC=BC,∠ACB=120°,点P为△ABC内一点.(1)如图(1),CP=CQ,∠QCP=120°,连接BP,AQ,求证:BP=AQ;(2)如图(2),D为AB的中点,若PC=2,PA=5,∠CPD=150°,求线段PD的长;(3)如图(3),在(2)的条件下,若点M为平面内一点,PM=PC,连BM,将线段BM绕点B顺时针旋转120°至BN,连PN,请直接写出PN的最大值.(第23题)已知抛物线y=ax2+bx+3与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图(1),Q为抛物线上第一象限内一点,若∠AQC=2∠BAQ,求点Q 的坐标;(3)如图(2),P为x轴上方一动点,直线PM,PN与抛物线均只有唯一公共点M,N, OH⊥MN于点H,且△PAB的面积是10,求线段OH长度的最大值.(1)(2)(第24题)。

上海市普陀区2024-2025学年九年级上学期数学期中考试试卷(含答案)

2024学年第一学期九年级数学学科期中考试试卷2024.10(时间:100分钟,满分:150分)一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列函数中,一定为二次函数的是()A. B. C. D.2.已知点P是线段AB的黄金分割点,且,那么下列结论正确的是()A. B.C.D.3.如图,在中,点D、E和F分别在边AB、AC和BC上,,,如果,那么下列结论中正确的是()A. B. C. D.4.下列关于向量的说法中,正确的是()A.如果,那么B.如果,,那么C.已知是单位向量,如果,那么D.如果,,其中是非零向量,那么5.在同一平面直角坐标系中,画出直线与抛物线,这个图形可能是()A. B.21yx=()()11y x x=+-2y ax=()21y x x x=-+BP AP>2BP AP AB=⋅2AP BP AB=⋅APAB=BPAP=ABC△DE BC∥DF AC∥34ADBD=34DEBC=34BFCF=37CFBC=37DFAC=k=0ka=2a=1b=2a b=e4a=4ea=23a b c+=2b c=ca b∥y ax b=+2y ax b=+C. D.6.已知在中,点D 、E 分别在边AB 和AC 上,联结CD 、BE 交于点F ,下列条件中,不一定能得到和相似的是( )A. B. C. D.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.已知,且,那么_______.8.抛物线与y 轴的交点坐标为_______.9.已知二次函数的图像经过点、,那么该二次函数图像的对称轴为直线_______.10.已知二次函数的图像在对称轴的左侧部分是上升的,那么m 的取值范围是_______.11.如图,已知在中,,CD 是边AB 上的高,如果,,那么_______.12.如图,在中,,点D 和点E 在边BC 上,,,那么_______.13.如图,已知,且,那么_______.ABC △ADE △ABC △DF EF BF CF =DF EF CF BF=BDE BFC ∠=∠BDF CEFS S =△△234a b c k ===0k ≠c a c b-=+223y x x =+-()20y x bx c a =++≠()1,1A --()5,1B -()21y m x =+ABC △90ACB ∠=︒3AD =2BD =CD =ABC △3AB AC ==4BE =BAE ADC ∠=∠CD =AD EF BC ∥∥::2:5:7AD EF BC =:AE AB =14.如图,在中,点D 在边BC 上,线段AD 经过重心G ,向量,向量,那么向量______.(用向量、表示)15.如图,一条河的两岸有一段是平行的,在河的南岸边每隔10米种一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸有两根相邻的电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有一棵树,那么这段河的宽度为_______米.16.如图,在中,点D 在边AB 上,,点E 和F 分别在边BA 和CA 的延长线上,且,如果,那么_______.17.定义:如果将抛物线上的点的横坐标不变,纵坐标变为点A 的横、纵坐ABC △BA a = BC b = AG =a b ABC △ACD B ∠=∠CD EF ∥::3:4:2EA AD DB =AEF ABCS S =△△()20y ax bx c a =++≠(),A x y标之和,就会得到一个新的点,我们把这个点叫做点A 的“简朴点”,已知抛物线上一点B 的简朴点是,那么该抛物线上点的简朴点的坐标为_______.18.