探地雷达在道路检测中的应用研究

探地雷达在道路检测中的应用研究
探地雷达在道路检测中的应用研究

隧道衬砌地质雷达无损检测技术

隧道衬砌质量地质雷达无损检测技术 1 前言 工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的 ,因此根据地质雷达记录的电磁波传播时间ΔT ,即可据下式算出异常介质的埋藏深度H : H V T =??2 (1) 式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3)

反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在~左右。利用高频电磁脉冲波的反射,中心工作频率 400MHz/900 MHz/1500 MHz; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性差异,是探测工作是否有效的前提,这种电性差异就是介电常数;应根据不同的检测对象和检测要求选用不同的天线类型;适用条件,探测的目标体与周围介质有较大的介电常数差异并具有较好的反射条件;上覆层导电性较弱;目标体具有一定的体积,引起的异常有一定的强度;具有一定的探测对比资料。 该技术适用于隧道衬砌质量施工过程控制和竣工验收的无损检测。 4 主要引用标准 《高速铁路隧道工程施工质量验收标准》(TB 10753-2010) 《铁路隧道工程施工质量验收标准》TBl0417-2003 《铁路隧道衬砌质量无损检测规程施工规范》(TB10223-2004) 《铁路工程物理勘探规程》(TB10013-2004) 《岩土工程勘察规范》(GB50021-2001)

探地雷达在桩基检测中的应用

探地雷达在桩基检测中的应用 于涛 (中铁十九局集团第三工程有限公司) 摘要介绍了探地雷达工作原理与在桩基中的检测方法,探讨了探地雷达在桩基检测中的应用现状。关键词探地雷达桩基 桩基础属隐蔽工程,为了保证桩基础的安全可靠,桩基的质量检查至关重要。常规桩基工程的检测方法如静载荷试验、高应变、低应变等已经日趋完善,但是随着工程目的的多样化和质量要求的提高,许多建筑工程中的桩基设计和施工工艺较为特殊,使得建立在杆状模型的一维波动方程理论基础之上的常规检测手段无能为力[&]。基于以上情况,常使用地质雷达探测作为桩基常规检测方法的有力补充,这正好发挥了其高分辨率、高准确性的特点,同时可以数据处理和图像解释,有其独特的效果。 地质雷达是目前精度最高的物探仪器之一,广泛应用于工程地质、岩土工程、地基处理、道路桥梁、文物考古、混凝土结构探伤等领域[!]。探地雷达能探测#"’(")深度,一般能满足工程勘测的需要[#]。但对于以钢筋混凝土为主要材料的桩基,其电性性质与周围土体有明显差异,而且介质性质较均匀,探测深度可能会增加,另外雷达剖面会有较好的效果。 &探地雷达的基本原理 探地雷达是利用高频电磁波(&*+,’&-+,)以宽频带短脉冲的形式,在地面通过发射天线(!)将信号送入地下,经地层界面或目的体反射后回到地面,再由接收天线(")接收电磁波反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征信息的方法。 当发射天线向地下发射高频宽频带短脉冲电磁波时,遇到不同介电特性的介质就会有部分电磁波能量返回,接收天线接收反射回波并记录反射时间。电磁波在岩土介质中的传播速度为: !#$%" !. 式中:$为电磁波在真空中的传播速度,约为"/#)?01$&;".为相对介电常数。 电磁波在介质中传播时,其路径$波形将随所通过的介质的电性质及几何形态而变化,根据接收到波的旅行时间(亦即双程走时)、幅度、频率与波形变化资料,可以推断介质的内部结构以及目标的深度、形状等,利用电磁波在介质中的波速和旅行时间可以计算介面深度(&2’3(4!)。当发射天线沿欲探测物表面移动时就能得到其内部介质剖面图像,其工作原理见图& 。反射脉冲的信号强度,与界面的波反射系数和穿透介质的波吸收程度有关。 〔收稿日期〕!""#$"#$!%

雷达目标检测性能分析

雷达目标检测实例 雷达对Swerling起伏目标检测性能分析 1.雷达截面积(RCS)的涵义 2.目标RCS起伏模型 3.雷达检测概率、虚警概率推导 4.仿真结果与分析

雷达通过发射和接收电磁波来探测目标。雷达发射的电磁波打在目标上,目标会将入射电磁波向不同方向散射。其中有一部分向雷达方向散射。雷达截面积就是衡量目标反射电磁波能力的参数。

雷达截面积(Radar Cross Section, RCS)定义:22o 2 4π 4π4π4π()4πo i i P P R m P P R σ=== 返回雷达接收机单位立体角内的回波功率 入射功率密度 在远场条件下,目标处每单位入射功率密度在雷达接收机处每单位立体角内产生的反射功率乘以4π。 R 表示目标与雷达之间的距离,P o 、P i 分别为目标反射回 的总功率和雷达发射总功率

?目标RCS和目标的几何横截面是两个不同的概念?复杂目标在不同照射方向上的RCS不同 ?动目标同一方向不同时刻的RCS不同 飞机舰船 目标RCS是起伏变化的,目标RCS大小直接影响着雷达检测性能。为此,需用统计方法来描述目标RCS。基于此,分析雷达目标检测性能。

Swerling 模型是最常用的目标RCS 模型,它包括Swerling 0、I 、II 、III 、IV 五种模型。其中,Swerling 0型目标的RCS 是一个常数,金属圆球就是这类目标。Swerling Ⅰ/Ⅱ型: 1 ()exp()p σ σσσ =- 指数分布 Swerling Ⅰ:目标RCS 在一次天线波束扫描期间是完 全相关的,但本次和下一次扫描不相关(慢起伏),典型目标如前向观察的小型喷气飞机。 Swerling Ⅱ:目标RCS 在任意一次扫描中脉冲间不相关(快起伏),典型目标如大型民用客机。

短脉冲雷达检测路基路面厚度操作要求规范

短脉冲雷达检测路基路面厚度及各结构层 布置情况方法实施细则 1.目的和适用围 1.1本方法适用于短脉冲雷达无损检测路基路面厚度及各结构层布 置情况。 1.2本方法的数据采集传输记录和数据处理分别由专用软件自动控 制进行。 1.3本方法适用于新建、改建路基路面工程质量验收和旧路加铺路面 设计的厚度及各结构层布置情况调查。 1.4雷达发射的电磁波在路基路面层传播过程中会逐渐削弱、消散、 层面反射。雷达最大探测深度是由雷达系统的参数以及路面材料的电磁属性决定的。对于材料过度潮湿或饱和以及有高含铁矿渣集料的路面不适合用本方法测试。 2仪具与材料技术要求 2.1设备主要组成 雷达测试系统由雷达主机、雷达天线、车载测距系统、笔记本电脑等组成。

2.2测试系统技术要求和参数 (1)距离标定误差:≤0.1%。 (2)设备工作温度:0~40℃。 (3)最小分辨层厚:≤60mm。 (4)系统测量精度要求:见下表。 系统测量精度技术要求 (5)天线:带宽能适应所选择的发射脉冲频率。通常,在检测路面厚度时宜选择使用TR HF天线,在检测路基各结构层情况时宜选择使用TR900天线。 (6)收发器:脉冲宽度≤1.0ns,时间信号处理能力可以适应所需的测试深度。 3 检测方法与步骤 3.1 准备工作 (1)本仪器使用前,须检查仪器各连接端口的状态,确保各组成部件的可靠连接,并在使用前及使用过程中顶时检查雷达供电电瓶的

工作情况。 (2)根据检测需求,选定所使用的雷达天线型号。通常,在检测道路面层厚度时,宜选择TR HF天线,在检测道路各结构层厚度时,宜选择TR900天线。 TR HF天线TR 900天线(3)到达现场后,操作人员将车载架子安装于检测车辆后方的固定位置,将天线固定在支持架上;测距模块的连接板安装在一侧的后车轮上,将测距轮固定在连接板的位置上。然后将测距轮固定部件利用磁铁装置在车体上。使用AC1500电缆连接雷达主机ANT.2接口,另一端通过电缆延长头和TRHF天线连接;15m测距轮电缆连接测距轮和主机的Wheel接口。最后将电源线接口插入主机的Battery接口,将网线接口插入主机的Lan接口,另一端插入电脑的网络接口。至此完成整套设备的安装工作。

智能雷达光电探测监视系统单点基本方案..

智能雷达光电探测监视系统单点基本方案
一、 系统概述
根据监控需求: 岸基对海 3~10 公里范围内主要大小批量目标; 主动雷达光电探测和识别; 多目标闯入和离去自动报警智能职守; 系统接入指挥中心进行远程监控管理; 目标海图显示管理; 系统能够自动发现可疑目标、跟踪锁定侵入目标、根据设定条件进行驱散、 同时自动生成事件报告记录,可以实现事故发生后的事件追溯,协助事故调查。 1. 项目建设主要目的 ? 为监控区域安全提供综合性的早期预警信息; ? 通过综合化监测提高处置和应对紧急突发事件的指挥能力。 2. 基本需求分析: 需配置全自动、全量程具备远距离小目标智能雷达探测监视和光电识别系 统,系统具备多目标自动持续稳定跟踪、多种智能报警功能、支持雷达视频实 时存储、支持留查取证的雷达视频联动回放功能等;同时后期系统需具备根据 用户需求的功能完善二次开发能力。同时支持后续相关功能、扩点组网应用需 求。 根据需求和建设主要目的,选型国际同类技术先进水平,拥有相关技术自 主知识产权,具备二次技术深化开发的北京海兰信数据科技股份有限公司 (2001 年成立,2010 年国内创业板上市,股票代码:300065,致力于航海智 能化与海洋防务/信息化的国内唯一上市企业)的智能监视雷达光电系统。该系 统在国内外有众多海事相关成熟应用案例,熟悉国内海事、海监、海警、渔政