如图,在矩形ABCD 中,,在边CD 上取一点E ,将沿直线BE 翻折,使点C 恰好落在边AD 上的F 处,的平分线与边AD 交于点M ,如果,那么_______.三、解答题(本大题共7题,满分78分)19.(本题满分10分)如图,已知两个不平行的向量、,求作,满足.(不要求写作法,但要保留作图痕迹,并指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题5分,第(2)小题5分)已知点在二次函数的图像上.(1)求二次函数图像的对称轴和顶点坐标;(2)将二次函数的图像先向左平移4个单位,再向上平移t 个单位后图像经过点,求的值.21.(本题满分10分,第(1)小题5分,第(2)小题5分)已知二次函数的图像经过原点,顶点坐标为.(1)求二次函数的解析式;(2)如果二次函数的图像与x 轴交于点A (不与原点重合),联结OP 、AP ,试判断的形状并说明理由.22.(本题满分10分,第1小题5分,第2小题5分)如图,已知在中,点D 在边AC 上,过点A 作,交BD 的延长线于点E ,点F 是BE 延长线上一点,联结CF ,如果.(1)求证:;(2)如果,,求的值.()1,A x x y +1A 241y ax x =-+()12,3B ()1,C m 1C 1AB =BCE △ABF ∠2AD MF =BC =a bx x ()2a x b x -=- ()3,1-2y x bx b =-++()1,5-t ()2,2P -AOP △ABC △AE BC ∥2BD DE DF =⋅AB CF ∥2DE =6EF =AB CF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在中,CD 是AB 边上的高,点E 是边AC 的中点,联结ED 并延长交CB 的延长线于点F ,且.(1)求证:;(2)如果,求证:.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xOy 中,二次函数的图像与x 轴交于点,与y 轴交于点.(1)求该二次函数的解析式;(2)如果点是二次函数图像对称轴上的一点,联结AD 、BD ,求的面积;(3)如果点P 是该二次函数图像上位于第二象限内的一点,且,求点P 的横坐标.ABC △BD BF =ADE FDB ∽△△2DF AC CF AD=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B (),1D m -ABD △PB AB ⊥25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在矩形ABCD 中,,,点E 是射线D A 上的一点,点F 是边AB 延长线上的一点,且.联结CE 、EF ,分别交射线DB 于点O 、点P ,联结CF 、CP .(1)当点E 在边AD 上时,①求证:;②设,,求y 关于x 的函数解析式;(2)过点E 作射线DB 的垂线,垂足为点Q ,当时,请直接写出DE 的长.2AB =1BC =2DE BF =DCE BCF ∽△△DE x =CP y =14OQ PQ =2024学年第一学期九年级数学学科期中考试卷2024.10参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.A ;3.C ;4.D ;5.D ;6.C.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;;12.;13.;14.;15.;16.;17.;18.三、解答题:(本大题共7题,其中第19—22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解: ,20.解:(1)∵点在二次函数的图像上,∴把,代入,得.解得.∴二次函数的解析式为.∴对称轴为直线.顶点的坐标为.(2)二次函数的解析式化为.∵将二次函数的图像先向左平移4个单位,再向上平移t 个单位,∴平移后新二次函数的解析式为.∵平移后图像经过点,∴把,代入,得.解得.21.解:(1)∵二次函数图像的顶点坐标为,∴设二次函数的解析式为.