公务执法及救捞业务需求特点等。同时,该系统近期成功中标国内近年来相关 领域多套(20 套)雷达光电组网项目,充分说明该系统的技术领先及成熟应 用的市场广泛接受度。
3. 项目建成后的主要特点 ? 全天候、全覆盖、全自动的立体化监控。该系统具备对多传感器信息 融合的能力,确保对探测范围内雷达信息源、光电、AIS、GPS 等设备信号源 进行有机的融合和整合。 ? 系统具备了预警、报警、实时录取回放的综合功能。任何目标物进入 雷达视距时,系统即开始进行监测。目标物触碰警报规则后,指挥室获得报警 信号,同时联动设备综合光电锁定警报目标,以便驱离。整个过程系统实时记 录、方便随时调用回放。 ? 系统技术水平国内领先。该系统中创新地采用了国际先进的“先跟踪 后探测”算法技术对目标进行探测和跟踪,保证了在严苛条件下满足对目标地 探测与持续跟踪能力。 ? 该系统采用先进的设计思想,开放灵活的系统网络架构,能够根据需 求进行不同的组合和配置,系统可扩展性强。 ? 维护便捷,由于采用网络架构,获得用户授权后能连接到用户网络, 可以远程支援维修维护系统,从而提高维护效率,减少维护成本。 ? 可靠性高,充分适应不同的海洋环境。
二、 系统设备清单
序号 1
2
材料名称
规格型号
X 波段雷达,IP65(含安装支架) HLD800/900;8ft,25kw
小目标雷达数据处理器及显示 HLD-STTD-1000
终端软件
Radpro V1.6.0.0
数量 1套
1套

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

雷达性能优势及参数

仪器性能 1.博泰克RIS雷达的优势: 1. 航天技术,品质极高:制造商意大利IDS公司是一家包括导航雷达部,探地雷达 部等相关产品的著名厂家,其设计宗旨就是潜心研究出优于普通雷达设备的实用型探测系统,产品技术更新快; 2. 模块式设计配置灵活,硬件升级自如; ·博泰克RIS主机可与本公司所有天线兼容,用户可按需选配,极大地节约了成本·已购买单通道主机用户,如需使用多通道主机,可由单通道升级为四通道,避免 了重复投资 ·天线可根据需要由单天线升级为精度更高和速度更快的天线阵 3. 雷达天线屏蔽效果好(军工级屏蔽),精度和分辨率很高,带绘图系统的测量轮可精 确定位目标,多极数据使得目标形状识别及环境识别更加精确; 4. 雷达主机、天线和电池的体积小、重量轻、稳定性高,单人操作,遥控操作,自动设 置;防水、防尘和抗震性能好,能适应各种恶劣的工作环境(隧道、井下等);具有极高的发射速率和扫描速度,完全满足公路快速检测的要求; 5. 独有的天线阵设计使雷达探测技术登上了一个新台阶:有专门的公路及隧道检测天线 阵(600+1600MHz) ,最大探测速度可达80Km/h,探测深度为1.5-2米,一次就可以完成面层、基层等的精确分层检测和空洞、裂隙、软弱带等路基检测的要求;根据需要,还可以在该天线阵的基础上增加100MHz等更低频率的天线,以满足更深的探测要求; 6. 雷达主机独有的远程调控功能,通过此功能,国外雷达专家可以随时对雷达系统进行 调试和维护; 7. 后期处理软件实用方便,功能强大: 其公路与隧道分析软件LAYERING可以自动处理雷达数据、自动(手动)追踪层面、自动绘制厚度图、自动在雷达图上标明取芯结果、自动生成厚度报表、直接在雷达图上标注缺陷并打印等; 自动物性分类软件SUBREM可以由检测雷达的雷达图,自动对路基、隧道等做分 类分析,指出路基的软弱带、高含水区、衬砌后的围岩情况等等,是目前世界上唯一有此功能的雷达处理软件; 8.RIS雷达系统采集到的数据可以直接和地理信息系统相连接,实现信息化管理,方便 的实现查询、修改、输入、输出等功能,是目前唯一具有此功能的雷达系统; 9. 在世界雷达比武上,博泰克RIS雷达以探测速度最快(唯一在规定时间内完成全部 探测任务),分辨率和精度最高(探测目标数量多),唯一现场绘制出被探测物的三