∵二次函数的图像经过原点,∴把,代入得..27()0,3-2x =1m <-94352133a b -+ 45238()1,05322a x b x -=- 2x a b =- ()3,1-2y x bx b =-++3x =1y =-2y x bx b =-++193b b -=-++2b =222y x x =-++1x =()1,3()213y x =--+()233y x t =-+++()1,5-1x =5y =-()233y x t =-+++5163t -=-++8t =()2,2P -()222y a x =--0x =0y =()222y a x =--()20022a =--解得.∴这个二次函数的解析式为.(2)∵二次函数的图像与x 轴交于点A ,∴把,代入得,(舍去).得点A 的坐标为.∴.∵,∴.∵,∴是等腰直角三角形.22.解:(1)∵,∴.∵,∴.∴∴.(2)∵,,∴.∵,∴.∵,∴,∴.23.证明:(1)∵,∴.∵CD 是AB 边上的高,点E 是边AC 的中点,∴在中.又∵,∴.∴.∵,∴.∴.(2)∵,∴.∴.∵,∴∴∴.∵,∴.∴.∴.24.解:(1)∵二次函数的图像与x 轴交于点,与y 轴交于点,12a =()21222y x =--0y =()21222y x =--14x =20x =()4,04OA =OP ==AP ==OP AP =222OP AP OA +=AOP △AE BC ∥AD DE CD BD=2BD DE DF =⋅DE BD BD DF=AD BD CD DF=AB CF ∥2DE =6EF =8DF DE EF =+=216BD DE DF =⋅=4BD =AB CF ∥AB BD CF DF =12AB CF =BD BF =F BD ∠=∠Rt ACD △12DE AC =12AE AC =AE DE =A ADE ∠=∠ADE BDF ∠=∠A F ∠=∠ADE FDB ∽△△2DF AC CF AD =DF AE CF AD =DF CF AE AD=A F ∠=∠ADE FCD ∽△△ADE FCD ∠=∠A FCD ∠=∠ABC CBD ∠=∠ABC CBD ∽△△BD BC BC AB=2BC BD AB =⋅22y x bx c =-++()2,0A -()0,4B得解得.∴二次函数的解析式为.(2)∵点是二次函数图像对称轴上的一点,又∵二次函数图像的对称轴为直线.∴,点D 坐标为.设直线AB 的表达式为.∵直线AB 经过,,得,解得,∴直线AB 的表达式为.设抛物线的对称轴与直线AB 交于点E ,得点E 坐标为.∴.∴.(3)过点P 作轴,垂足为H .设点.∴,.∵,又∵,∴.∵,∴.∴.∴.∴(舍去),.即点P 的横坐标是.25.解:(1)∵四边形ABCD 是矩形,∴,,∵,∴.()202224b c c⎧=-⨯--+⎪⎨=⎪⎩2b =-2224y x x =--+(),1D m -12x =-12m =-1,12⎛⎫-- ⎪⎝⎭()0y px q p =+≠()2,0A -()0,4B 024p q q =-+⎧⎨=⎩24p q =⎧⎨=⎩24y x =+1,32⎛⎫- ⎪⎝⎭4DE =1142422ABD ADE BDE S S S DE AO =+=⋅=⨯⨯=△△△PH y ⊥()2,224P t t t --+PH t =-222BH t t =--ABO ABP P PHB ∠+∠=∠+∠90ABP PHB ∠=∠=︒ABO BPH ∠=∠90AOP PHB ∠=∠=︒ABO BPH ∽△△PH BH BO AO =22242t t t ---=10t =234t =-34-2AB CD ==90CDE ABC ∠=∠=︒90CBF ∠=︒CDE CBF ∠=∠∵,∴.∵,∴.∴.∴.(2)∵,∴.即.∵,∴.∴.∴.∵,∴.∴.又∵且,∴.∴.∵,∴.∴.∴.∵在中,,,∴.同理可得∴∴(3)1BC =12BC CD =2DE BF =12BF DE =BF BC DE CD=DCE BCF ∽△△DCE BCF ∠=∠DCE BCE BCF BCE ∠+∠=∠+∠BCD ECF ∠=∠,CD CE CB CF =CD CB CE CF=DCB ECF ∽△△PEC BDC ∠=∠EOP DOC ∠=∠EOP DOC ∽△△OE OP OD OC=OE OD OP OC=DOE COP ∠=∠DOE COP ∽△△EDO PCO ∠=∠EDO DBC ∠=∠PCE DBC ∠=∠ECP DBC ∽△△PC EC BC BD=Rt CDE △DE x =2CD =CE =BD =1y =y =1DE =2DE =3DE =。