赛英公司管理系统FOD监测雷达系统

机场跑道异物(FOD)雷达检测系统(Foreign Object Debris radar Detection system) ●研发背景 ●对FOD雷达检测系统的要求 ●赛英公司与研发团队简介 ●赛英产品的技术特点 ●赛英产品与国外同类产品比较 ●赛英产品的工作流程 赛英科技 2010.6.8

一、研发背景简介 机场跑道异物(FOD)泛指可能损伤飞机的某种外来物质。FOD会危及飞机和乘客的生命,造成航班延误、中断起飞,引起巨大的经济损失。据保守估计,每年全球因FOD造成的直接损失至少在30亿—40亿美元。而间接损失是这个数字的4倍!我国民航局机场司2009年出版的【FOD防手册】指出:从2007年5月到2008年5月,FOD损伤飞机轮胎的事件在我国有4500起! 2000年7月25日,法航一架协和式客机从法国巴黎戴高乐机场起飞,两分钟后随即坠毁,共有113 人遇难,法航向遇难家属赔偿约1.3亿美元。这次事件的罪魁祸首就是FOD——跑道上的一块45公分长的金属条,这也是史上FOD造成的最大空难。 协和悲剧发生后,FOD探测系统的研究与开发提上日程,2006年12月,加拿大温哥华机场安装了Tarsier FOD监测雷达,成为全球安装FOD 监测系统的第一个民航机场。现在,欧美国家的一些大型民航机场已经陆续安装FOD监测系统。 在我国,既没有引进这种系统的机场,也没有研发这种系统的报道。我国机场对FOD的监测都是靠人工定时巡视,靠人眼近距离搜寻,这种落后的方法效率低,可靠性差,而且大大占用了宝贵的跑道使用时间,使航班次数被迫减少。因此,研发具有自主知识产权的国产FOD监测系统是我国航空业的当务之急,航管业界称之为雪中送炭。国产FOD监测雷达的问世必将产生巨大的社会和经济效益。

隧道衬砌地质雷达无损检测技术

. . . . 隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H: H V T =??2(1)

式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性

国产激光雷达性能参数

激光雷达最早的定义是LIDAR,英文为Light Deteation and Ranging,中文意思是「光的探测和测距」。 其实更准确的一个定义是LADAR:LAser Detection and Ranging,即「激光的探测和测距」。这是在2004 年提出的定义,更符合激光雷达的概念。 激光雷达实际上是一种工作在光学波段(特殊波段)的雷达,它的优点非常明显: 1、具有极高的分辨率:激光雷达工作于光学波段,频率比微波高2~3个数量级以上,因此,与微波雷达相比,激光雷达具有极高的距离分辨率、角分辨率和速度分辨率; 2、抗干扰能力强:激光波长短,可发射发散角非常小(μrad量级)的激光束,多路径效应小(不会形成定向发射,与微波或者毫米波产生多路径效应),可探测低空/超低空目标; 3、获取的信息量丰富:可直接获取目标的距离、角度、反射强度、速度等信息,生成目标多维度图像; 4、可全天时工作:激光主动探测,不依赖于外界光照条件或目标本身的辐射特性。它只需发射自己的激光束,通过探测发射激光束的回波信号来获取目标信息。 但是激光雷达最大的缺点——容易受到大气条件以及工作环境的烟尘的影响,要实现全天候的工作环境是非常困难的事情。 激光雷达在无人驾驶中的功能: 第一是路沿检测,也包括车道线检测; 第二是障碍物识别,对静态物体和动态物体的识别; 第三是定位以及地图的创建。 一款好的激光雷达设备都有哪些评判标准呢? “单位时间出点数、点云测量精度、测距范围三方面的具体性能直接决定了激光雷达设备品质的好坏”。

激光雷达详细的参数如下: 线束…………16线 波长…………905nm 激光等级…………class 1 精度…………±2cm(典型值) 测距…………20cm~150m(目标反射率40%) 出点数…………320,000pts/s 垂直测角…………30° 垂直角分辨率………… 2.0o 水平测角…………360o 水平角分辨率…………0.1o至0.4o 转速…………300-1200rpm (5-20Hz) 输入电压…………9-32VDC 产品功率…………9w(典型值) 防护安全级别…………IP67 操作温度…………-10~60°C 规格…………H:82.7mm*φ:109mm 重量…………0.84kg(不包含数据线) 采集数据…………三维空间坐标/反射率 激光雷达生产复杂,价格高昂也是行业普遍面对的问题 通过深圳在高端制造商的积累解决这个问题。4月18日,速腾宣布已经投入20多条生产线来量产多线激光雷达,并且预计1个季度后达到100条以上的产线规模。 线数越高,价格越高。同理,通过耦合方案达到想要的线数,这样的话,比 2线、64线的价格要有优势。 激光雷达行业供货周期长 速腾聚创激光雷达供货周期在4周以内,快了很多。

公路或城市车流量智能雷达检测系统设计方案

智能雷达检测系统方案 XXXX科技开发有限公司 2014年6月

目录 1概述 (1) 2系统特点 (1) 3系统原理 (1) 4与传统微波车检的区别 (2) 5系统构成 (2) 5.1单雷达系统 (2) 5.2多雷达系统 (3) 6系统性能及技术指标 (4) 7安装布局 (5) 7.1安装在高速路路侧 (5) 7.2安装在收费站 (6) 7.3安装在十字路口 (6) 7.4灵活的安装高度 (7) 8选型 (8)

1、概述 随着社会的发展和人们生活需求的提高,车辆数量日益增多并且多样化,交通问题越来越重要。在道路交通管理过程中,车流信息是决定控制策略的关键因素之一。因此更加精确地、多类型地采集车辆信息日益显示出其重要性,从而实现交通智能化,最终实现道路资源的高效利用,本文介绍的是来自德国的一款全新概念的智能检测雷达。 2、系统特点 ?精确测量每个对象的位置和速度; ?具有跟踪和分类功能,同时测量多个物体(卡车,汽车,自行车,行人 等); ?同时可检测4车道(或更多),最长达300米的范围; ?300公里/小时以内,速度可精确测量; ?灵活的安装:在公路旁、交叉口,在桅杆臂或横跨道路的门架; ?测量每车道和多车辆信息,占用率,速度,间距等; ?上电自校准和诊断; ?全天候运转; ?灵活小巧,重量轻; ?免维护; ?四天线设计,通信更稳定可靠; ?可选择多种接口通信。 3、系统原理 基本原理是应用‘多普勒效应’, 利用持续不断发射出电波的装置,当无线电波在行进的过程中, 碰到物体时被反射, 而且其反弹回来的电波波长会随着所碰到的物体的移动状态而改变. 经由计算之后, 便可得知该物体与雷达之间相对移动速度。 若无线电波所碰到的物体是固定不动的, 那么所反弹回来的无线电波其波长是不会改变的. 但若物体是朝着无线电线发射的方向前进时, 此时所反弹回来的无线电波其波长会发生变化, 借于反弹回来的无浅电波波长所产生的变化,

隧道衬砌地质雷达无损检测技术

隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图 1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的 ,因此根据地质雷达记录的电磁波传播时间ΔT ,即可据下式算出异常介质的埋藏深度H : H V T =??2 (1) 式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度

越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m~2.0m左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性差异,是探测工作是否有效的前提,这种电性差异就是介电常数;应根据不同的检测对象和检测要求选用不同的天线类型;适用条件,探测的目标体与周围介质有较大的介电常数差异并具有较好的反射条件;上覆层导电性较弱;目标体具有一定的体积,引起的异常有一定的强度;具有一定的探测对比资料。 该技术适用于隧道衬砌质量施工过程控制和竣工验收的无损检测。 4 主要引用标准 《高速铁路隧道工程施工质量验收标准》(TB 10753-2010) 《铁路隧道工程施工质量验收标准》TBl0417-2003 《铁路隧道衬砌质量无损检测规程施工规范》(TB10223-2004) 《铁路工程物理勘探规程》(TB10013-2004) 《岩土工程勘察规范》(GB50021-2001) 《云桂铁路石林隧道地质雷达无损检测实施细则》 云桂铁路石林隧道相关设计图纸以及相关施工资料。 5 施工方法 1、检测前的准备工作: 收集隧道工程地质资料、施工图、设计变更资料和施工记录;