九年级数学上学期期中测试试卷二 试题

九年级数学上学期期中测试试卷二本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

总分100分一,细心填一填,相信你会填得又快又好〔每一小题2分,一共24分〕1. 计算:12- =_______.2. 计算:2)3(-π=_________;3. 用科学计数法表示0.0024为__________;4. 要使分式xx -3有意义,那么x 的取值范围是:_______________; 5. 假如关于x 的方程05)2(2=+-+x m mx 是一元二次方程,那么m =______;6. 假设把方程642=+x x 化成n m x =+2)(的形式,那么_____________,==n m ;7. 如图1,⊙O 中直径AB 垂直于弦CD,垂足为E,假设AB=10,CD=6,那么OE 的长是_____;B OC B AD O C BA(1) (2) (3) (4)8. 一直角三角形的斜边长为10cm,两直角边长分别为6cm 和8cm,那么它的外接圆半径长R=_________cm;9. 假设两圆的半径长分别为6cm 和2cm,且它们的圆心距为4cm ,那么这两圆的位置关系为: ;10.如图2, AB 是⊙O 直径,∠AOC=120°,那么∠D=__________ ;11.小华到某超购置单价分别为4.5元/千克和6.5元/千克两种不同品牌的果冻各m 千克、n 千克,问小华购置这些果冻的平均单价为_______元/千克.12.请写出符合条件:一个根为1=x ,另一个根满足11<<-x 的一元二次方程__________________.二.精心选一选,相信你一定能选对 (每一小题3分,一共15分)13.以下等式从左到右变形正确的选项是〔 〕A 、b a bab =2; B 、b c a b c a +-=+- C 、11++=b a b a ; D 、22b a b a = 14.使分式2)2)(1(--+x x x 值为0的值是x 〔 〕 A 、2 B 、-2 C 、1 D 、-115.某工程队方案在假设干天内挖一条120米的水渠,施工时,工作效率比原方案进步1倍,因此提早4天完工。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主视图俯视图
左视图
九年级数学第一学期期中综合复习卷二
班级________姓名__________
一.填空题
1、命题“若a>b ,则2
2
b a ”的逆命题是_________________________________________; 2、在阳光明媚的星期天上午,小明和他父亲到沙滩上散步。

小明发现他自己身高1.50m ,在阳光下影长1.20m 。

其父亲身高1.70m ,则此时其父亲的影长为___________m ; 3、一个几何体的三视图如右图,则这个几何体是______________; 4、方程x 2=3x 的根是___________________________;
5、菱形两条对角线长分别是4和6,则这个菱形的边长为______;
6、如图,□ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是 (只需写出一个即可,图中不能再添加别的“点”和“线”);
7、 如图,在RtΔABC,∠ACB=900,∠A<∠B ,CM 是斜边AB 的中线,将ΔACM 沿直线CM 折叠,点A 落在点D 处,若CD 恰好与AB 垂直,则∠A 等于 度;
第3题 第6题 第7题
8、如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的甬路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求甬路的宽度. 若设甬路的宽度为x m ,则x 满足的方程为 .
9、直角坐标平面内,身高1.5米的小强站在x 轴上的点C(–10 ,0)处,他的前方5米有一堵墙AB ,若墙高2米,则站立的小强观察y 轴时,盲区大范围是 。