探地雷达

探地雷达原理及应用读书报告 班级:061094班姓名:洪旭程学号:20091001724 探地雷达探测是一种先进的测试技术,是近十余年发展起来的地球物理高新技术方法,以其分辨率高、定位准确、快速经济、灵活方便、剖面直观、实时图像显示等优点,备受广大工程技术人员的青睐。现已成功地应用于岩土工程勘察、工程质量无损检测、水文地质调查、矿产资源研究、生态环境检测、城市地下管网普查、文物及考古探测等众多领域,取得了显著的探测效果和社会经济效益,并在工程实践中不断完善和提高,必将在今后的工程探测领域发挥着愈来愈重要的作用。因此,对广大工程技术人员来说,了解和学习探地雷达的原理及应用是非常必要的。 探地雷达探测技术在方法、仪器等方面仍在发展,其分辨率和探测范围也在不断的提高和扩大,比如美国地球物理调查系统公司( Geophysical Survey System Inc. ) 的SIRO10H 仪器,其标称的最小探测深度为4 cm ,最大探测深度为50 m ,最小可探测对象尺度为毫米级。但探地雷达探测技术与其它的地球物理勘查技术一样,其探测效果与其应用条件密切相关。 一、探地雷达的工作原理 探地雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回到地面时由接收天线所接收。在对接收天线接收到的雷达波进行处理和分析的基础上,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) 。这是一种非破坏性的探测技术,可以安全地用于城市建设中的工程场地,并具有较高的探测精度和分辨率。 图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录,通过主机的回放处理,就可以得到雷达记录的回波曲线(如图2 所示) 。

倒车雷达测试及评价试验规范

Q/SQR 奇瑞汽车股份有限公司企业标准 Q/SQR . x x. x x x - 2008 倒车雷达性能台架测试及评价试验规范 奇瑞汽车股份有限公司

前言 本规范主要规定了奇瑞汽车股份有限公司系列车倒车雷达系统性能测试方法、试验条件。本规范的编写与表述按奇瑞汽车股份有限公司企业标准Q/《倒车辅助系统技术要求》及ISO 17386-2003进行。本规范是在满足奇瑞汽车产品性能要求的前提下制定的。本标准作为公司开发新产品和抽检配套供应商供货质量的依据。 本规范由奇瑞汽车股份有限公司试验技术中心提出。 本规范由奇瑞汽车股份有限公司汽车工程研究院归口 本规范起草单位:奇瑞汽车股份有限公司试验技术中心 本规范首次发布日期是2008年XX月XX日。 本规范主要起草人:李川、郑春平、周琴

倒车雷达性能台架测试及评价试验规范 1 范围 本规范适用于奇瑞汽车有限公司生产的系列车型所用倒车雷达系统台架性能测试及评价。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 Q/ 倒车辅助系统技术要求 ISO 17386-2003 Intelligent Transportation Systems. Manoeuvring Aids for Low Speed Operation. Performance requirements and test procedures 3 试验条件 试验环境条件 环境温度:23℃±5℃ 相对温度:25~75% 气压:86~106kPa 试验电压:13±

探地雷达成像算法研究综述

探地雷达成像算法研究 摘要 探地雷达(Ground Penetrating Radar,简称GPR)集无损检测、穿透能力强、分辨率高等众多优点而成为检测和识别地下目标的一种有效技术手段。性能优良的探地雷达成像方法有助于精确定位地下目标,同时提高对目标的检测和识别能力,从而推动探地雷达在城市质量监控、地质灾害、考古挖掘、高速公路无损检测、地雷探测等各个方面得到更广泛的应用。 本文以中国电波传播研究所的探地雷达LD-2000为实验设备,从中读取探测数据。以MATLAB为软件平台,实现了探地雷达数据的显示、处理、成像几个部分。其中数据显示方式包括数据的波形堆积图,剖面面色阶图以及带数据波形图;数据处理部分包括直达波的去除、背景噪声的去除、振幅增益等;雷达成像算法部分主要采用波前成像算法和投影层析成像算法。

Imaging Algorithm of Ground Penetrating Radar ABSTRACT GPR (Ground Penetrating Radar, referred GPR) set of non-destructive testing, penetration ability, many advantages of high resolution detection and identification of underground and become the target of an effective technical means. Excellent performance GPR imaging approach helps pinpoint underground targets, while increasing the target detection and identification capabilities, thereby promoting the quality of ground penetrating radar surveillance in the city, geological disasters, archaeological excavation, highway nondestructive testing, mine detection, etc. aspects to be more widely used. In this paper, China Institute of Radiowave Propagation GPR LD-2000 for the experimental apparatus, reads probe data. MATLAB as the software platform to achieve a ground-penetrating radar data display, processing, imaging several parts. Wherein the data includes a data waveform display stacked, with a cross-sectional side view and a gradation data waveform; data processing section includes the removal of the direct wave, the background noise removal, the amplitude gain, etc.; radar imaging algorithm some of the major imaging algorithm and the wavefront projection tomography algorithms.

车流量检测雷达

佰誉达 车流量检测雷达 (本产品已通过国家道路交通安全产品质量监督检验中心公安部交通安全产品质量监督检测中心认证) 用户手册 佰誉达科技 深圳

目录 一、微波车流量检测雷达概述 (1) 1.1用途 (1) 1.2描述 (1) 1.3技术指标 (2) 1.3.1微波指标 (2) 1.3.2检测指标 (2) 1.3.3通信指标 (2) 1.3.4环境与可靠性指标 (2) 1.3.5电源指标 (2) 1.3.6物理指标 (3) 1.4应用领域 (3) 1.4.1路口模式(城市交通) (3) 1.4.2高速公路(城市交通、高速公路) (3) 1.5典型应用 (3) 1.5.1路口模式(城市交通) (3) 1.5.2路段模式(城市交通、高速公路) (4) 二、微波车流量检测雷达的安装 (6) 2.1设备组成 (6) 2.2设备安装 (6) 2.3工程安装 (7) 2.4雷达接口 (7) 三、微波车流量检测雷达的调试及使用 (7) 3.1软件运行环境 (7) 3.2软件安装 (8) 3.3软件使用说明 (8) 3.3.1主界面 (8) 3.3.2 设备参数 (8) 3.3.3雷达参数 (9) 3.3.4 安装参数 (9) 3.3.5 连接雷达 (10) 3.3.6按钮功能说明 (10) 3.3.7 车道计数 (11) 3.3.8 车道流量统计直方图 (11) 四、微波车流量检测雷达数据传输 (11) 4.1雷达数据传输模式 (11) 五、微波车流量检测雷达故障排除 (12) 附录1 (12)

一、微波车流量检测雷达概述 1.1用途 车流量检测雷达是拥有完全自主知识产权的新型微波车辆检测器,利用雷达线性调频技术原理,对路面发射微波,通过对回波信号进行高速实时的数字化处理分析,检测车流量、速度、车道占有率和车型等交通流基本信息的非接触式交通检测器。检测器主要应用于高速公路、城市快速路、普通公路交通流量调查站和桥梁的交通参数采集,为交通管理提供准确、可靠、实时的交通情报,为实现交通智能化提供技术支持。 1.2描述 车流量检测雷达是一种工作在微波频段的雷达探测器。雷达向路面连续发射线性调频微波波束,车辆通过微波波束时反射信号,根据反射信号检测目标是否存在并计算其交通参数。每隔一定时间(1s-1000s)将各种交通流参数信息通过数据通道传输到指挥控制中心。它能可靠的检测与区分公路上的任何车辆,包括从摩托车到多轴、高车身的车辆以及拖车等,检测路上每一车道所通过的车流量、车辆速度、车道占有率、车型分类等参数。 检测器雷达采用的是中心频率为24GHz的微波信号,因此具有高频微波的所有特性,自主开发的雷达信号分析处理算法检测精度高,检测范围宽,可以跨越道路中央隔离带的防眩板、树丛及金属护栏等障碍物检测到驶过的车辆,大大降低了隔离带对检测精度的影响。同时,由于微波对环境干扰不敏感,使得其在各种天气气候条件下都保持准确的检测。 检测器采用了创新的软件设计理念,将车道的静态划分和动态划分结合起来,在使用前静态划分车道,并在使用中根据车流的实际情况调整车道的划分,对跨车道行驶的车辆可通过模糊判断,合理的将该车划分到最近的一个车道,而不会检测为两辆车,解决了城市复杂交通情况下的应用问题。 综合来说主要有以下特点: 1)自主研发,可根据需求更改数据输出接口和协议,且支持远程软件控制; 2)安装方便,维护简单。 3)高适应性,在恶劣气候条下稳定工作,不受风、雨、雾、冰雹等影响。 4)自动车道识别功能,实现0后置距离的安装。