10、还记得黄金比是多少吗?若点C 为线段AB 上的点,满足AC 2=AB ·CB ,则称点C 将线段AB 黄金分割,
AB
AC
即为黄金比,为求得黄金比,小明的解法如下: (1)不失一般性,设AB = 1,AC = x, 则x 2 =1× (1-x) 即x 2+x – 1=0
所以x 的取值范围是 ________________
A B C D E
F
东北A
B C 进一步计算
请你帮小明写出x 的取值范围是 _____________ 由于
x AB
=,因此x 取值范围即为黄金比的取值范围。

二.选择题
11、到△ABC 的三个顶点距离相等的点是△ABC 的 ( ) A.三条中线的交点 B 、三条角平分线的交点 C 、三条高线的交点 D 、三条边的垂直平分线的交点
12、方程2
650x x +-=的左边配成完全平方后所得方程为 ( )
A.、 2
(3)14x += B . 2
(3)14x -= C .
2
1(6)2x += D . 以上答案都不对
13、小明爸爸的风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E ,F ,G ,H 分别是四边形ABCD 各边的中点.其中阴影部分用甲布料,其余部分用乙布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料 ( ) A 、15匹 B 、20匹 C 、30匹 D 、60匹
14、如图,从A 地沿北偏东30°方向走100m,到B 地再从B 地向西走200m 到C 地,这时小明 离A 地 ( ) A 、 150m B 、1003 m C 、100m D 、 503 m
15、党的十六大提出全面建设小康社会,加快推进社会主义现代化,力争国民生产总值到2020年比2000年翻两番。

在本世纪的头二十年(2001年~2020年),要实现这一目标,以十年为单位计算,设每个十年的国民生产总值的增长率都是x ,那么x 满足的方程为( ) A 、(1+x)2=2 B 、(1+x)2=4 C 、1+2x=2 D 、(1+x)+2(1+x)=4 16、下图是一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( ) A 、4个 B 、5个 C 、6个 D 、7个
第13题 第14题 第16题
15、如图是一块带有圆形空洞和方形空洞的小木板,则有下列物体各若干,既可以堵住圆形空洞,又可以堵住方形空洞的是


A B C D 三、计算题
C B
A
17、 (1)3x ²-4x +1=0 (2)2(x -3)²=x ²-9
18、有一农户用24米长的篱笆围成一面靠墙(墙长为12米),大小相等且彼此相连的三个矩形鸡舍,(如图所示)鸡场的面积能够达到32米2吗?若能,给出你的方案?若不能,请说明理由.
四、作图题
19、已知下图是一几何体的俯视图,请画出它的主视图和左视图
20、如下图,路灯下,一墙墩(用线段AB 表示)的影子是BC ,小明(用线段DE 表示)的影子是EF ,在M 处有一颗大树,它的影子是MN 。

(1)试确定路灯的位置(用点P 表示)。

(2)在图中画出表示大树高的线段。

(3)若小明的眼睛近似地看成是点D ,试画图分析小明能否看见大树。

21、正方形网格中,小格的顶点叫做格点。

小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形。

小华在左边的正方形网格中作出了Rt ⊿ABC 。

请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。

N M
F E D
C B A
图②
D
C
五、解答与证明
22、某宾馆一房间甲乙两处各有一块作装饰用的三角形玻璃不慎被打碎了,碎玻璃渣散了一地,但两处各有两块较完整的玻璃片,晓敏经过观察度量,发现原来的三角形玻璃是完全一样大小的,你知道他是怎么做的吗?
23、如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.
24、图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1个单位长度的正三角形,这样的三角形称为单位正三角形。

(1)单位正三角形的高=_______;面积=_________;
(2)图①中的□ABCD含有______个单位正三角形;□ABCD的面积是__________;
(3)求出图①中线段AC的长(可作辅助线);
(4)求出图②中四边形EFGH的面积。

25、已知:△ABC中AB=AC,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.
(1)写出图中与△ABC相似的三角形;(2)求证:MP+MQ=AB;
(3)当M位于BC的什么位置时, 四边形AQMP是菱形?在图2中画出图形并予以证明。

图2。

相关文档
最新文档