一种改善脉冲雷达检测性能的方法

龙源期刊网 https://www.360docs.net/doc/b22567396.html, 一种改善脉冲雷达检测性能的方法 作者:徐家迅 来源:《硅谷》2012年第05期 摘要:脉冲雷达要在回波信噪比一定的情况下检测回波。实践表明,同步积累脉冲对提高信噪比十分有用。对阐述脉冲积累的仿真结果,在FPGA的基础上设计一套同步积累器。经过测试后发现在,这种积累器可以大大的提高脉冲信噪比,从一定程度上改善雷达的检测性能,应大力推广。 关键词:脉冲雷达;检测性能;同步积累器 中图分类号:TN957.51 文献标识码:A 文章编号:1671-7597(2012)0310120-02 脉冲雷达测距是在目标回波脉冲的基础上建立起来的。在雷达接收机的输入端,回波信号中经常混杂有噪音以及各种杂音,限制了雷达信号的检测。所以信号的信噪比是雷达检测能力的重要依据。 提高雷达检测能力的关键就是要提高回波信号的信噪比。脉冲积累就可以实现这一点,可以在包络检波前完成积累,这种方法被称为中频积累或是检波前积累。这要求信号间的相位关系要严格,也就是信号之间的相参的,因此也可以叫做相参积累。由于包络检波后的信号只会保留幅度信息,所以检波后积累就不需要有信号间的相位关系很严格。所以也可以叫作非相参积累。 早期雷达传统的积累方法已不能适应发展的需要。近年来,虽然探讨了很多通过脉冲积累来解决问题的方法,从还是无法从根本上解决问题,本文采用脉冲积累的方法,解决了无法正常检测到的问题。 1 脉冲积累的必要性分析及性能仿真 1.1 雷达检测性能分析 接收机噪音属于一种宽频带的高斯噪音,和信号能量谱占有相同频带的噪声能量会限制雷达检测能力。由于噪声具有不稳定性,所以判断信号能否出现成为统计问题。应该根据一定的统计标准来判断。在雷达信号的检测中经常运用到一种准则,那就是奈曼皮尔逊准则。这个准则要求在信噪比一定的前提下满足虚警概率Pfa时发现概率为Pd的值达到最大。实现这一准则的方法是比较某个预设门限电压UT和雷达接收到的回波信号。如果包络幅度超过了门限,那就表示目标是存在的;反之,则目标不存在。

地质雷达在混凝土结构中的钢筋定位检测中的应用

地质雷达在混凝土结构中的钢筋定位检测中的应用 引言 在混凝土结构工程中,经常会有混凝土内钢筋配置不符合规定的情况,如主筋与箍筋未绑扎、主筋长度不足、钢筋断开、多层钢筋配置不符合要求、节点部位的钢筋布置不符合要求等,不符合《混凝土结构设计规范》、《混凝土结构工程施工质量验收规范》几原设计要求的钢筋配置及施工质量问题。地质雷达是一种高效高分辨率的无损检测技术,随着地质雷达的技术及应用范围的拓展,已广泛应用于岩土工程勘察,且现已有居多成功案例可证明地质雷达能够解决混凝土结构工程中的钢筋检测。 技术原理 探地雷达是一种对地下或物体内不可见的目标或界面进行定位的电磁技术,是一种浅层高分辨探测技术,最早应用于工程场地勘查、工程质量检测及病害诊断、地下埋设物与考古探察、隧道超前预报。探地雷达具有无损性、操作携带方便、采集效率高、水平和垂直分辨率高等许多优点,目前正逐渐成为地下隐蔽工程检测的一种有力工具。随着地质雷达技术的不断发展和实践经验的积累,其应用范围不断扩大,现以广泛应用于岩土工程勘察、工程结构检测等诸多领域。 地质雷达利用高频电磁波以宽频带脉冲形式在地面通过发射天线送入地下,电磁波在地下传播过程中,当遇到目标体如空洞时,会发生反射并返回地面,被接收天线接收,由于电磁波在地下介质中传播时,其路径波形与能量会随着所通过介质的电性质及几何形态不同而变化,因此,通过对电磁波反射信号的旅行时间即双程走时频率幅度与波形变化等时频特征和振幅特征的分析研究,就可以确切了解地下界面或目标体的空间位置及形态。这是一种非破坏性的探测技术,可以安全地用于建筑工程中的混凝土结构中的检测,并具有较高的探测精度和分辨率。 地质雷达在建筑结构检测中遇到的典型目标体的雷达图像特征为:(1)在钢筋混凝土结构中,视混凝土为均匀介质,钢筋为混凝土中的异常体,电磁波在钢筋与混凝土的接触面产生强反射,波形特征表现为孤立的点状或弧形反射,依此特征来判定钢筋分布情况,确定其位置及可计算保护层厚度;(2)钢板为混凝土内的异常体,电磁波在钢板与混凝土接触面上也会发生强反射,波形特征为水平同相轴,钢板边缘出现绕射现象;(3)当混凝土内有空洞或不同结构物夹层内含有空气是,易形成大的弧形反射同相轴或者杂乱反射,且易产生多次反射波。因此,正确识别目标体的地质雷达图像特征是进行地质雷达解释的核心。 图1 地质雷达的工作原理示意图

相关文档
最新文档